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Preface

This volume documents the Proceedings of the 7th Workshop on Sign Language Translation and Avatar
Technology, held on June 24, 2022 as part of the LREC 2022 conference (International Conference on
Language Resources and Evaluation).

Sign language translation and avatar technologies have the potential to improve communication between
Deaf and hearing communities. In this seventh edition of the SLTAT workshop there is encouraging
evidence that the dream of automated translation between signed and spoken languages is coming closer
to reality. Coupled with the 10th Workshop on the Representation and Processing of Sign Languages,
this meeting offers a forum for researchers focusing on building connections between the diverse and
beautiful signed and spoken languages of the world.

Part and parcel of this research specialty are two of this year’s Hot Topics: Multilingualism and Language
Technology for All and Machine Learning and Multimodality. The editors are pleased to report that
several of the papers address these on point.

The papers in these proceedings appear in alphabetical order by the first author. An author index provides
an easy means of accessing papers written by a particular author.

Many thanks to our exemplary program committee who were a tremendous help in providing substantive
and constructive feedback to authors in a very short time frame.
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Synthesis for the Kinematic Control of Identity in Sign Language

Félix Bigand , Elise Prigent , Annelies Braffort
Université Paris-Saclay, CNRS, LISN, Orsay, France

{felix.bigand, elise.prigent, annelies.braffort}@lisn.upsaclay.fr

Abstract
Sign Language (SL) animations generated from motion capture (mocap) of real signers convey critical information about their
identity. It has been suggested that this information is mostly carried by statistics of the movements kinematics. Manipulating
these statistics in the generation of SL movements could allow controlling the identity of the signer, notably to preserve
anonymity. This paper tests this hypothesis by presenting a novel synthesis algorithm that manipulates the identity-specific
statistics of mocap recordings. The algorithm produced convincing new versions of French Sign Language discourses, which
accurately modulated the identity prediction of a machine learning model. These results open up promising perspectives
toward the automatic control of identity in the motion animation of virtual signers.

Keywords: Sign Language, Anonymized Content, Identity Conversion, Motion Generation, Machine Learning

1. Introduction

Using motion capture (mocap) systems, the movements
of signers can be recorded with high accuracy and
be used to produce natural and comprehensible con-
tent (Lu and Huenerfauth, 2010; Gibet, 2018). How-
ever, this process raises an unexpected problem, re-
lated to the human ability to identify individuals from
their movements (Troje et al., 2005; Loula et al., 2005;
Bläsing and Sauzet, 2018). As for spoken languages
in the auditory domain, where voice parameters inform
about the identity of a speaker, signers can be identi-
fied from their movements (Bigand et al., 2020). We
present a synthesis algorithm for controlling the motion
features that characterize the identity of a signer. This
would allow producing anonymized, non-identifiable,
content with virtual signers, which is crucial (e.g., for
sharing anonymized testimony) given that Sign Lan-
guages (SLs) have no written form (Lee et al., 2021).

In line with prior work on non-SL movements (Troje et
al., 2005; Carlson et al., 2020; Zhang and Troje, 2005),
our recent studies suggested that identity was mainly
inferred from the kinematic aspects of the movements,
beyond size, shape or posture of the signers (Bigand
et al., 2020; Bigand et al., 2021). Using a machine
learning model, we automatically extracted the specific
kinematic aspects of motion that carry identity, using
time-averaged statistics (Section 2). The present syn-
thesis algorithm was then developed in order to manip-
ulate the identity-specific statistics of original mocap
recordings (Section 3). We tested the performance of
the synthesis algorithm by modifying the identity at-
tribute of mocap recordings in French Sign Language,
and by assessing the identity inferred from the new ex-
cerpts (Section 4). This constitutes the first step toward
automatically anonymizing the movements of signers
in SL animations, in the same way as for the voice of a
speaker, which can be anonymized by modifying spe-
cific vocal parameters (Section 5).

2. Motion statistics of identity
Mocap recordings were taken from MOCAP1 corpus
(Benchiheub et al., 2020). Six signers had freely de-
scribed the content of 24 pictures using French Sign
Language (LSF). From each of the 24 original record-
ings, one mocap recording unit of 5-seconds duration
was extracted from the beginning of the utterance (see
examples in Videos 7.1 to 7.6). As shown in Figure 1,
the used markers were (L = left, R = right, F = front,
B = back): (1) pelvis, (2) stomach, (3) sternum, (4)
LB head, (5) LF head, (6) RB head, (7) RF head, (8)
L shoulder, (9) L elbow, (10) LB wrist, (11) LF wrist,
(12) LB hand, (13) LF hand, (14) R shoulder, (15) R el-
bow, (16) RB wrist, (17) RF wrist, (18) RB hand, (19)
RF hand. The mocap examples were normalized with
respect to size, shape and posture of the signers (see
Bigand et al. (2021)). The mocap data of the pelvis
marker were ignored as it was set as the origin, which
leads to zero vectors. Position and velocity of the body
markers were used as temporal features. Velocity was
estimated by time differentiation of the mocap position
coordinates.

Figure 1: The 19 upper-body markers used in the mo-
cap recordings.
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Figure 2: Distributions of position and velocity data of the RF hand marker along the Z axis, for mocap example
24. Dashed vertical lines represent the means.

Figure 3: The two moments of the position and velocity data along the Z axis, for all markers and all 144 mocap
examples. Thick lines represent the average statistics of each signer across their 24 examples.

