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Abstract
Projects that set out to create a linguistic resource often do so by using a machine learning model that pre-annotates or filters the
content that goes through to a human annotator, before going into the final version of the resource. However, available budgets
are often limited, and the amount of data that is available exceeds the amount of annotation that can be done. Thus, in order to
optimize the benefit from the invested human work, we argue that the decision on which predictive model one should employ
depends not only on generalized evaluation metrics, such as accuracy and F-score, but also on the gain metric. The rationale is
that, the model with the highest F-score may not necessarily have the best separation and sequencing of predicted classes, thus
leading to the investment of more time and/or money on annotating false positives, yielding zero improvement of the linguistic
resource. We exemplify our point with a case study, using real data from a task of building a verb-noun idiom dictionary. We show
that in our scenario, given the choice of three systems with varying F-scores, the system with the highest F-score does not yield the
highest profits. In other words, we show that the cost-benefit trade off can be more favorable if a system with a lower F-score is employed.
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1. Introduction
Building linguistic resources, such as corpora or dictionar-
ies, can be very labor-intensive, requiring great amounts of
work-hours and expert annotation. However, as pointed
out by Ringger et al. (2008), fixed budgets constrain the
amount of annotation that can go into the construction of
linguistic resources. In many cases, the amount of avail-
able data far exceeds the time and money that is available
for annotation, so one can only afford to label a subset of
the data. Furthermore, for some linguistic resources only a
particular (and sometimes rare) subset of the available data
is relevant. Indeed, when the target linguistic phenomenon
is relatively rare, the amount of time wasted filtering non-
relevant data can be considerable. For example, consider
the scenario of creating an idiom dictionary: in this context,
only idiomatic phrases should be included in the dictionary
and any time or effort expended on filtering non-idiomatic
phrases is, essentially, an unnecessary cost to the project.
Given that annotators are paid either by the hour or, more
often, by the number of annotations they produce (mea-
sured in words, sentences, phrases etc.), researchers are
strongly motivated to reduce the annotation time, and
thereby a project’s annotation costs, without sacrificing the
quality and coverage of the resources they are creating. To
this end, the annotation process is often supplemented with
predictive models that to an extent streamline, speed up and
ultimately cheapen the cost of human intervention. In the
scenario of creating a linguistic resource where only a sub-
set of the potential data is relevant for inclusion (for ex-
ample, a dictionary of idioms) these predictive models can
be used to pre-filter the examples presented to an annota-
tor, with the goal of maximizing the percentage of positive
instances (e.g. idioms) that the annotator reviews, and min-
imizing the number of false positives (e.g. non-idioms) that
the annotator must manually filter and discard.

In most projects focused on creating linguistic resources
there exists a variety of different predictive (machine learn-
ing) models that could be used to pre-filter examples before
human-annotation. Consequently, the question arises re-
garding how to choose the best model to aid in the annota-
tion process. Traditionally, predictive models are evaluated
based on established evaluation measures that reflect the ac-
curacy of the model, using metrics such as F-score. Such
measures are designed for evaluating predicting processes
that include instance scoring and thresholding. An example
of this would be deciding on the cutoff score between class
labels in a binary prediction task (e.g. idiomatic and non-
idiomatic phrases). However, in this paper we argue that, in
contexts where annotation budgets are an important consid-
eration and, hence, we can only afford to annotate a subset
of our data, the sequence of the data becomes much more
important than the application of the threshold. Thus, in
such a constrained setting, selecting a pre-filtering predic-
tion model based on a measure of accuracy which evaluates
the interplay of the scoring and thresholding process on an
entire test set may not be the optimal approach. Instead,
we propose that a more suitable metric for model evalua-
tion in this context is gain, and the associated measure of
cumulative gain.
Unlike standard evaluation metrics that evaluate a predic-
tion model’s performance on how successfully it scores
the examples and applies a threshold, the gain and cumu-
lative gain measures provide insight into the performance
of a model across different subsets of a test set. Further-
more, they are much more suitable for evaluating how the
instances in the test set are sequenced. Hence, these mea-
sures provide insight that is useful for a number of different
annotation scenarios. In particular there are three scenar-
ios where we argue that gain and cumulative gain can be
invaluable for the decision-making process:
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1. We can have a fixed budget and can only afford to an-
notate a set amount of the data. Here we wish to decide
which pre-filtering model is the best one to use.

