Summary of the paper

Title Detection of Reformulations in Spoken French
Authors Natalia Grabar and Iris Eshkol-Taravela
Abstract Our work addresses automatic detection of enunciations and segments with reformulations in French spoken corpora. The proposed approach is syntagmatic. It is based on reformulation markers and specificities of spoken language. The reference data are built manually and have gone through consensus. Automatic methods, based on rules and CRF machine learning, are proposed in order to detect the enunciations and segments that contain reformulations. With the CRF models, different features are exploited within a window of various sizes. Detection of enunciations with reformulations shows up to 0.66 precision. The tests performed for the detection of reformulated segments indicate that the task remains difficult. The best average performance values reach up to 0.65 F-measure, 0.75 precision, and 0.63 recall. We have several perspectives to this work for improving the detection of reformulated segments and for studying the data from other points of view.
Topics Textual Entailment and Paraphrasing, Corpus (Creation, Annotation, etc.), Text Mining
Full paper Detection of Reformulations in Spoken French
Bibtex @InProceedings{GRABAR16.81,
  author = {Natalia Grabar and Iris Eshkol-Taravela},
  title = {Detection of Reformulations in Spoken French},
  booktitle = {Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016)},
  year = {2016},
  month = {may},
  date = {23-28},
  location = {Portoro┼ż, Slovenia},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Sara Goggi and Marko Grobelnik and Bente Maegaard and Joseph Mariani and Helene Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  address = {Paris, France},
  isbn = {978-2-9517408-9-1},
  language = {english}
Powered by ELDA © 2016 ELDA/ELRA