Summary of the paper

Title Is it worth it? Budget-related evaluation metrics for model selection
Authors Filip Klubička, Giancarlo D. Salton and John D. Kelleher
Abstract Creating a linguistic resource is often done by using a machine learning model that filters the content that goes through to a human annotator, before going into the final resource. However, budgets are often limited, and the amount of available data exceeds the amount of affordable annotation. In order to optimize the benefit from the invested human work, we argue that deciding on which model one should employ depends not only on generalized evaluation metrics such as F-score, but also on the gain metric. Because the model with the highest F-score may not necessarily have the best sequencing of predicted classes, this may lead to wasting funds on annotating false positives, yielding zero improvement of the linguistic resource. We exemplify our point with a case study, using real data from a task of building a verb-noun idiom dictionary. We show that, given the choice of three systems with varying F-scores, the system with the highest F-score does not yield the highest profits. In other words, in our case the cost-benefit trade off is more favorable for a system with a lower F-score.
Topics Evaluation Methodologies, Multiword Expressions & Collocations, Statistical And Machine Learning Methods
Full paper Is it worth it? Budget-related evaluation metrics for model selection
Bibtex @InProceedings{KLUBIČKA18.615,
  author = {Filip Klubička and Giancarlo D. Salton and John D. Kelleher},
  title = "{Is it worth it? Budget-related evaluation metrics for model selection}",
  booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
  year = {2018},
  month = {May 7-12, 2018},
  address = {Miyazaki, Japan},
  editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {979-10-95546-00-9},
  language = {english}
Powered by ELDA © 2018 ELDA/ELRA