Summary of the paper

Title A Comparative Study of Text Preprocessing Approaches for Topic Detection of User Utterances
Authors Roman Sergienko, Muhammad Shan and Wolfgang Minker
Abstract The paper describes a comparative study of existing and novel text preprocessing and classification techniques for domain detection of user utterances. Two corpora are considered. The first one contains customer calls to a call centre for further call routing; the second one contains answers of call centre employees with different kinds of customer orientation behaviour. Seven different unsupervised and supervised term weighting methods were applied. The collective use of term weighting methods is proposed for classification effectiveness improvement. Four different dimensionality reduction methods were applied: stop-words filtering with stemming, feature selection based on term weights, feature transformation based on term clustering, and a novel feature transformation method based on terms belonging to classes. As classification algorithms we used k-NN and a SVM-based algorithm. The numerical experiments have shown that the simultaneous use of the novel proposed approaches (collectives of term weighting methods and the novel feature transformation method) allows reaching the high classification results with very small number of features.
Topics Document Classification, Text categorisation, Statistical and Machine Learning Methods, Dialogue
Full paper A Comparative Study of Text Preprocessing Approaches for Topic Detection of User Utterances
Bibtex @InProceedings{SERGIENKO16.302,
  author = {Roman Sergienko and Muhammad Shan and Wolfgang Minker},
  title = {A Comparative Study of Text Preprocessing Approaches for Topic Detection of User Utterances},
  booktitle = {Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016)},
  year = {2016},
  month = {may},
  date = {23-28},
  location = {Portoro┼ż, Slovenia},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Sara Goggi and Marko Grobelnik and Bente Maegaard and Joseph Mariani and Helene Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  address = {Paris, France},
  isbn = {978-2-9517408-9-1},
  language = {english}
 }
Powered by ELDA © 2016 ELDA/ELRA