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Abstract
There has been increasing interest lately in developing education tools for sign language (SL) learning that enable self-
assessment and objective evaluation of learners’ SL productions, assisting both students and their instructors. Crucially, such
tools require the automatic recognition of SL videos, while operating in a signer-independent fashion and under realistic
recording conditions. Here, we present an early version of a Greek Sign Language (GSL) recognizer that satisfies the
above requirements, and integrate it within the SL-ReDu learning platform that constitutes a first in GSL with recognition
functionality. We develop the recognition module incorporating state-of-the-art deep-learning based visual detection, feature
extraction, and classification, designing it to accommodate a medium-size vocabulary of isolated signs and continuously
fingerspelled letter sequences. We train the module on a specifically recorded GSL corpus of multiple signers by a web-cam
in non-studio conditions, and conduct both multi-signer and signer-independent recognition experiments, reporting high
accuracies. Finally, we let student users evaluate the learning platform during GSL production exercises, reporting very
satisfactory objective and subjective assessments based on recognition performance and collected questionnaires, respectively.

Keywords: Greek Sign Language recognition, MediaPipe, MobileNet, ResNet, CNN, BiLSTM, sign language learn-
ing, user evaluation

1. Introduction

Sign languages (SLs) involve a complex non-vocal
means of communication in the 3D visible space
around the signer, with both manual and non-manual
articulation carrying linguistic content of a set of
glosses (Armstrong et al., 2002). Such complexity ren-
ders SL education a difficult and time-consuming pro-
cess (Kemp, 1998) for both learners and their instruc-
tors, thus motivating recently the development of au-
tomatic SL assessment and tutoring tools (Aran et al.,
2009; Zafrulla et al., 2011; Ebling et al., 2018; Joy et
al., 2019; Mohammdi and Elbourhamy, 2021). A crit-
ical functionality in such applications is the ability to
assess the validity of the learners’ SL productions, ne-
cessitating automatic SL recognition (SLR) of the pro-
duced videos in a signer-independent fashion and under
realistic, non-ideal recording conditions. Not surpris-
ingly, this constitutes a challenging problem, due to the
aforementioned complexity of SL production, coupled
with the intricacies of robust video processing (detec-
tion, tracking, representation) and inherent inter-signer
production variability.
Motivated by the above, in conjunction with the lack
of learning tools in the under-resourced Greek Sign
Language (GSL), we have recently initiated the “SL-
ReDu” project (Potamianos et al., 2020). This aims
to considerably advance the current state-of-the-art in
automatic recognition of GSL from videos, while fo-

cusing on the use-case of standardized GSL teaching
as a second language. For this purpose, in previous
work we have already developed a suitable platform
that allows “passive”-type GSL learning exercises (e.g.,
multiple-choice questions) and populated it with ap-
propriate learning material (Sapountzaki et al., 2021;
Efthimiou et al., 2021). However, we have not yet en-
abled “active”, production-type assessment, which re-
quires an appropriate SLR module.

In this paper, we proceed to enable such functionality,
presenting our initial GSL recognition module that we
integrate to the SL-ReDu platform. In particular, we
focus on two recognition problems: (i) that of isolated
GSL signs within a medium-size vocabulary, develop-
ing separate models for numerals and non-numerals,
and (ii) that of continuous sequences of fingerspelled
letters of the Greek alphabet. Note that the latter task
plays a critical role in SLs, as it is regularly used for
words that lack unique signs, such as names, technical
phrases, and foreign words, among others (Armstrong
et al., 2002).

