Summary of the paper

Title A Dataset for Open Event Extraction in English
Authors Kiem-Hieu Nguyen, Xavier Tannier, Olivier Ferret and Romaric Besançon
Abstract This article presents a corpus for development and testing of event schema induction systems in English. Schema induction is the task of learning templates with no supervision from unlabeled texts, and to group together entities corresponding to the same role in a template. Most of the previous work on this subject relies on the MUC-4 corpus. We describe the limits of using this corpus (size, non-representativeness, similarity of roles across templates) and propose a new, partially-annotated corpus in English which remedies some of these shortcomings. We make use of Wikinews to select the data inside the category Laws & Justice, and query Google search engine to retrieve different documents on the same events. Only Wikinews documents are manually annotated and can be used for evaluation, while the others can be used for unsupervised learning. We detail the methodology used for building the corpus and evaluate some existing systems on this new data.
Topics Information Extraction, Information Retrieval, Corpus (Creation, Annotation, etc.), Semantics
Full paper A Dataset for Open Event Extraction in English
Bibtex @InProceedings{NGUYEN16.837,
  author = {Kiem-Hieu Nguyen and Xavier Tannier and Olivier Ferret and Romaric Besançon},
  title = {A Dataset for Open Event Extraction in English},
  booktitle = {Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016)},
  year = {2016},
  month = {may},
  date = {23-28},
  location = {Portoro┼ż, Slovenia},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Sara Goggi and Marko Grobelnik and Bente Maegaard and Joseph Mariani and Helene Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  address = {Paris, France},
  isbn = {978-2-9517408-9-1},
  language = {english}
 }
Powered by ELDA © 2016 ELDA/ELRA