Figure 4: The covariance of velocity between body markers (rows and columns) of Signer 2 and Signer 4 in the
three dimensions, for mocap example 24. Markers are sorted from the 1st to the 19th as presented in Bigand et
al. (2021), along X, Y and Z axes. Coefficients correspond to the covariance measures centered and standardized
across examples and signers. Blue represent positive covariances, while red represent negative ones. (A) covari-
ance between all markers along the Y axis. (B) covariance between the right hand and arm markers along the Y
axis, and the trunk and head markers along the X axis.
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Statistics of the mocap examples were then computed
as follows. Based on previous research investigating
the perception of auditory and visual textures (McDer-
mott and Simoncelli, 2011; Portilla and Simoncelli,
2000), we measured the first two moments (i.e., mean
and standard deviation (SD)) of position and veloc-
ity, and covariances of velocity between body mark-
ers. The first two moments of position and velocity
described their statistical distributions, which may vary
from one individual to another, as shown for expert ges-
ture analysis (Tits, 2018). Moreover, the covariance
of velocity allowed for quantifying the extent to which
any two markers covaried with each other, in two direc-
tions. This latter statistic has been shown to allow for
automatic person identification from dance movements
(Carlson et al., 2020).
These statistics vary substantially across the mocap
data of different signers. For instance, as shown in Fig-
ure 2, the position and velocity data of one body marker
are distributed differently across signers, for one mo-
cap example (i.e., for comparable content: the descrip-
tion of the same picture in LSF). Distributions of posi-
tion data differ in location of the peak (captured by the
mean) and width (captured by the standard deviation).
Figure 3 further supports that the two moments of po-
sition and velocity may capture substantial differences
across signers.
Furthermore, velocity covariances capture different as-
pects of motor coordination between the markers in
three dimensions, which can differ across signers. Vari-
ous distinct coordination patterns can be extracted. For
instance, for mocap example 24, the movements of
Signer 2 show an overall substantial (positive) covari-
ance between body markers along the Y axis, while this
covariance is near zero for Signer 4 (Figure 4.A). In-
versely, Signer 4 displays an important (negative) co-
variance of movements of the right arm and hand along
the Y axis with the trunk (i.e., stomach and sternum)
and head markers along the X axis, while this covari-
ance is less important for Signer 2 (Figure 4.B). Taken
together, these examples raise the possibility that the
identity of a signer is conveyed by statistical properties
of his or her movements.

3. Methods
The automatic signer identification model presented in
Bigand et al. (2021) allowed extracting specific kine-
matic statistics that carry identity information about the
signers. A linear classifier was trained to extract the
statistics of the mocap data characteristic of identity
(i.e., the ones that allow for accurate signer identifica-
tion).
Then, the aim of the present synthesis algorithm was
to manipulate the statistics of an original SL mocap
recording (i.e., impose new statistics to the original
recording), in order to reduce (α < 0) or exaggerate
(α > 0) the identity attribute, following Equation 1:

d̃α = dorig + αdk (1)

where d̃α is a vector containing the new target statistics
to be imposed by the synthesis alogrithm, dorig is a
vector containing the original statistics of the mocap
example, dk is a vector containing the overall statistical
patterns characteristic of the identity of Signer k, and
α is a scalar related to the amount of reduction (α < 0)
or exaggeration (α > 0) of the identity attribute.

The different steps of the synthesis process are dis-
played in Figure 5. In summary, the synthesis pro-
cess consisted of modifying (i.e., “re-synthezing”) an
existing mocap recording in order to change the iden-
tity attribute of the signer, according to the following
steps. First, statistics of the original mocap example
are measured, while the discriminant statistical kine-
matic patterns are extracted by the automatic identifi-
cation model (see Bigand et al. (2021)). Then, the dis-
criminant statistics characteristic of Signer k are either
added to (α > 0) or subtracted from (α < 0) the ones
of the original example (see Equation 1). Multiple ma-
nipulations can then be done using this technique, de-
pending on the values of k and α. For instance, if the
original mocap example relates to Signer 1, reducing
the importance of her identity-specific statistics (i.e.,
k = 1, α < 0) would make her less identifiable (i.e.,
kinematic anonymization). By contrast, increasing the
importance of the identity-specific statistics of Signer 2
(i.e., k = 2, α > 0) would make this latter signer iden-
tifiable while the SL movements were originally exe-
cuted by Signer 1 (i.e., kinematic identity conversion).
Once the target statistics defined, they are imposed to
the original mocap signal by the algorithm, which cre-
ates a new mocap excerpt.

Target statistics were imposed using an iterative pro-
cess where a synthesized mocap signal (initialized with
the content of the original mocap recording) is modi-
fied until its statistics are sufficiently close to the target
ones d̃α. Mathematically, the objective of this process
is to minimize the loss function that calculates the mean
square of the differences between the target statistics
and the statistics of the synthesized movements (see
Equation 2). We imposed the first two moments (mean
and SD) of position and velocity data and the covari-
ance of velocity between markers, as they were found
to be the most important statistics for signer identifi-
cation (Bigand, 2021). Imposing the mean of position
and mean of velocity of the markers was done to main-
tain consistent motion data when synthesizing (e.g.,
to avoid the generation of unrealistic, non-biological,
movements), although these two statistics had only mi-
nor role in the identification.
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Figure 5: Schematic representation of the steps used in the synthesis algorithm for the kinematic control of identity.

loss1 =
∑

m

(µpos,m,targ − µpos,m,synth)
2

loss2 =
∑

m

(σpos,m,targ − σpos,m,synth)
2

loss3 =
∑

m

(µvel,m,targ − µvel,m,synth)
2

loss4 =
∑

m

(σvel,m,targ − σvel,m,synth)
2

loss5 =
∑

i,j

(Ci,j,targ − Ci,j,synth)
2

losstot =

5∑

i=1

lossi

(2)

where µpos,m, σpos,m, µvel,m and σvel,m are the first
two moments of position and velocity data of marker
m (m ∈ [1, 54]), Ci,j is the covariance of velocity be-
tween markers i and j. targ and synth subscripts dis-
tinguish between target statistics and statistics of the
synthesized movements, respectively.
In order to be able to minimize all of the five loss com-
ponents of Equation 2 despite the differences in ranges
of amplitude across statistics, we used a weighted loss
function, whose weights then need to be optimized (see
Equation 3). The loss function was then minimized us-
ing the Adam optimization algorithm for gradient de-
scent. Each iterative step of the gradient descent mod-
ified the synthesized mocap signals (i.e., position tem-
poral curves of the 19 markers along the three dimen-
sions) so that they approached the target statistics.

