Summary of the paper

Title Crossmodal Network-Based Distributional Semantic Models
Authors Elias Iosif and Alexandros Potamianos
Abstract Despite the recent success of distributional semantic models (DSMs) in various semantic tasks they remain disconnected with real-world perceptual cues since they typically rely on linguistic features. Text data constitute the dominant source of features for the majority of such models, although there is evidence from cognitive science that cues from other modalities contribute to the acquisition and representation of semantic knowledge. In this work, we propose the crossmodal extension of a two-tier text-based model, where semantic representations are encoded in the first layer, while the second layer is used for computing similarity between words. We exploit text- and image-derived features for performing computations at each layer, as well as various approaches for their crossmodal fusion. It is shown that the crossmodal model performs better (from 0.68 to 0.71 correlation coefficient) than the unimodal one for the task of similarity computation between words.
Topics Semantics, Other
Full paper Crossmodal Network-Based Distributional Semantic Models
Bibtex @InProceedings{IOSIF16.282,
  author = {Elias Iosif and Alexandros Potamianos},
  title = {Crossmodal Network-Based Distributional Semantic Models},
  booktitle = {Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016)},
  year = {2016},
  month = {may},
  date = {23-28},
  location = {Portoro┼ż, Slovenia},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Sara Goggi and Marko Grobelnik and Bente Maegaard and Joseph Mariani and Helene Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  address = {Paris, France},
  isbn = {978-2-9517408-9-1},
  language = {english}
Powered by ELDA © 2016 ELDA/ELRA