2. We have a flexible budget and we can afford to anno-
tate a variable amount of the relevant data, but we still
wish to spend as little money as possible with compa-
rable results, and we wish to decide which pre-filtering
model is the best one to use.

3. We have already performed some annotation and we
want to know if we should stop, or if it is worthwhile
to annotate more, given the likely performance of the
pre-filtering model over the next segment of data.

1.1. Related work
A number of researchers have already examined questions
related to the costs associated with annotation of linguistic
resources. Ringger et al. (2008) have done work on esti-
mating the cost of corpus annotation as a step towards se-
lecting which annotation environments are most appropri-
ate for a given project. They perform an analysis of annota-
tion costs on the task of correcting part of speech tags in an
automatically annotated corpus. Based on these findings,
they present a linear model for estimating the hourly cost
of annotation for annotators of various skill levels, as well
as a model for two granularities of annotation (sentence at a
time and word at a time), thus providing informative guide-
lines for choosing an optimal annotation environment.
Similarly, Balamurali et al. (2012) present an economic
model to asses the benefit accruing from the increase in
project cost by performing annotation. They examine the
relationship between the additional investment in annota-
tion of WordNet senses and the subsequent increase in
accuracy scores on the task of sentiment analysis. In-
stead of evaluating the predictive models conventionally, by
comparing their accuracies, they compare expected profits,
which are set up in terms of costs and expected returns.
They make a comparison of approaches from different eco-
nomic perspectives - namely which approach yields maxi-
mum expected profit, and which approach yields this profit
the earliest (meaning less money can be spent overall).
Their focus is to answer the question “Is the [subsequent]
improvement in accuracy significant enough to justify the
[additional] cost of annotation?”, or in other words, they
wonder “Should the extra cost of annotation be incurred for
the task at all?” (Balamurali et al., 2012, p. 3090).
Their questions are similar to ours, but we examine a dif-
ferent setting and propose the gain metric as the answer to
those questions. The remainder of our paper is thus orga-
nized as follows: in Section 2. we discuss standard machine
learning model evaluation methods and provide a general
motivation for the use of the gain measure for evaluating
pre-filtering models in contexts where budgetary concerns
are relevant; in Section 3. we introduce the gain measure;
in Section 4. we illustrate the benefits of gain in the context
of an annotation project using a case study (based on actual
research data) of building an idiom dictionary; and finally
we round up the paper with a conclusion.

2. Drawbacks with Traditional Model
Evaluation Metrics for Annotation

Pre-filtering Models
Within a machine learning context, the standard method for
evaluating a predictive model is to first split a dataset into a
training set and a test set. The model is induced by applying
a machine learning algorithm to the training data. Once the
model has been created it is then run on the test set and a
measure of the performance of the model is calculated as a
function of how often the predictions made by the model for
the instances in the test set match the gold-standard labels
for these instances.
There are a variety of different metrics that can be used to
calculate the accuracy of a model on a test set. The sim-
plest is metric is simply the raw accuracy of the model, cal-
culated by dividing the count of test instances the model
got correct by the total number of instances in the test set.
Other measures of accuracy are designed to handle specific
requirements or characteristics of a domain. For example,
if a prediction model is being trained to discriminate be-
tween two outcomes (e.g. spam vs. ham email, healthy vs.
unhealthy patients, idiomatic vs. non-idiomatic phrases) it
may be that there is a particular outcome that we are in-
terested in identifying instances of, either because of the
cost of getting an instance of this class wrong or because
instances of this class are rare. For example, in the health
domain it is more important to identify patients who are
suffering from a disease than to identify patients who do
not have a disease1. In linguistics, it may be that we are
interested in identifying instances of a rare linguistic phe-
nomenon. In these contexts the outcome of particular in-
terest is known as the positive class and there are a number
of evaluation metrics designed to emphasize the ability of a
model to correctly identify instances of this positive class.
The F-score is an example of this type of evaluation metric2

