Summary of the paper

Title Urdu Summary Corpus
Authors Muhammad Humayoun, Rao Muhammad Adeel Nawab, Muhammad Uzair, Saba Aslam and Omer Farzand
Abstract Language resources, such as corpora, are important for various natural language processing tasks. Urdu has millions of speakers around the world but it is under-resourced in terms of standard evaluation resources. This paper reports the construction of a benchmark corpus for Urdu summaries (abstracts) to facilitate the development and evaluation of single document summarization systems for Urdu language. In Urdu, space does not always mark word boundary. Therefore, we created two versions of the same corpus. In the first version, words are separated by space. In contrast, proper word boundaries are manually tagged in the second version. We further apply normalization, part-of-speech tagging, morphological analysis, lemmatization, and stemming for the articles and their summaries in both versions. In order to apply these annotations, we re-implemented some NLP tools for Urdu. We provide Urdu Summary Corpus, all these annotations and the needed software tools (as open-source) for researchers to run experiments and to evaluate their work including but not limited to single-document summarization task.
Topics Corpus (Creation, Annotation, etc.), Summarisation, Tools, Systems, Applications
Full paper Urdu Summary Corpus
Bibtex @InProceedings{HUMAYOUN16.76,
  author = {Muhammad Humayoun and Rao Muhammad Adeel Nawab and Muhammad Uzair and Saba Aslam and Omer Farzand},
  title = {Urdu Summary Corpus},
  booktitle = {Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016)},
  year = {2016},
  month = {may},
  date = {23-28},
  location = {Portoro┼ż, Slovenia},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Sara Goggi and Marko Grobelnik and Bente Maegaard and Joseph Mariani and Helene Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  address = {Paris, France},
  isbn = {978-2-9517408-9-1},
  language = {english}
Powered by ELDA © 2016 ELDA/ELRA