losstot =

5∑

i=1

wilossi (3)

where lossi is the loss function related to one statistical
measure and wi the optimized weight.
Initially, there was no constraint in the synthesis pro-
cess that forced the position and velocity signals of
the synthesized movements to remain consistent with
their initial temporal structure in the original move-
ments. The limitation of this first version of the algo-
rithm is that, although it managed to impose the statis-
tics present in Equation 2, the modifications applied

to the new movements seemed to generate noise arti-
facts rather than changing relevant aspects of the mo-
tion of the signer (see Video 10.1). In fact, the im-
posing algorithm managed to impose the target statis-
tics but by modifying the movements in an undesired
manner. First, low-energy segments of the motion were
modified in the same way as high-energy ones, which
is not relevant as they may not be perceived by ob-
servers. Moreover, reaching the target statistics caused
very rapid oscillations in the synthesized velocity tem-
poral curves, which are unlikely to be perceived as bio-
logical motion by the observers (but rather noisy, wob-
bling, markers).
In order to modify the movements in proportion to their
energy (i.e., modify the aspects of the movement at
relevant times of actual, perceptible, motion), we in-
cluded another target statistic in the imposing algo-
rithm: the correlation of velocity between the original
and synthesized movements. The algorithm then aimed
to minimize the mean squared error between this corre-
lation and a value of 1, which characterizes two signals
that are perfectly positively correlated (see Equation
4). In other words, imposing this additional statistic
(Equation 5) allowed forcing the velocity curves of the
synthesized movements to be consistent with their ini-
tial temporal structure in the original mocap recording
(Figure 6).

loss6 =
∑

m

(1− ρvel,m,synth)
2

(4)

losstot =

6∑

i=1

wilossi (5)

where ρvel,m is the correlation of velocity between
the original and synthesized movements of marker m
(m ∈ [1, 54]). The target correlation value is set to 1
for all markers, in order to preserve the original tempo-
ral structure of velocity curves.

4. Results
This synthesis procedure was run on mocap examples
of different signers and for different modifications of
the identity attribute. In order to visualize how these
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Figure 6: Example of the synthesis results for the iden-
tity conversion from Signer 1 to Signer 2 (mocap ex-
ample 1). Position (up) and velocity (down) data of RF
hand marker along the Z axis are shown, for the origi-
nal mocap recording and synthesized mocap excerpt.

new statistics affected the movements of the SL dis-
course of Signer 1, the original and synthesized mocap
examples can be seen as “point-light” display videos.
For instance, the movements of Signer 1 were modified
so that the perceived identity was that of Signer 2 (i.e.,
identity conversion) (see Videos 10.3 and 10.4). Then,
they were modified to make Signer 1 not identifiable,
without making another signer identifiable specifically
(i.e., anonymization) (see Videos 10.5 and 10.6). One
further synthesis example of identity conversion (from
Signer 2 to Signer 1) can be found in Bigand (2021).
In order to assess the extent to which the novel move-
ments generated by our algorithm could convey a mod-
ified identity attribute (e.g., could be anonymized, or
identified as movements of another signer), we tested
our automatic signer identification model on the syn-
thesized mocap examples. If the identity-specific as-
pects of the movements are correctly modified by the
synthesis algorithm, then automatic identification from
these synthesized examples should be compromised.
When converting the identity of Signer 1 into that
of Signer 2, the automatic signer identification model
identified the synthesized mocap example as that of
Signer 2, while it identified the original motion as
produced by Signer 1 (see Table 1). Then, when
anonymizing the content of Signer 1, the signer identi-
fication model did not manage to identify Signer 1 from

the synthesized movements (see Table 1). Moreover,
the highest identification probability from this excerpt
was 0.43, which means that it did not clearly identify
any other signer from the anonymized movements.

Table 1: Output of the automatic signer identification
model from original and synthesized movements of
Signer 1. The synthesized versions consist of identity
conversion into Signer 2 and anonymization. Each out-
put number is the probability that the movements were
produced by the signer. Bold numbers represent the
highest probability across the six signers.

Original Synthesized
Conversion Anonymization

Signer 1 0.99 0.00 0.05

Signer 2 0.00 0.99 0.34

Signer 3 0.00 0.00 0.14

Signer 4 0.00 0.00 0.01

Signer 5 0.00 0.00 0.02

Signer 6 0.00 0.00 0.43

5. Discussion
This paper shows that simple statistics of the move-
ments of a signer can be manipulated in order to re-
generate mocap recordings with a modified identity at-
tribute. The mocap data of SL discourses can undergo
various manipulations, such as kinematic identity con-
version or anonymization. Moreover, the synthesis al-
gorithm preserves the original temporal structure of the
movements, which is crucial because degrading tempo-
ral structure could impair the comprehension of the SL
discourse.
Up to now, anonymization methods of SL content were
modifying appearance, using virtual signers (Kipp
et al., 2011) or modified videos (e.g., face-swapped
videos, where the face of the signer is replaced with
another face) (Lee et al., 2021; Bragg et al., 2020).
Our technique focuses on controlling the identity in
the kinematics of the signers, which could interestingly
complement prior approaches in order to provide full
anonymity, beyond face or body shape manipulations.
Moreover, the proposed algorithm has the advantage
that it can render the movements of signers as neutral
(i.e., not reflecting the identity of any other signer), by
contrast with face-swapping techniques.
However, some limitations of the present work should
be noted in order to ensure an effective use of these
tools in actual applications. First, although we aimed to
use SL mocap data as representative as possible of real-
life conditions (i.e., spontaneous LSF), the discourses
used in the present study were picture descriptions,
which may have involved specific linguistic structures
more than others (e.g., depicting ones). The different
outcomes reported here should be further tested in a
wider linguistic context.

5
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Moreover, the present computational findings call for
further tests with human participants. Three key prob-
lems should be investigated, similarly to prior work on
video anonymization (Lee et al., 2021): (1) identifiabil-
ity, by verifying that the ability of human observers to
identify the signers is compromised when showing the
synthesized modified movements, as compared to the
original ones (e.g., with “point-light” displays like in
Bigand et al. (2020) and Troje et al. (2005)); (2) com-
prehensibility, by evaluating the extent to which the
observers still understand the SL content in the mod-
ified motion examples; and (3) acceptability, by assess-
ing the deaf user perspective on the virtual signers ani-
mated with the modified movements and discussing po-
tential use cases (e.g., with focus groups). Should these
three fundamental points be validated, the present work
could constitute a first step of interest toward automat-
ically controlling the identity of deaf SL users when
expressing themselves via virtual signers. Moreover,
as shown for videos (Bragg et al., 2020), preserving
anonymity in mocap recordings could increase willing-
ness of SL users to participate in mocap research (e.g.,
in data collection), which is crucial to develop effective
and acceptable technologies.
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Abstract
Avatars are virtual or on-screen representations of a human used in various roles for sign language display, including translation and
educational tools. Though the ability of avatars to portray acceptable sign language with believable human-like motion has improved in
recent years, many still lack the naturalness and supporting motions of human signing. Such details are generally not included in the
linguistic annotation. Nevertheless, these motions are highly essential to displaying lifelike and communicative animations. This paper
presents a deep learning model for use in a signing avatar. The study focuses on coordinating torso movements and other human body
parts. The proposed model will automatically compute the torso rotation based on the avatar’s wrist positions. The resulting motion can
improve the user experience and engagement with the avatar.