The literature on the task of automatic type identification of
idioms, more specifically verb and noun idiomatic combi-
nations (VNIC), illustrates the use of these standard model
evaluation metrics. Most of the work in this field either uses
accuracy (used by Fazly et al. (2009)) or F-score (used
by Muzny and Zettlemoyer (2013), Senaldi et al. (2016),
Salton et al. (2017)) to compare model performance. These
measures provide an appreciable sense of the reliability of
a given model, which is why they are commonly used as
evaluation metrics. However, because they focus on eval-
uation accuracy they are evaluating both the model’s abil-
ity to score an instance appropriately and the threshold the
model uses. We argue that for evaluating a model that will
be deployed for pre-filtering in an annotation project this
focus is not appropriate. In these contexts the best model
is the model that can sequence instances correctly with a
clear separation between positive instances (at the start of

1An error in predicting that a healthy patient is ill is likely to
be corrected through follow up tests, whereas an error made in
predicting an ill patient is healthy, resulting in the patient being
discharged without further tests or treatment, can have disastrous
consequences

2See (Kelleher et al., 2015) for an explanation of a range of
evaluation metrics (including the F-score).
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the list) and negative instances (at the end of the list). In
situations where sequencing and class separation are im-
portant more important than thresholding, measures such
as gain and cumulative gain become more useful to eval-
uate model suitability. In the following subsections we il-
lustrate this distinction between classification accuracy and
instance ranking using worked examples.

2.1. Worked example: Classification
We introduce our worked example in Table 1. Let us as-
sume that we have a gold standard test set consisting of
6 phrases (presented in the first column), 3 of which are
labeled as idiomatic (shaded green) and 3 of which are la-
beled as non-idiomatic (shaded red). We have trained two
pre-filtering models (M1 and M2) that output a list of can-
didates ordered according to some sort of measure of confi-
dence in the positive label being correct (be it a probability,
or any other type of scaled measure). When using a tradi-
tional evaluation metric (accuracy, F-score, etc.) these con-
fidence scores are converted to a class label by applying a
threshold to the confidence scores. This cutoff point on our
ordered list serves as a delimiter above which we consider
all candidates to be labeled as positive (idiomatic), and be-
low which we consider all candidates to be labeled nega-
tive (non-idiomatic) by our classifiers. Generally, different
models will score instances differentally and will also have
different thresholds. Consequently they will return differ-
ent proportions of positive and negative predictions for a
given test set. However, for the purposes of this discussion
(and without loss of generality) we will assume that the in-
teractions between the instance scoring and thresholding in
each model is such that both models predict that two thirds
of the test set are positive examples. Thus∼60% of our data
is labeled as positive by our model (shaded green), while
40% is labeled as negative (shaded red).

TestSet S1 S2
ID M1 M2 M1 M2
1 1 1 3 5
2 5 2 6 4
3 4 6 4 3
4 2 5 5 1
5 6 3 2 6
6 3 4 1 2
Acc 0.5 0.5 0.17 0.5

Table 1: Two hypothetical prediction scenarios (S1 and
S2) that illustrate the classification and evaluation process
via thresholding an ordered list. Cells shaded green repre-
sent instances classified as positive, while cells shaded red
represent instances instances classified as negative. Cells
shaded in lighter colors represent false positives and false
negatives, while the darker shaded cells represent true pos-
itives and true negatives.

Evaluating this output by comparing to the test set reveals
the model’s classification accuracy; given that accuracy is a
statistic interested in evaluating prediction of both the posi-
tive and negative class, when performing the evaluation we

divide the correct predictions by the total number of exam-
ples in the test set, rather than only the ones in the higher
ranked group.
With this in mind, we present two scenarios: in the first sce-
nario (S1), our first model (M1) and our second model (M2)
end up with the same accuracy, meaning their performance
is comparable - they both correctly predict the class of 3 out
of 6 instances (the correctly labeled instances are shaded
darker than the incorrectly labeled instances). Given that
they have the same accuracy score, choosing a better model
is a non issue. However, in the second scenario (S2), M1
has a lower accuracy than M2, meaning that M1 performs
worse than M2. In this scenario, the obvious choice is the
model with the higher accuracy - M2.