We develop the corresponding SLR module incorporat-
ing state-of-the-art deep-learning techniques. Specifi-
cally, we utilize the MediaPipe library for detecting the
signer and relevant landmarks from RGB video (Lu-
garesi et al., 2019), thus avoiding the use of special
sensing equipment, such as hand gloves (Mehdi and
Khan, 2002) or depth cameras (Ren et al., 2011). Fur-
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Figure 1: Illustration of the SL-ReDu prototype system
web-based architecture.

ther, we employ convolutional neural networks (CNNs)
for visual feature learning, namely a 3D CNN (Tran et
al., 2018) and MobileNet (Howard et al., 2017). Fi-
nally, in the case of fingerspelling, for sequence learn-
ing we use a bidirectional long short-term memory
(BiLSTM) encoder (Schuster and Paliwal, 1997) and
connectionist temporal classification (CTC) based de-
coding (Graves et al., 2006).
We train and evaluate the recognition module on a suit-
able GSL corpus, collected as part of this work. The
data contain multiple signers, recorded using a typi-
cal web-cam in non-studio conditions. We report both
multi-signer and signer-independent recognition exper-
iments on this corpus. Moreover, we evaluate the SL-
ReDu platform and its recognition functionality with a
small number of student users that conduct GSL pro-
duction exercises, reporting both objective and subjec-
tive evaluation results.
The rest of the paper is structured as follows: Section 2
overviews the SL-ReDu platform; Section 3 describes
the developed SLR module; Section 4 presents the SLR
corpus and its evaluation; Section 5 discusses the user
evaluation; and Section 6 concludes the paper.

2. The SL-ReDu Platform
The SL-ReDu platform attempts to handle the draw-
backs of conventional practice and testing strategies in
learning GSL as a second language by enabling self-
monitoring of learning and objective learner evaluation.
For the system’s design all aspects of GSL linguistics
are being considered, i.e. GSL semantics, as well as
morpho-syntactic effects in both GSL recognition and
GSL production. In particular, teaching techniques and
content are integrated into the system design, including
various SL practice assignments that cover GSL phe-
nomena from sign formation to complicated syntactic
and semantic utterance production. Ordinary multiple-
choice questions that utilize images, videos, and text
to elicit a response from the user, as well as user feed-
back by means of video recordings of GSL production,
are examples of exercise types. With the integration of
SLR technology, SL-ReDu enables the user to actively
sign and be assessed for the capacity to appropriately
generate signs.
The SL-ReDu prototype system is a web-based appli-
cation that runs on a web server managing the end-
user’s interaction. Self-monitoring and objective as-
sessment system modalities entail a variety of compo-

nents, namely the system database, the front-end and
back-end user interfaces, as well as image and video
files. Further, the system involves a content manage-
ment system (back-end) that is exploited by the instruc-
tor to create learners’ assessment tests and track perfor-
mance over time. Figure 1 depicts the adopted architec-
ture.
To build the dynamic web platform, the PHP program-
ming language in conjunction with HTML5, CSS3, and
JavaScript is used. A MySQL open-source database
is employed for the construction of the web applica-
tion, including the storage of the content, as well as the
results of the platform users. An Apache Web Server
hosts the web application.
SLR represents a separate module of the system that
runs as standalone on the learner’s device (typically a
higher-end laptop with an available camera). The tech-
nical details of the communication between the web
server and the SLR engine are available in a Technical
Report (Potamianos et al., 2021).

3. The GSL Recognition Module
We next detail the SLR module for the two GSL recog-
nition tasks considered, namely that of isolated signs
and continuous fingerspelling. The module also con-
tains a pre-processing stage.

3.1. Pre-processing
This stage is employed to detect the signer, extract the
region-of-interest (RoI), and provide feedback in case
signer positioning is incorrect.
Specifically, the recorded video frames are fed to the
MediaPipe holistic tool (Lugaresi et al., 2019). This
is a multi-stage pipeline that integrates separate mod-
els for pose, face, and hand components, extracting
543 whole-body landmarks from RGB data (33 pose,
468 face, and 21 hand landmarks per hand). Lack of
detected landmarks of the two hands, face, and upper
torso is assumed to imply incorrect user positioning
with respect to the camera field of view. In such case,
the signer is prompted by the system to reposition.
If user positioning is correct, the detected landmarks
are utilized to extract the RoI for subsequent appear-
ance feature generation. In the case of isolated signs,
where multiple articulators may participate in signing,
the entire upper body is cropped producing the RoI (see
also Figure 2(a)). This is then normalized to the sub-
sequent CNN input layer size (i.e., 256 × 256 pixels
of ResNet2+1D). In the case of fingerspelling though,
where typically one hand constitutes the sole articula-
tor, the RoI consists of the signing hand only (see also
Figure 2(b)), which is determined based on the motion
of the landmarks (3D skeletal keypoints) of each hand
in the video. The RoI is then normalized to the input
layer size of the MobileNet CNN (i.e., 224 × 224 pix-
els). Note that we use the estimated landmarks exclu-
sively for RoI extraction, thus minimizing the impact of
occasional MediaPipe failures (Moryossef et al., 2021).
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(a)

