Summary of the paper

Title Correcting Errors in a Treebank Based on Tree Mining
Authors Kanta Suzuki, Yoshihide Kato and Shigeki Matsubara
Abstract This paper provides a new method to correct annotation errors in a treebank. The previous error correction method constructs a pseudo parallel corpus where incorrect partial parse trees are paired with correct ones, and extracts error correction rules from the parallel corpus. By applying these rules to a treebank, the method corrects errors. However, this method does not achieve wide coverage of error correction. To achieve wide coverage, our method adopts a different approach. In our method, we consider that an infrequent pattern which can be transformed to a frequent one is an annotation error pattern. Based on a tree mining technique, our method seeks such infrequent tree patterns, and constructs error correction rules each of which consists of an infrequent pattern and a corresponding frequent pattern. We conducted an experiment using the Penn Treebank. We obtained 1,987 rules which are not constructed by the previous method, and the rules achieved good precision.
Topics Tools, Systems, Applications, Grammar and Syntax, Corpus (Creation, Annotation, etc.)
Full paper Correcting Errors in a Treebank Based on Tree Mining
Bibtex @InProceedings{SUZUKI16.298,
  author = {Kanta Suzuki and Yoshihide Kato and Shigeki Matsubara},
  title = {Correcting Errors in a Treebank Based on Tree Mining},
  booktitle = {Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016)},
  year = {2016},
  month = {may},
  date = {23-28},
  location = {Portoro┼ż, Slovenia},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Sara Goggi and Marko Grobelnik and Bente Maegaard and Joseph Mariani and Helene Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  address = {Paris, France},
  isbn = {978-2-9517408-9-1},
  language = {english}
Powered by ELDA © 2016 ELDA/ELRA