Keywords: Sign Language, Avatar, Neural Network, Deep Learning

1. Introduction
Interactive avatars have grown popular as learning tools for
spoken languages. Virtual reality has become a new tool to
aid deaf or hard-of-hearing learners with specialized guid-
ance in learning core academic concepts, such as mathe-
matics and science (Zirzow, 2015). A signing avatar has
been proposed to assist deaf students in a comprehensive
educational environment(De Martino et al., 2017). Avatars
are evaluated as a potential communication medium to fa-
cilitate language learning in babies (Nasihati Gilani et al.,
2019).
Avatars are also increasingly popular in social media, per-
sonalizing users’ contributions to interacting and represent-
ing users and their behaviors. People prefer to have an
avatar in their profile to secure their visual anonymity or
pseudo-anonymity. Anonymity enables them to express
and observe opinions they would not necessarily be com-
fortable with elsewhere while holding personal character-
istics (Vasalou et al., 2008). Historically, people have
adopted a pen name or alias to express themselves anony-
mously for several reasons. Deaf experience in signing on-
line is inherently not anonymous. An avatar would help
signers who do not want to reveal their identity.
There is a rise of a new generation of AI avatars for speech
interaction, such as Amelia, that serves as virtual cognitive
assistant (Davenport et al., 2020). Deep learning capacities
support her ability to learn human interaction continuously
and create an engaging user experience to drive higher busi-
ness value.
The use of avatars in signing can be equally exciting and
has potential benefits over video recordings of a sign. One
can see a sign from a different angle or zoom in, or the
pace or rhythm of the signing can be customized based on
users’ needs. The scene’s background can also be adapted
based on the context or better clarity of the sign (Jaballah
and Jemni, 2014). The modeling and animation of signed
contents generated once can automatically become reusable
software components, which can be re-purposed for novel
utterances.
Though the need to make avatars natural is widely recog-
nized in the animation industry, the current quality of sign-
ing avatars is still not satisfactory for producing human-like

user experiences, making them less acceptable to the Deaf
community (Jancso et al., 2016). Since speech is missing
in sign language, supporting movements are essential to
engage the communication. This research recognizes that
torso movements are critical for direct linguistic commu-
nication (McDonald et al., July 8 11 2014). However, in-
corporating the coordination for each movement is a time-
consuming process for animators. The avatars driven by
linguistic input become robotic because linguistic descrip-
tions lack the subtleties of human motion. Motion cap-
ture can automatically incorporate natural torso support but
is inflexible for generating new signing that has not been
specifically recorded. Furthermore, multiple processes in
signing can affect the torso simultaneously, and the effects
can be difficult to separate or isolate in such recordings (Fil-
hol et al., 2017).
This paper introduces a novel application of deep learn-
ing to predict the torso movement of a signing avatar. The
method will build a deep sequential neural network, imple-
ment it in the avatar and test it against the source motion
capture data for validation.

2. Importance of Torso Motion in Signing
Analyzing and modeling the supportive motions, such as
torso movements, is crucial to make the avatar mimic hu-
man movements accurately. The motions supported by the
torso include reach, balance, emotion, or the turning of the
body to assume participants’ positions in reported speech or
to indicate a side-facing object. The principles of overlap-
ping movements are essential for the avatar to get a natural
and believable feel (Burleigh et al., 2018).
The following figures show three illustrations of torso
movements during the signing of a scene description. In
Figure 1, the signer is twisting her torso to produce a side-
facing sign, and in Figure 2, the signer is leaning her torso
to the side to balance. In Figure 3, the signer is bending
backward to illustrate a scene.
An arm raised outwards and another arm moved across the
body impacts how the torso is twisted and should be po-
sitioned to look natural. Shoulder, wrist, and hand move-
ments must be carefully considered, especially when transi-
tioning from one type of composition to another. One must

7

https://orcid.org/0000-0001-5009-9756
mailto:schoud12@depaul.edu


Figure 1: Twisting the torso to depict objects to the side of
the signing space

Figure 2: Leaning the torso to the side for balance

consider how much the wrist is bent and how the elbow
is raised to orient the palm. All these specific actions can
make the avatar more realistic in its movements. Modeling
and automating such coordination would result in a practi-
cal, accurate, and interactive synthesis. It will elevate the
avatar to drive a deeper connection with users.

3. Related Work
Though the natural movements of the spine are captured
and can be directly replayed from motion capture data, the
segmentation and synthesis of novel discourse from motion
capture data is a complicated process that is the focus of
ongoing research (Gibet, 2018). Many efforts for sign syn-
thesis focus on describing sign language using a phonetic
description called the Hamburg Notation System (Hanke,
2004) (Efthimiou et al., 2010). It subdivides the movements
of the signer into a string of individual specifications for the
parts of the body. The linguistic descriptions do not encode
the motions of the torso unless they have a specific linguis-
tic meaning (Kennaway, 2015).
The Paula avatar uses a heuristic adjustment (McDonald et
al., 2016) for the torso position and does not consider other
features, such as the neck, shoulder, or wrist orientations.
The heuristic model was created based on the artist’s profi-

Figure 3: Bending the torso to depict objects to the front of
the signing space

ciency with animating signs and not on data-driven insights.
It modeled a precise interaction of the spine and the arms
to save the artist time setting up initial poses rather than
general movements of the arms and torso. Furthermore, the
kind of movements discussed in the last section applies to
only the reaching action of the torso. There is no research
yet to coordinate torso movement with hand movement in a
general way for a signing avatar using a data-driven model.
This paper addresses this need by studying a motion cap-
ture data set through deep learning.
Neural networks (Bishop, 1994) have been used in sign
language synthesis. They are employed to combine mo-
tion capture sequences for novel utterances for Japanese
Sign Language (Brock et al., 2018). It is also used to clas-
sify hand positions for signing avatars (Jaballah and Jemni,
2014). Neural Networks have also been explored for their
ability to generate continuous 2D skeletal signing motion
based on video (Stoll et al., 2018). However, these have not
considered direct 3D models of torso postures driven by the
positions of the signers’ hands.