(b)

Figure 2: Schematics of GSL recognition modules for (a) isolated signs and (b) continuous fingerspelling.

3.2. Isolated Sign Recognition
A 3D CNN is employed for isolated sign recogni-
tion (see also Figure 2(a)). Specifically, the 18-layer
ResNet2+1D model is used (Tran et al., 2018) that sep-
arates spatial and temporal convolutions of 3D CNNs.
Note that two recognition subtasks are considered em-
ploying separate models, one for numeral signs with a
vocabulary size of 18, and a second for non-numeral
ones with a vocabulary size of 36.
Note that in all cases the CNN is pretrained on the
Kinetics dataset (Carreira et al., 2018). Model train-
ing (finetuning) then proceeds via the Adam opti-
mizer (Kingma and Ba, 2014) with initial learning rate
set to 0.0001 and weight decay 0.0001. For sign predic-
tion, the cross-entropy loss is used with label smooth-
ing (Szegedy et al., 2016). The mini-batch size is fixed
to 16.

3.3. Continuous Fingerspelling Recognition
A CNN-BiLSTM combination is employed for recog-
nizing continuously fingerspelled sequences of the 24
Greek alphabet letters. In the adopted approach (see
also Figure 2(b)), the CNN serves as visual feature
learner of each video frame and the BiLSTM learns
their temporal relations. Specifically, the CNN uses
the MobileNet architecture (Howard et al., 2017), pre-
trained on the ImageNet corpus (Deng et al., 2009).
Feature maps are generated by taking the output of the
last fully-connected layer, yielding 1024-dimensional
(dim) features. These are then fed to a linear projec-
tion layer for size reduction, resulting in 512-dim fea-
tures. Subsequently, a two-layer BiLSTM encoder is
employed with 512-dim hidden states (Schuster and
Paliwal, 1997) followed by CTC decoding (Graves et
al., 2006) for letter sequence prediction.
The model’s linear projection layer is jointly trained
with the BiLSTM. Training is conducted using the
Adam optimizer with initial learning rate equal to
0.001, decayed by a factor of 0.1 if the validation score
remains consistent for 9 steps. In addition, a dropout
rate of 0.1 is used, and the mini-batch size is fixed to
16. Finally, during inference, beam search decoding is
adopted with beam width 3. Note also that no letter

language model is employed.

4. GSL Data and Experiments
To support the development of the GSL recognizer, we
have collected a suitable database. We describe it next,
followed by the adopted experimental framework and
our GSL recognition experiments on it.

4.1. The GSL Database
Signing data by multiple volunteer informants (both
native and non-native in GSL) have been collected to
allow isolated GSL recognition of numerals (18-sign
vocabulary), isolated SLR of non-numerals (36-sign
GSL vocabulary), and continuous recognition of fin-
gerspelled sequences of the 24 Greek alphabet letters.1

The data have been recorded indoors, under realis-
tic, non-studio conditions with varying background and
lighting, using a Logitech C615 web-camera at a frame
rate of 30 Hz, YUV411 video format, and 640×480-
pixel resolution.
In the case of numeral signs, data from 20 signers have
been collected. Each signer articulated the 18 numer-
als 5 consecutive times, resulting in a total of 1,800
database videos.
In the case of non-numeral signs, data from 17 sign-
ers have been collected. Each informant articulated the
36 signs five times. In addition, these data have been
supplemented with videos from the publicly available
ITI GSL corpus (Adaloglou et al., 2022), resulting to 7
more informants signing the same 36 signs five times.
Note that the latter have been recorded using an Intel
RealSense D435 RGB-D camera under studio-quality
conditions, but here only the RGB stream is utilized.
Thus, the combined data contain 24 (17 + 7) signers
and a total of 4,320 videos.
Finally, in the case of fingerspelling, data from 12 sign-
ers have been recorded. Each informant signed once
the 24 Greek alphabet letters in isolation, as well as 50
fingerspelled words (unique to each signer) composed