2.2. Worked example: Sequencing
However, when the ordered list returned by a pre-filtering
model is used to order the candidates presented to a human
annotator and, furthermore, the human annotator will not
annotate the entire set of positive predictions (due to budget
constraints), then the distribution of correct positive candi-
dates within this ordered list, i.e. the sequence in which
they are given to the annotator, becomes very important.
In other words, although two models that return the same
number of correct predictions will be judged as identical us-
ing classification accuracy metrics, these models may still
differ in terms of the distributions of true positive and true
negative (i.e. prediction errors) instances: one model may
group the true positive instances together near the top of
the list and group the true negative instances near the bot-
tom of the list, whereas the other model may intersperse
the true negative instances with the true positive instances.
For a model used to pre-filter data used in annotation, the
model that bunches the true positive instances above the
true negative instances is much more useful than the model
that intersperses true positives and true negatives because
the annotation process will likely be focused on the top por-
tion of the list. This shift in focus is illustrated in Table 2,
using the same example as before.

TestSet S1 S2
ID M1 M2 M1 M2
1 1 1 3 5
2 5 2 6 4
3 4 6 4 3
4 2 5 5 1
5 6 3 2 6
6 3 4 1 2

Table 2: Two hypothetical prediction scenarios (S1 and S2)
that illustrate the the difference of considering sequencing
of true positive/true negative over classification accuracy.
Instances of the positive class are shaded green, whereas
the instances of the negative class are shaded red.

As we are not interested in predicting the negative class, we
focus our interest only on the instances of the positive class
(shaded green). In an ideal scenario, we would employ an
annotator to go through the ordered list and pick out the true
positive instances so we can add them to our dictionary.
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If we can go over the whole list, the ordering is still not
very important, as we will eventually get to all the positive
instances.
However, as is often the case when building a linguistic
resource, budgetary constraints mean that we cannot manu-
ally review all of the examples that a model returns as pos-
itive. Simulating the effect of these constraints on the test
set requires a cut off point in the data. Thus, once budget
comes into play, our list of candidates is shortened: if we
can only afford to annotate ∼30% of our positively labeled
data, six candidates drop out of each list, and we drop two
thirds of the dataset (shaded light green and light red). This
is illustrated in Table 3.

TestSet S1 S2
ID M1 M2 M1 M2
1 1 1 3 5
2 5 2 6 4
3 4 6 4 3
4 2 5 5 1
5 6 3 2 6
6 3 4 1 2
TP 1 2 1 0

Table 3: Two hypothetical prediction scenarios (S1 and S2)
that illustrate the advantage provided by considering the
distribution of classes in the ordered list. Lighter-shaded
cells represent data that cannot be annotated due to budget
constraints. The bottom row shows total number of true
positive (TP) instances included in the final resource.

At this point, if our goal is to get the largest amount of true
positive examples for our resource, the choice between M1
and M2 becomes more complex. In S1, the most profitable
choice becomes M2 (even though it has the same accuracy
as M1 when judged traditionally), as it will yield 2 entries
for our dictionary, whereas M1 would yield only 1 entry for
the dictionary.3 In S2, on the other hand, the most profitable
choice is M1, as it would provide 1 entry for our dictionary,
whereas M2 would provide 0 entries, even though its over-
all accuracy was almost thrice as high as that of M1.
This is only a provisional example, but it is important to
keep in mind that these proportions do scale. If the model
remains unchanged, the accuracy and distribution tenden-
cies stay the same, no matter the size of the dataset. Be-
cause we know that for a given project budget we can have
a human annotator review a limited number of instances,
we are interested not so much in which model is the best
at identifying positive instances across a full test-set, but
rather which model will sequence its output in such a way
as to return the largest number of true positive predictions
within the top n instances ranked by the model as positive.
Thus, accuracy is not an ideal measure in this situation, and
relying exclusively on it can have very expensive conse-
quences. In contrast, a measure that is very closely related
to the size of the budget is gain.

