Summary of the paper

Title PARC 3.0: A Corpus of Attribution Relations
Authors Silvia Pareti
Abstract Quotation and opinion extraction, discourse and factuality have all partly addressed the annotation and identification of Attribution Relations. However, disjoint efforts have provided a partial and partly inaccurate picture of attribution and generated small or incomplete resources, thus limiting the applicability of machine learning approaches. This paper presents PARC 3.0, a large corpus fully annotated with Attribution Relations (ARs). The annotation scheme was tested with an inter-annotator agreement study showing satisfactory results for the identification of ARs and high agreement on the selection of the text spans corresponding to its constitutive elements: source, cue and content. The corpus, which comprises around 20k ARs, was used to investigate the range of structures that can express attribution. The results show a complex and varied relation of which the literature has addressed only a portion. PARC 3.0 is available for research use and can be used in a range of different studies to analyse attribution and validate assumptions as well as to develop supervised attribution extraction models.
Topics Corpus (Creation, Annotation, etc.), Discourse Annotation, Representation and Processing, Opinion Mining / Sentiment Analysis
Full paper PARC 3.0: A Corpus of Attribution Relations
Bibtex @InProceedings{PARETI16.737,
  author = {Silvia Pareti},
  title = {PARC 3.0: A Corpus of Attribution Relations},
  booktitle = {Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016)},
  year = {2016},
  month = {may},
  date = {23-28},
  location = {Portoro┼ż, Slovenia},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Sara Goggi and Marko Grobelnik and Bente Maegaard and Joseph Mariani and Helene Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  address = {Paris, France},
  isbn = {978-2-9517408-9-1},
  language = {english}
 }
Powered by ELDA © 2016 ELDA/ELRA