1All informants have signed consent forms, and the data
will become publicly available in the future, as part of a larger
data release of SL-ReDu project resources.
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Figure 3: SI isolated GSL recognition accuracy (%) per signer for (a) numerals and (b) non-numeral signs.

of 4-5 letters. In addition, 7 informants performed 16
words (common to all) composed of 3-7 letters, and 3
signers expressed an extra 71 words of 4-5 letters. This
process resulted in a total of 1,071 videos. Note that
each informant has signed each letter at least 4 times.

4.2. Experimental Framework
We are interested primarily in signer-independent (SI)
SLR, since learner users of the SL-ReDu platform are
typically “unseen” during GSL model training. For
comparison purposes, we also report multi-signer (MS)
recognition results, where data from all signers are used
for both training and test sets (with the sets remaining
disjoint), being an easier learning scenario.
In the MS case, we use ten-fold cross-validation. In
each fold, we allocate 80% of all videos to training
(numerals: 1,440; non-numerals: 3,456; fingerspelling:
857), 10% to validation (numerals: 180; non-numerals:
432; fingerspelling: 107), and the remaining 10% to
testing (same number of videos as in validation).
In the SI scenario, we employ 20-fold cross-validation
in the numerals case, 24 folds for non-numerals, and 12
ones for fingerspelling. In all cases, each fold contains
one test signer, while the model is trained on all others.
In addition to these paradigms, GSL models are also
trained to be used by the SL-ReDu platform in its user-
evaluation, as reported in Section 5. For this purpose,
we allocate 90% of the available videos to training (nu-
merals: 1,620; non-numerals: 3,888; fingerspelling:
964) and the remaining 10% to validation (numerals:
180; non-numerals: 432; fingerspelling: 107).

4.3. Recognition Results
In Table 1, we report the recognition performance of
the isolated GSL and continuous fingerspelling tasks
on the datasets of Section 4.1, under both MS and SI
training/testing paradigms of Section 4.2. Results are
reported in word accuracy (WAcc), %, and in the case
of fingerspelling in letter accuracy (LAcc), %, as well.
In all cases, performance degrades in the SI case, com-
pared to the MS scenario, which is not surprising. Nev-
ertheless, WAcc remains satisfactory in both isolated
SLR tasks (in the 95% WAcc range for SI), showing

the potential of utilizing the module in learning plat-
forms like SL-ReDu. Note also that performance varies
among signers, as shown in Figure 3 for the isolated
tasks in the SI case, remaining nevertheless well above
80% WAcc, even for the worse performing ones.
Concerning continuous fingerspelling, it is natural that
performance suffers at the WAcc level, since letter
recognition errors (including insertions and deletions)
accumulate at the word level, especially for longer let-
ter sequences. This effect is exacerbated due the lack of
a language model in the recognizer, as well as the sig-
nificantly smaller amount of collected data and number
of signers compared to the isolated tasks. As expected,
LAcc results are higher, but clearly further improve-
ment is needed.

5. User Evaluation of SL-ReDu Platform
We have also conducted a user evaluation of the SL-
ReDu platform, producing both objective results (fo-
cusing on GSL recognition performance), as well as
a subjective assessment based on user responses to a
questionnaire.