3Note we are defining the concept of profit here as the ratio of
resources invested (cost) and positive instances gained (benefit).

3. The gain measure
In Section 2. the concept of a positive class was introduced
as a category of instances in which we are particularly in-
terested. In contexts where such a positive class exists it is
appropriate to use a model evaluation metric that empha-
sizes the performance of the model on the correctly identi-
fied instances belonging to this category. The F-score is an
example of an evaluation metric which focuses on evaluat-
ing model performance on a positive class. The drawback
with using the F-score to evaluate pre-filtering models in
an annotation context is that it does not provide any insight
into the distribution of true positive and true negative in-
stances within the set of instances predicted to be positive
by a model. Gain, and the associated concept of cumulative
gain, also focus on a positive class but have the advantage
of taking into account the separation of positive and nega-
tive instances:

“The basic assumption behind gain is that if we
were to rank the instances in a test set in de-
scending order of the prediction scores assigned
to them by a well-performing model, we would
expect the majority of the positive instances to be
toward the top of this ranking. The gain metric
attempts to measure to what extent a set of pre-
dictions made by a model meets this assumption”
(Kelleher et al., 2015, p. 433)

An important difference between traditional evaluation
metrics and gain is that whereas traditional evaluation met-
rics return a single score for a model on a test set, using
gain results in a number of gain scores for each model for
a test set. In order to calculate the gain for a model, we first
rank the instances in a test set according to the prediction
score returned by the model for each instance. We then di-
vide this ordered list into deciles (groups containing 10% of
the dataset) and calculate the model’s gain in each decile by
dividing the true positive instances in each decile (based on
the known target labels in the dataset) by the total number
of positive instances in the test set:

gain(dec) =
num positive test instances in decile dec

num total positive test instances
(1)

Hence, once we know what the gain is for each decile of our
ordered list, with our budget dictating how many deciles we
can annotate, we can easily identify at which point check-
ing more candidates stops being profitable, or how much
data we need to pass to our annotator to obtain the desired
number of entries for our dictionary. Comparing these mea-
sures across several systems then proves to be a suitable
evaluation measure. We can go back to Table 3 and apply
the gain calculation to our hypothetical data. We are as-
suming that each row/data point is also one decile. Hence,
we know that in S1 the first decile (D1) of both M1 and M2
has a gain of 0.5. However, the gain of M1 in D2 is 0, while
the gain of M2 is, again, 0.5. Given that we can afford to
only annotate 2 deciles, this makes M2 the clear winner.
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3.1. Cumulative gain
A concept related to gain is cumulative gain, which can
be defined as the proportion of positive instances in a data
set that have already been identified up to a given decile.
This means that as we go through the deciles, the value of
cumulative gain rises until the last decile when it reaches
its maximum. Plotting the cumulative gain values for each
decile produces a cumulative gain chart (shown in Section
4., Figure 1), which allows us to understand how many of
the positive instances in a complete test set we can expect
to have identified at each decile of the dataset.
So in our example from Table 3, in the first decile D1 of
S1-M1 the cumulative gain is equal to that same decile’s
gain - 0.5. But once we reach D4 (which also has a gain of
0.5), its cumulative gain will be 1, as by that point we will
have encountered all the positive instances in the list.
This illustrates why we are particularly interested in cumu-
lative gain, as it allows us to make the following considera-
tion: for a given budget X we can annotate N deciles of our
data. Knowing that model M has the highest cumulative
gain at that point then tells us that we should use model M.
Moving on from our hypothetical example, this reasoning
can be applied to a number of real natural language process-
ing tasks. We illustrate the application of the gain metric in
the following section where we showcase its usefulness on
a real dataset.

