Summary of the paper

Title Neural Scoring Function for MST Parser
Authors Jindřich Libovický
Abstract Continuous word representations appeared to be a useful feature in many natural language processing tasks. Using fixed-dimension pre-trained word embeddings allows avoiding sparse bag-of-words representation and to train models with fewer parameters. In this paper, we use fixed pre-trained word embeddings as additional features for a neural scoring function in the MST parser. With the multi-layer architecture of the scoring function we can avoid handcrafting feature conjunctions. The continuous word representations on the input also allow us to reduce the number of lexical features, make the parser more robust to out-of-vocabulary words, and reduce the total number of parameters of the model. Although its accuracy stays below the state of the art, the model size is substantially smaller than with the standard features set. Moreover, it performs well for languages where only a smaller treebank is available and the results promise to be useful in cross-lingual parsing.
Topics Parsing, Other
Full paper Neural Scoring Function for MST Parser
Bibtex @InProceedings{LIBOVICK16.649,
  author = {Jindřich Libovický},
  title = {Neural Scoring Function for MST Parser},
  booktitle = {Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016)},
  year = {2016},
  month = {may},
  date = {23-28},
  location = {Portoro┼ż, Slovenia},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Sara Goggi and Marko Grobelnik and Bente Maegaard and Joseph Mariani and Helene Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  address = {Paris, France},
  isbn = {978-2-9517408-9-1},
  language = {english}
 }
Powered by ELDA © 2016 ELDA/ELRA