4. Proposed Solution
This study focuses on the coordination of the torso with
other body parts during the signing. The resulting frame-
work predicts the torso movements of a signing avatar.
The framework is based on a deep neural network, which
learns from large motion capture (Mocap) data sets of hu-
man signers. A neural network in this context can learn and
detect nonlinear relationships between independent and de-
pendent variables. A sequential neural network model was
used since it is the simplest model and can learn without
prior application knowledge to find human motions (Bac-
couche et al., 2011). Implementing the proposed solution
on the avatar will produce lifelike natural postures.
Due to the opacity of the neural network for interpretation,
a regression model was also trained to compare with the
neural network result. This companion model aids the in-
terpretation of the primary relationships computed by the
more sophisticated black-box neural network model.
This study is focused on creating a framework that will
produce an improved natural movement of the torso in the
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avatar, which is based solely on the position and orienta-
tion of the signer’s wrists. The suggested solution must be
accurate compared to the actual human signer.

4.1. Data set
The LIMSI, CNRS laboratory collected human motion data
for Langue des Signes Française, (LSF) in BVH format.
The data were recorded with a mocap system, video, and
annotations of signed descriptions of scenes elicited by a
picture from human signers (Benchiheub et al., 2016).
The mocap data is recorded with sensors along the spine,
neck, head, shoulders, elbow, and wrist orientations. Since
the signing consists of descriptions of scenes, it has very
few lexical signs in the data that would differ highly from
one sign language to another (Baker et al., 2016). So, even
though the recorded signing is in LSF, the body postures
captured are applicable across sign languages. However,
this should not be generalized to all types of signers.
The 3DS Max software package was used to import the mo-
tion capture data, convert the data to match the avatar’s co-
ordinate system, resolve data issues, such as outliers, derive
new variables required for the ML model, and finally save
the data to CSV files. Python scripts tested the data, com-
bined all CSV files into a master file, and performed other
intermediate tasks.
The data covered four signers, 25 descriptions, 25 frames
per second and roughly 800 frames per description in the
study. The final data set has 66644 rows and 34 columns.
A specific signer was chosen to train the model to avoid
confusion with different signing styles because the specific
signer’s style is highly consistent, while other signers use
more excessive body movements.

4.2. Target definition
Three attributes for the spinal movement in the data were
the primary targets: the torso’s twist, side, and forward mo-
tions. The three Twist, Side, and Forward attributes across
the spine bones were summed up to a derived variable to
simplify the computation. It helped reduce the target or de-
pendent variable set from 12 to only three attributes and
gave a better idea of the overall movement of the spine.

Name Action Rotation Axis
Twist Transverse twisting Z-axis
Side Lateral bending X-axis

Forward Sagittal bending Y-axis

Table 1: Torso movements

4.3. Linear regression
The primary motivation to start with linear regression is that
it is highly interpretable and enables a better understanding
of the independent variables’ impact on the dependent vari-
able. The linear regression model enabled to match the co-
ordinate systems of the motion capture data, where the data
comes from with the signing avatar, where the model is im-
plemented. It helped to calibrate the model. It also served
as the baseline model, critical for capturing the evaluation
metrics before initiating the deep learning model. The steps
followed from start to end are shown in Figure 4.

Figure 4: Process diagram

Figure 5: Correlation analysis

The independent variables employed in the study are linear
X, Y, and Z positions of the left and right wrists. Based on
the exploratory correlation analysis shown in Figure 5 and
experiments with linear regression, it was determined that
chained regression between the dependent variables was
appropriate. The analysis identified a linear sequence to
arrange three models. The first model uses all independent
variables and predicts spine twist. The second model uses
all independent variables and the prediction output from the
previous model to predict the spine side rotation, and so on.
The chained regression approach increased the predictive
power of the model significantly.

High accuracy is the main priority to make the signing
avatar natural. However, the evaluation metrics from Lin-
ear Regression, such as mean squared error and R-Squared,
are not satisfactory. The regression formulas for each of the
three movements are displayed in equations (1) - (3).

The equations helped a more intuitive knowledge of the
relationship between the independent and dependent vari-
ables, such as if wrist X increases, the twist also increases,
and so on.
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Twist = 0.02 + 0.12 ∗ wristX
− 0.20 ∗ wristY
+ 0.04 ∗ wristZ
+ 0.16 ∗ lWristX

+ 0.16 ∗ lWristY

− 0.05 ∗ lWristZ

(1)

Side = 1.56− 0.02 ∗ SpineTwist(Predicted)
− 0.03 ∗ wristX
+ 0.08 ∗ wristY
− 0.14 ∗ wristZ
− 0.05 ∗ lWristX

− 0.04 ∗ lWristY

+ 0.15 ∗ lWristZ

(2)

Forward = 5.78 + 0.45 ∗ SpineTwist(Predicted)
+ 8.57 ∗ SpineSide(Predicted)
+ 0.18 ∗ wristX
− 0.58 ∗ wristY
+ 1.09 ∗ wristZ
+ 0.32 ∗ lWristX

+ 0.25 ∗ lWristY

− 1.22 ∗ lWristZ

(3)

4.4. Applying the neural network
Deep learning techniques can train the nonlinear represen-
tation of data through multiple hidden layers. The deep
learning structure can perform feature extraction and trans-
formation without prior knowledge. Keras, an open-source
neural network library (Chollet and others, 2015) was used.
Keras runs on top of the TensorFlow platform (Bisong,
2019), used to run computations requiring tensors. A tensor
can be considered a machine that accepts vectors as inputs
and produces another vector as output. The most straight-
forward way to build a deep learning model in Keras is a
sequential model. The sequential model is suitable for a
typical stack of layers where each layer has precisely one
input tensor and one output tensor. Figure 6 shows the se-
quential model summary used in the study.
The model used a simple multi-layer perceptron with three
layers with the shape of the independent variables (predic-
tors) as a parameter. The first and second layers contain
64 units with rectified linear activation function (ReLU),
and the output layer contains just one unit. The network
used the ”Adam” optimizer, a stochastic gradient descent
method for the training model. The ’Mean Squared Error’
served as the regression loss function that the model min-
imized during training. The model was trained on move-
ment information from the descriptions of the first 80%
of scenes and held out the rest as a test set. The training
sample was used to build a deep learning model and the
test sample to evaluate the model. The regression metrics
reported are loss, root mean squared error (RMSE), and

Figure 6: Model summary

R-Squared. The optimal model was chosen based on test
RMSE using the smallest value as it also indicates the over-
all expected error in the predictions.