4. Case Study - Idiom Dictionary
As mentioned in Section 2., we examine the usefulness of
gain on the task of building a dictionary of idioms. In
our setting, we have several different predictive models at
our disposal that perform type identification of potential id-
iomatic combinations of verbs and nouns. More specifi-
cally, our case study is based on the task of identifying po-
tential verb and noun idiomatic combinations (VNIC). The
output of each of our models provides an ordered list of
potential candidate phrases for the dictionary, ranked ac-
cording to a confidence measure. Hence, we do not actu-
ally classify the instances; we simply order all the instances
presented to the prefiltering model and then pass them in se-
quence to an expert who checks whether the candidates are
idiomatic or not.
We compare the performance of three models that perform
VNIC type identification based on fixedness measures (Fa-
zly et al., 2009). The particularities of the three models are
irrelevant for this analysis, but it is important to note that
the data featured here is actual experimental data stemming
from real models.4 Their global performance evaluations
(precision, recall and F-measure) are presented in Table 4.
The table shows the models’ evaluation results over a bal-
anced test set. The metrics were calculated as the weighted
average of the Precision, Recall and F-Scores on each class
(VNICs and non-VNICs). All of the results are statistically
significant according to Spearman’s ranked correlation test
(all p < 0.05).

4For more details on the background of the models, refer to
Salton et al. (2017). The resulting dataset is published on GitHub
as a freely available resource. It can be obtained through this link:
https://github.com/giancds/vnics_dataset.

Model Pr. Rec. F1
M1 0.82 0.73 0.70
M2 0.83 0.75 0.74
M3 0.83 0.78 0.77

Table 4: Results in terms of precision, recall and F-score,
ordered by their F-scores, in the classification task over
a balanced test set. The scores were calculated as the
weighted average of Precision, Recall and F-Scores over
each class (VNICs and non-VNICs).

As the table shows, there are variations between the F-
scores: the first model (M1) has the lowest F-score, while
the third model (M3) has the highest F-score, traditionally
making M3 the clear choice. However, our annotation bud-
get is constrained, so the question we ask is: which of the
machines will provide the maximum benefit in terms of the
number of correctly identified VNICs, given our budget?
To answer this, we calculate gain and cumulative gain, as
described in Subsection 3. Results of the calculations are
presented in Figure 1
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Figure 1: Cumulative gain chart for our three models’ per-
formance in the retrieval task.

The graphic relates the percentage of verb and noun pairs
that were analyzed with the number of VNICs that were
correctly identified by the models, essentially showing
the gain calculations through each of the model’s deciles.
There are several perspectives from which we can make in-
terpretations of this graph, depending on the variables of
budget (i.e. number of deciles we can afford to annotate,
which can be fixed or flexible) and the number of positive
instances (i.e. VNICs, which is either ’as many as pos-
sible’, or an actually targeted number, which is externally
dictated). Consequently, we can find ourselves in one of the
following situations:
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(Situation 1) We have a fixed budget and can only afford
to annotate a set amount of deciles, in hopes of getting as
many VNICs as possible. We are looking for the model
that can yield the maximum number of VNICs in the same
amount of deciles. The choice of model for this situation
then depends on the number of deciles we can annotate, and
can even change depending on that number. For example,
if we can afford to annotate only one decile, then Figure 1
tells us that M2 (painted green) is the preferred choice, as
it will yield the most VNICs. However, if we can afford to
annotate two deciles (or three, or four), then M1 (painted
red) would give us more VNICs than M2, making it the
preferred model. Finally, even though it has the highest F-
score of the three models, M3 (painted blue) can really only
be considered as an option if we can annotate five or more
deciles.

(Situation 2) We have a flexible budget and we can af-
ford to annotate a variable amount of deciles, but we still
want to spend as little money as possible, yet find the maxi-
mum number of VNICs. In other words, we are looking for
the model that can yield the maximum number of VNICs
in the earliest decile. In our case study, that would be M1,
which reaches the maximum positive instances in the sec-
ond decile. In comparison, M2 reaches the maximum in the
fourth decile, while M3 reaches it only in the fifth decile.
This means that, if we were to choose M3, we would have
to annotate 50% of the data to obtain all the candidates for
our dictionary, while we would have to annotate only 20%
of the data if we were to choose M1. It is interesting to
note that ranking models with this in mind would show that
M1>M2>M3, which is inverse to the models’ ranking ac-
cording to their F-scores. Thus, choosing a model based
solely on the fact that it has the highest F-score would re-
sult in an unnecessary investment of time and money.