5.1. Volunteer Users
Two groups of students (with the Department of Spe-
cial Education at University of Thessaly) and two pro-
fessional volunteers participated in the preliminary SL-

GSL recog. task Metric MS SI Eval.

iso. numerals WAcc 97.78 94.48 98.61
iso. non-numerals WAcc 99.44 96.20 97.22

cont. fingerspelling
WAcc 75.22 65.30 90.28
LAcc 86.12 77.66 91.03

Table 1: GSL recognition performance for the various
tasks considered here under MS and SI training/testing
on the GSL corpus of Section 4.1. Also shown, at the
right-most column, is the recognition performance dur-
ing user evaluation of the SL-ReDu platform (Section
5.2). Results are reported in word accuracy (WAcc, %)
or letter accuracy (LAcc, %).
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Figure 4: Mean values (on the 1-5 Likert scale) of
the platform subjective user assessment along eight as-
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ReDu evaluation. The first group (10 students) in-
volved true beginners, i.e. university students who had
had some contact with GSL for less than five months,
the second group (11 students) was made up of stu-
dents who had recently achieved the target A0-A1 level
and had more than five months of experience, and the
third group (2 experts) consisted of GSL experts who
served as teachers to the student volunteer groups. The
demographic characteristics of the student users were
consistent with the demographics of the overall student
population at the particular department, with ages be-
tween 19 and 22 years old and females outnumbering
males.

5.2. Objective Evaluation of GSL Recognizer
This evaluation was carried out via “active”-type ex-
ercises that require SL production by the learner, cap-
tured by a camera and fed to the SL recognition mod-
ule to provide learner binary feedback. For the isolated
GSL recognition of numerals, we incorporated 3 as-
signments to the platform, each consisting of six GSL
production questions of a numeral. For non-numerals
we included 6 corresponding six-question production
assignments. Finally, for continuous fingerspelling we
used 6 six-question assignments that include letters as
well as words that do not appear in the training set.
As already mentioned, the system also provides feed-
back to the user for correct positioning with respect
to the camera. Note that participants are allowed to
try twice each exercise in case of incorrect position-
ing feedback. Additionally, “active”-type exams de-
signed by the instructor are automatically graded by
the system, while limiting user interaction within pre-
specified time constraints.
For “active” GSL production and recognition evalu-
ation, a subset of volunteers participated, namely 12
users, including 7 A0 level students, 4 A1 level stu-
dents, and 1 expert, each performing 3 six-question as-
signments (one per task, totaling 18 questions).
The objective evaluation results in terms of WAcc (as
well as LAcc for fingerspelling) are reported at the
right-most column of Table 1. We observe that the
results achieved are better than SI recognition perfor-
mance of the isolated tasks on the collected GSL cor-

pus of Section 4.1. This fact is probably due to the
very careful signing and possible over-articulation by
the volunteers. The difference is even larger in fin-
gerspelling, due to the additional fact that the cor-
responding questions involved production of shorter
words than those of the GSL corpus.

5.3. Subjective Assessment of the Platform
After signing the relevant consent forms and complet-
ing both self-monitoring and GSL production sessions
of the SL-ReDu platform, participants were handed
an anonymous subjective experience questionnaire that
measures eight aspects concerning ease of use, use-
fulness, design, and user trust on the one-to-five Lik-
ert scale. The analysis of the filled subjective expe-
rience questionnaires provided valuable input, both in
the form of numerical trends and via textual comments.
In half (four out of eight) questions of the subjective
evaluation the majority of the users provided the high-
est assessment (“very much”). More specifically, most
of the users were completely satisfied with platform de-
sign, considered it to be a user-fiendly platform, felt
that the level of difficulty meets their needs, and that
signing educationally supports them (see also Figure 4
for the mean scores returned).

6. Conclusion
In this paper, we present a GSL recognizer capable of
recognizing a medium-size vocabulary of isolated signs
and continuously fingerspelled letter sequences, that
is integrated in the SL-ReDu learning platform. The
recognition module incorporates state-of-the-art deep-
learning based visual detection, feature extraction, and
classification, and is capable of operating in a signer-
independent fashion in non-ideal visual environments.
The designed module performs very well, as evidenced
by recognition experiments on a suitable dataset col-
lected for this purpose. Further, it yields very satis-
factory objective and subjective user evaluation assess-
ment of the SL-ReDu platform.
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