4.5. Chained regression approach
As indicated by the regression models, the neural network
also followed a chained approach. The first model predicts
spine twist by using all independent variables. The second
model uses all independent variables and the prediction out-
put from the spine twist model to predict the spine side. The
third model uses all independent variables, predicted output
from the previous two models, and predicts spine forward.

5. Results
The models are evaluated based on the resulting predictive
performance on the holdout test data using loss, RMSE, and
R- Squared of the test set with 100 epochs. Table 2 shows
the performance metrics of three dependent variables.

Twist Side Forward
MSE 1.68 4.82 6.89

RMSE 1.30 2.20 2.63
R2 0.95 0.70 0.48

Table 2: Performance of the neural network models

The results show that the proposed application significantly
improves accuracy over linear regression, the baseline, and
the companion model. It also improves accuracy over the
heuristic model from (McDonald et al., July 8 11 2014),
which currently used on the avatar. The RMSE using the
neural network is 1.3, while the RMSE using the heuris-
tic model using identical predictors is 4.60 in spine twist
movement. Compared to the heuristic methods, the pro-
posed model resulted in a 72% reduction of RMSE for the
twist. Tables 3 to 5 compares the models based on RMSE
of the predicted spine angles in degrees. The comparison
includes the performance of the regression and heuristic
methods.

Model R-Squared RMSE
Neural Network 0.95 1.30

Linear Regression 0.86 3.62
Heuristic Model - 4.60
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Figure 7: Signing avatar twisting the torso to depict objects

Figure 8: Signing avatar leaning the torso to the side for
balance

Table 3: Spine Twist Performance Comparison

Model R-Squared RMSE
Neural Network 0.70 2.20

Linear Regression 0.24 11.29
Heuristic Model - 3.5

Table 4: Spine Side Performance Comparison

Model R-Squared RMSE
Neural Network 0.48 2.63

Linear Regression 0.17 21.73
Heuristic Model - 3.2

Table 5: Spine Forward Performance Comparison

6. Implementation
The model is successfully implemented in the avatar using
Python and tested against the original mocap positions. We
scaled the torso movements to adapt the morphology of the
avatar to that of the skeleton of the captured data. Examples
for each of the three key spine movements are displayed in
Figures 7 to 9. Naturalness is a piece of subjective informa-
tion, and there is an effort to figure out how to measure it. A

Figure 9: Signing avatar leaning forward the torso to depict
objects

user survey from the ASL community, which combines the
Deaf community and the experts in the ASL domain, will
be requested to compare the avatar with and without the
proposed solution. The outcomes of the survey will serve
as a measure of naturalness. Currently, the performance is
fast enough for the avatar to respond to user interaction in
real-time. This framework will be updated once future data
is collected, so the model will learn using new data.

7. Conclusions and Future Work
This paper describes the potential power of the proposed
model to compute the torso positions of the avatar, which
will improve the interaction and engagement of users with
the avatar. The proposed model is implemented on an
avatar using motion capture data. The initial testing and
validation produce satisfactory results. In sign language,
signing style varies from person to person. Different sign-
ers use the torso in very distinct ways. Some signers like
to move more than others. The future effort has started in-
corporating personal signing styles and refining the models
to include additional independent variables and data. Ad-
ditionally, work is in progress to create a multi-target neu-
ral network model to combine the current implementation’s
three models. The unified model will streamline the imple-
mentation process and may deliver better predictions than
individual models. Deep neural networks have many pa-
rameters, and it is usually prone to overfitting. Since the
model will soon include more independent variables, it may
have overfitting issues. The companion linear regression
model will be leveraged to prevent the overfit. There is a
plan to handle overfitting by applying regularization tech-
niques or tuning the neural network parameters. Though
the primary focus of the study is sign language avatars, the
model can be implemented in any other human animation.
There are plans to apply this framework to other sign lan-
guages, such as German or Mexican.
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Abstract
We present a new approach for isolated sign recognition, which combines a spatial-temporal Graph Convolution Network
(GCN) architecture for modeling human skeleton keypoints with late fusion of both the forward and backward video streams,
and we explore the use of curriculum learning. We employ a type of curriculum learning that dynamically estimates,
during training, the order of difficulty of each input video for sign recognition; this involves learning a new family of data
parameters that are dynamically updated during training. The research makes use of a large combined video dataset for
American Sign Language (ASL), including data from both the American Sign Language Lexicon Video Dataset (ASLLVD)
and the Word-Level American Sign Language (WLASL) dataset, with modified gloss labeling of the latter—to ensure 1-1
correspondence between gloss labels and distinct sign productions, as well as consistency in gloss labeling across the two
datasets. This is the first time that these two datasets have been used in combination for isolated sign recognition research.
We also compare the sign recognition performance on several different subsets of the combined dataset, varying in, e.g., the
minimum number of samples per sign (and therefore also in the total number of sign classes and video examples).

Keywords: ASL, Isolated Sign Recognition, Curriculum Learning, ASLLVD, WLASL

1. Introduction
There are >70 million deaf people worldwide, and
>200 signed languages (World Federation of the Deaf,
2022). In the US, there are 28 million Deaf or Hard-
of-Hearing people (Lin et al., 2011), and ASL is the
primary language for an estimated 500,000 (or more)
(Mitchell et al., 2006). Signed languages like ASL are
full-fledged natural languages, but they are structurally
distinct from spoken languages. Language in the visual
modality involves movements of the hands and arms, as
well as facial expressions and movements of the head
and upper body. ASL has no standard written form.
Computer-based research on sign recognition from
video will pave the way for technologies to benefit
the Deaf community and to improve communication
between deaf and hearing individuals, such as ASL-
to-English translation, for which sign recognition is a
precursor; or educational applications to support ASL
learners. It will also enable development of a variety
of computational tools for signers, such as Google-like
sign search by example over videos on the Web.
However, this is a difficult problem, and research in this
area is badly needed. Here we focus on recognition
of isolated, citation-form signs. Sign recognition from
continuous signing is a related but more complex prob-
lem. As with any other natural language, there is con-
siderable variability in the production of signs in ASL,
which poses a challenge for sign recognition. Progress
in this area requires the availability of large, linguis-
tically annotated, video datasets with consistent gloss
labeling of signs, and with representation of many and

*Equal contribution.

diverse signers and a sufficient number of samples per
sign, to serve as a basis for computer learning.