(Situation 3) We have performed some annotation and
we have leftover funding - we wonder whether it is worth
annotating some more of our data, e.g. another decile. Fig-
ure 1 can also help us in deciding whether it is worth spend-
ing more money on the human annotation at any given
point. Say we have chosen M2 as our model and have al-
ready annotated three deciles of the data. We can consult
the cumulative gain chart to see how many more VNICs
we can expect if we decide to invest in annotating an extra
decile of the data. For M1, we know we would get nothing
back after the second decile, as we would already have all
the available VNICs, so investing more money there would
be pointless. However, if we were working with M3, it is
obvious that annotating one further decile is very profitable
at every step up until the fourth decile, where the gain starts
to decline heavily. Such considerations could allow us to
avoid unnecessary annotation and save money.

4.1. Cost model
There is an annotation cost associated with marking the
candidate phrase as idiomatic or not. This cost is assumed
to be fixed. The benefit is binary - if the human annotator
deems a candidate to be idiomatic, we get a new entry in our
dictionary; if it is not deemed idiomatic, there is no benefit,
as the annotator was paid for considering the example, but
this did not result in expanding the dictionary.

Similar to (Balamurali et al., 2012), we can apply some
values to these variables and perform calculations of cost,
in order to get a more palpable sense of the benefits of such
considerations. To do this, we need to fix an annotation cost
associated with annotating a VNIC candidate. Given that
annotation costs vary for different tasks in different parts
of the world, for the purpose of this illustration we fix the
annotation cost at $0.04 per candidate phrase. This value
was chosen as it is the cost of a similar task (annotation of
personal nouns) available on Amazon Mechanical Turk5.
Using these values, we can apply the gain measure to per-
form cost calculations on our test set. We keep in mind that
the gain scores scale to different sizes of datasets: if the
model had a gain of x on the third decile of the test set, we
can extended our annotation to cover the third decile of the
project data as ordered by the model, we would be likely to
have a similar gain on our larger dataset and ultimate lin-
guistic resource. In other words, just like with gain, we can
extrapolate from the cost calculations on our test set to esti-
mate the cost of annotating a larger-scale unlabeled dataset.
We thus turn to our case study, in which our test set is
our ordered list of 2,091 verb+noun pairs, of which 414
are VNICs. Using the aforementioned annotation costs,
we know that the cost of a single annotator going through
1 decile (10% of data) would be $8.3, and annotating the
whole list would cost us $83.64 (100% of data). Once we
have these values ready, our cost calculations depend on
what our goals are, as derived from the different situations
described in the previous section.
If our goal is the one from Situation 1 – to get as many
VNICs as possible on a fixed budget – we need to consider
the budget and how many VNICs it can give us for each
system. For illustrative purposes, we assume that our anno-
tation budget is fixed at $16. This means we can afford to
annotate not more than two deciles. If we spend that money
on M1 we will actually get all 414 VNICs. If we go with
M2, we will get slightly less - 410 VNICs. If we opt for
M3, however, we will get back 394 VNICs. This means
that the difference between spending $16 on M1 and M3 is
a difference of 20 VNICs, or 5% fewer positive instances.
If our goal is to maximize the benefit while spending as lit-
tle money as possible on a flexible budget (as in Situation
2), this means we want a model that will find all the true
positives as early as possible. To annotate all the VNICS
we would have to spend a minimum of $16.56 in the ideal
scenario where they are all found at the top of the ordered
list. However, this is not the case with any of our three mod-
els. The costs of annotating all available VNICs in relation
to each model are presented in Table 5. As we can see,
comparing the cheapest model M1 with the most expensive
model M3 yields a difference of 60%.
These values may seem small, but, as already stated in Sec-
tion 2., these are calculations performed on a test set, and
the proportions do scale to larger samples. As a conse-
quence, in larger projects with vast amounts of data and
numerous annotators, saving 60% of the annotation budget
can turn out to be quite a considerable amount.
Finally, if we have already done some annotation, but our

