Summary of the paper

Title Bilbo-Val: Automatic Identification of Bibliographical Zone in Papers
Authors Amal Htait, Sebastien Fournier and Patrice Bellot
Abstract In this paper, we present the automatic annotation of bibliographical references’ zone in papers and articles of XML/TEI format. Our work is applied through two phases: first, we use machine learning technology to classify bibliographical and non-bibliographical paragraphs in papers, by means of a model that was initially created to differentiate between the footnotes containing or not containing bibliographical references. The previous description is one of BILBO’s features, which is an open source software for automatic annotation of bibliographic reference. Also, we suggest some methods to minimize the margin of error. Second, we propose an algorithm to find the largest list of bibliographical references in the article. The improvement applied on our model results an increase in the model’s efficiency with an Accuracy equal to 85.89. And by testing our work, we are able to achieve 72.23% as an average for the percentage of success in detecting bibliographical references’ zone.
Topics Text Mining, Corpus (Creation, Annotation, etc.), Digital Libraries
Full paper Bilbo-Val: Automatic Identification of Bibliographical Zone in Papers
Bibtex @InProceedings{HTAIT16.588,
  author = {Amal Htait and Sebastien Fournier and Patrice Bellot},
  title = {Bilbo-Val: Automatic Identification of Bibliographical Zone in Papers},
  booktitle = {Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016)},
  year = {2016},
  month = {may},
  date = {23-28},
  location = {Portoro┼ż, Slovenia},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Sara Goggi and Marko Grobelnik and Bente Maegaard and Joseph Mariani and Helene Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  address = {Paris, France},
  isbn = {978-2-9517408-9-1},
  language = {english}
 }
Powered by ELDA © 2016 ELDA/ELRA