1.1. Issues related to Data
As observed in Dafnis et al. (2022) Neidle et al.
(2022a), and Neidle and Ballard (2022), the Word-
Level ASL (WLASL) video dataset (Li et al., 2020)—
which is potentially valuable for sign recognition re-
search in that it brings together multiple publicly shared
ASL video datasets—is problematic in one critical re-
spect: there is no enforced 1-1 correspondence be-
tween gloss labels and sign productions. Figure 1 illus-
trates the problem with using the WLASL gloss labels
as “ground truth” for sign recognition research. Each
of the ASL signs shown in this figure—one glossed
as “A-LOT,” the other as “MANY” in our ASLLRP
Sign Bank (Neidle et al., 2022b), https://dai.
cs.rutgers.edu/dai/s/signbank)—has sev-
eral different gloss labels within the WLASL dataset,
whereas particular gloss labels, such as “a lot” or “nu-
merous,” are used for totally different ASL signs.
For this reason, we have created, and shared
publicly http://dev.dai.cs.rutgers.edu/
dai/s/aboutwlasl, a spreadsheet that provides,
for a large subset of the WLASL videos, gloss labels
consistent with those used for the ASLLRP Sign Bank,
where such 1-1 correspondences are enforced. This
makes it possible to take advantage of the large and
varied set of WLASL video files while ensuring inter-
nally consistent gloss labeling; this is precisely what
was done in Dafnis et al. (2022).
Moreover, this also makes it possible to combine the
WLASL and ASLLRP isolated sign datasets (of which
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Figure 1: Inconsistent WLASL gloss labels: examples

the American Sign Language Lexicon Video Dataset
(ASLLVD) (Athitsos et al., 2010; Neidle et al., 2012)
is a part), with consistent gloss labeling across both,
giving rise to a combined dataset larger and richer than
either of the two. That is what we have done here.
The ASLLRP datasets include, for each sign: gloss
labels (main entry plus variant labels); annotations of
the linguistic start and end frames; start and end hand-
shapes for each hand (in 1- and 2-handed signs); and
sign type categorization (e.g., lexical, fingerspelled,
loan sign, classifier, compound, etc.).
The current research relies on using both the ASLLVD
and WLASL datasets in combination. In experiments
to be reported on below, we used (1) lexical signs
merged from both collections for which we had at least
6 or 12 examples per sign; and (2) these same datasets
expanded to include not only lexical signs, but also
loan signs and compounds, for which we had at least
6 or 12 examples per sign from the merged datasets.
Complete details of the datasets used for each of these
experiments are available from our website: http:
//www.bu.edu/asllrp/signrec.html.

1.2. Overview of our Approach
Our isolated sign recognition approach uses a spatial-
temporal Graph Convolution Network (GCN) architec-
ture for modeling human skeleton keypoints, with late
fusion of forward and backward video streams, as in
Dafnis et al. (2022). We also explore curriculum learn-
ing: dynamic estimation, during training, of the order
of the difficulty of input videos for sign recognition;
this involves learning a new family of parameters using
a differentiable curriculum.

2. Related Work
Early research on isolated sign recognition from video,
as well as more recent work (Cooper et al., 2012;
Badhe and Kulkarni, 2015; Tamura and Kawasaki,
1988; Xiaohan Nie et al., 2015; Tornay et al., 2020),
uses either color thresholding for feature extraction or
hand-crafted features, such as hand positions, move-
ment, location, and distances between the hands and
specific body parts, in conjunction with classifiers, such

as SVMs, KNNs, CRFs and HMMs (Memiş and Al-
bayrak, 2013; Dardas and Georganas, 2011; Yang,
2010; Metaxas et al., 2018; Tornay et al., 2020). How-
ever, these features and the distribution assumptions in-
herent to these approaches result in systems with lim-
ited capability for generalization.

2.1. RGB-based Approaches
Over the past decade, most of this research shifted to-
ward end-to-end deep learning methods, spurred by the
success for computer vision problems of Convolutional
Neural Networks (CNNs) in extracting spatial features
and of Recurrent Neural Networks (RNNs) in capturing
temporal information. Promising initial results were
achieved in the domain of sign language recognition
using CNN-based end-to-end deep learning methods,
e.g., Pigou et al. (2016), which uses a 2D CNN for
sign recognition of Flemish Sign Language (VGT) and
Dutch Sign Language (NGT).
Later, many researchers leveraged modified CNNs
(3D-CNN) in the context of sign and action recogni-
tion. For example, Li et al. (2020), who introduced the
WLASL for isolated sign recognition, compare 4 dif-
ferent deep-learning architectures: 2 RGB-based and
2 pose-based approaches. The pose-based networks
use body keypoints extracted using OpenPose (Cao et
al., 2019; Simon et al., 2017) as input. These meth-
ods include a 2D-CNN in conjunction with an RNN,
a pose-based RNN, a 3D-CNN, and a pose-based Tem-
poral GCN. The authors show that the 3D-CNN outper-
forms the other approaches. While the 3D-CNN model
performs better than previous approaches in learning
short-term memory dependencies, a major drawback is
that it restricts the learning of long-term dependencies
at the final temporal global average pooling stage.
Recent architectures exploit the self-attention mecha-
nism of Transformers for video understanding (Berta-
sius et al., 2021). De Coster et al. (2020) use a 2D-
CNN and a Video Transformer Network for isolated
sign recognition; they use the self-attention encoder
layers without masking, while they remove the cross-
attention decoder, and their results are promising.