5https://www.mturk.com

2019

https://www.mturk.com


Model Cost
M1 $16.73
M2 $33.46
M3 $41.82

Table 5: Cost of annotating the maximum amount of true
positives for each model on the test set from our case study.

goal is to see if it is worth annotating some more data (as
in Situation 3), we want to see how many more VNICs we
will get if we annotate another decile. Let us assume that
we have annotated only the first two deciles. This means
we have already spent $16.6. If we look at M1 and M2, we
see that spending another $8.3 (50% of the already spent
budget) will actually give us 0 new VNICs, so we know
that spending more resources on annotation would be fruit-
less. However, looking at M3’s third decile, we see that, if
we spent that additional $8.3, we would in fact get an addi-
tional 8 VNICs, which is a much more valuable cost-benefit
trade-off than the previous two.
In addition, this final line of thinking does not exclusively
apply to model comparisons. Even in a scenario where we
only have a single predictive model at our disposal, rather
than comparing different models’ performances, we can
still perform gain calculations to know when to stop an-
notating the output of just the one model. If M3 is our
only available model, we may perform these calculations
after each decile, and depending on how frugal we want to
be, we could decide that the additional 4 VNICS obtained
by annotation the 4th decile are not worth the additional in-
vestment of $8.3, thus saving the funding for other potential
annotation tasks.

5. Conclusion
In this paper we emphasize budgetary concerns in the task
of creating a linguistic resource that includes predictive
modeling and subsequent human annotation of the output
data. We demonstrate different ways of how using the mea-
sure of gain can help when faced with a choice between
similarly performing models on a limited budget.
We show that examining the gain of a predictive model can
help us answer several important budgetary questions. It
helps us identify which model will yield the highest profit
at the earliest time, or rather, which model will yield the
highest number of positive annotations, given our budget.
It can also inform us on how much we need to invest to
achieve a desired number of entries in our dictionary, as
well as tell us at which point annotating more candidates
stops being profitable.
We demonstrate all of this on real experimental data, high-
lighting that sometimes a model that has considerably
higher traditional evaluation scores can actually perform
much worse in any of the above regards, ending up as more
costly than a model with a lower evaluation score.
For the purpose of this paper we have illustrated our point
on the example of building a dictionary of idioms as a lin-
guistic resource, but we should note that the same consid-
erations can be applied to the task of creating any other lin-

guistic resource, or indeed many other NLP tasks, as long
as the pipeline integrates a probabilistic model.
For example, in SemEval-20186, one of the shared tasks
was hypernym discovery7. The goal was to build a system
that would take a word or phrase as its input (e.g. folk rock)
and then generate a list of the 10 most likely candidate hy-
pernyms for that word (e.g. rock, genre, music, ...). Given
that a word can have more than one correct hypernym, the
goal of the task was not only to build a system with high
global accuracy and F-scores, but also to build a system
that can cleanly separate the positive and negative classes.
Because the output of the task is constrained to the top 10
candidates, and those candidates are submitted as potential
hypernyms, we would want the system to assign the high-
est probabilities to the true positives so that, ideally, all or
most of the top 10 candidates are indeed hypernyms. Thus,
if participants of the task were to build several systems, cal-
culating gain will show which system would likely yield the
highest evaluation scores, which could help inform their de-
cision on which system to submit for evaluation.
Certainly, we are not claiming that performing gain calcula-
tions will invariably undermine the results of global F-score
evaluations. We only wish to raise awareness of the fact
that when it comes to model selection, external constraints
(such as budget) can drastically change the perspective on
the model’s performance, which warrants more specialized
consideration. Indeed, the usual evaluation metrics such as
accuracy and F-score are a perfectly appropriate tool for an
intrinsic comparison of models, but once they are taken out
of the lab, the evaluation should be extrinsic, taking into ac-
count the whole pipeline of the task the models are applied
to. This shift in context warrants a reconsideration of the
appropriate evaluation metric, and gain might just be the
answer.
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