2.2. Skeleton-based Approaches
Instead of using RGB frames as input, some methods,
such as those mentioned in Li et al. (2020), use body
keypoints to focus the learning procedure on the rele-
vant information. When the off-the-shelf pretrained hu-
man pose estimation systems are robust, these methods
show good performance in both learning and recogni-
tion, as the recognition models are not affected by ir-
relevant information from the background.
Early research on action and sign recognition used
pose-based CNNs, followed by an RNN for the rele-
vant temporal information (Soo Kim and Reiter, 2017;
Liu et al., 2017). However, a disadvantage of these
models is that they cannot encode information about
keypoint interactions in both space and time. In order
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to overcome this disadvantage, Yan et al. (2018) pro-
posed a Spatial-Temporal Graph Convolutional Net-
work (ST-GCN) and showed the effectiveness of GCNs
for learning spatiotemporal skeleton dynamics. Shi et
al. (2019b) exploited a 2-stream approach using both
keypoints and bone information, while Shi et al. (2020)
proposed a 4-stream approach in which bones and the
motion of keypoints are added. Their approach re-
sulted in improved action recognition. de Amorim et
al. (2019) used an extension of the ST-GCN model
for isolated sign recognition and achieved close to 60%
accuracy on a vocabulary of 20 signs. Jiang et al.
(2021) used a pose-based GCN approach, as in Shi et
al. (2020), in conjunction with other modalities, such
as RGB frames, optical flow, and depth video. Their
proposed GCN was the first successful attempt to tackle
isolated sign recognition using body skeleton graphs.
In Dafnis et al. (2022), we follow a similar GCN
approach, with the addition of forward and backward
data streams and use of the acceleration of keypoints
and bones. This improved isolated sign recognition
on 1,449 lexical signs from the WLASL dataset, with
glosses modified as discussed in Section 1.2.

2.3. Curriculum Learning Approaches
Curriculum learning is a ”strategy that trains a machine
learning model from easier data to harder data, which
imitates the meaningful learning order in human cur-
ricula” (Wang et al., 2021). Curriculum learning was
introduced by Bengio et al. (2009), who proved that
training a neural network starting with easy examples
and gradually increasing the difficulty of the data pro-
vides significant improvement to the overall accuracy
and convergence of the model. The inspiration was de-
rived from the way humans learn best: starting with
easier concepts and gradually increasing complexity,
rather than randomly learning different concepts.
However, deciding which samples to categorize as easy
or hard is not trivial. Much research has been con-
ducted on how to define which data samples to consider
easy or difficult (e.g., Hacohen and Weinshall (2019),
Weinshall et al. (2018), Wu et al. (2020), Zhou et al.
(2020)). In this work, the order of difficulty is defined
before training; the most common techniques are 1) to
use pretrained models on the examined dataset; and 2)
to create annotations, which could be time-consuming.
Those techniques are task-specific and non generaliz-
able. As a result, curriculum learning research later fo-
cused on finding a way to estimate the importance (or
weight) of each sample directly during training, based
on the observation that easy and hard samples behave
differently and can therefore be separated.
The first step in this direction was taken by Kumar et
al. (2010), who proposed a dynamic way to apply cur-
riculum learning using the idea of self-paced learning.
Instead of using a predefined order of difficulty of the
samples, this method dynamically determines this or-
der by feedback from the learner itself. Inspired by this
idea, many classification tasks were further improved,

since curriculum learning provided a quicker and bet-
ter convergence (Cascante-Bonilla et al., 2020; Pi et al.,
2016; Zhao et al., 2015; Saxena et al., 2019).

3. Technical Approach
The key aspects of our approach include a spatial-
temporal GCN architecture for modeling the skeleton
keypoints; dynamic estimation during training of the
order of difficulty of each input video for sign recogni-
tion by learning a new family of data parameters us-
ing a differentiable curriculum; and a late ensemble
method that fuses both the forward and backward video
streams, as in Dafnis et al. (2022).
Section 3.1 presents our deep-learning model for iso-
lated sign recognition based on skeleton keypoints. Our
ensemble data fusion method is explained in 3.2. Sec-
tion 3.3 then introduces the data parameters that we use
for learning a differentiable curriculum and the training
strategy we follow based on curriculum learning.

3.1. Sign Recognition Model
As mentioned in Section 2, previous studies on isolated
sign recognition have revealed that spatial-temporal
graph architectures, in conjunction with a self-attention
mechanism, can boost recognition accuracy. Hence, we
use a spatial-temporal GCN model similar to Jiang et
al. (2021) and Dafnis et al. (2022) for isolated sign
recognition on the reported dataset, as presented below.
GCN for human skeleton keypoints. Our adopted
spatial-temporal GCN learning approach consists of 10
basic GCN blocks; see Figure 2. Each basic block con-
sists of a sequence of Decoupled Spatial Graph Con-
volutional layers (Decoupled SGCNs) (Cheng et al.,
2020), a cascaded spatial-temporal-channel attention
mechanism (Shi et al., 2020), and a Temporal Convo-
lutional layer (TCN). The Decoupled SGCN helps our
GCN model boost its capacity with no extra cost. In
addition, a DropGraph layer as in Cheng et al. (2020)
is added. This module helps to avoid overfitting. At
the end, we apply a global average pooling on both the
spatial dimensions (within a skeleton) and the tempo-
ral dimensions (across skeletons), along with a dropout
before a fully-connected layer for recognition.
Spatial-Temporal Graph Convolution. We first
present the spatial convolution operations within a
skeleton graph. To define the graph convolution in the
spatial dimension for our human skeleton graph, we
follow Yan et al. (2018). The implementation of the
spatial part of the GCN is expressed as follows:

uout = D− 1
2 (I +A)D− 1

2uinW, (1)

where matrices A and I represent the intra-body and
self-connections respectively. D is the diagonal matrix
of (I+A), while W represents the weight matrix of the
convolutions. In practice, the spatial graph convolu-
tion operation is implemented by performing standard
2D convolution and then multiplying the outcome by
D− 1

2 (I +A)D− 1
2 .
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Figure 2: Illustration of the GCN pipeline: (a) Basic GCN block architecture; (b) GCN architecture. There are
10 basic GCN blocks in all. GAP represents the global average pooling layer and FC the fully connected layer.
(c) The overall architecture of the Multi-stream GCN. The forward and backward scores are fused using weighted
summation to obtain the final prediction.

To capture the temporal relationships among skeleton
graphs in consecutive frames, we use temporal con-
volutions. These temporal graph convolution opera-
tions can be also expressed as a standard 2D convo-
lution using a kernel size kt×1, where kt is the recep-
tion field. In practice, the human skeleton keypoints
are connected to themselves in the temporal dimen-
sion. Thus, the traditional 2D convolution formulation
is modified to a 1-dimensional convolution.
Spatial Graph Construction. To construct the skele-
ton graph, we extract 2D skeleton keypoints using Al-
phapose (Fang et al., 2017), a pretrained model that ex-
tracts 136 face and body keypoints from a given video
frame. However, using all 136 keypoints for isolated
sign recognition reduces the recognition rate. This is
because the upper body keypoints are more informative
than those of the lower body for sign recognition. In ad-
dition, because of blurriness during hand movements, it
can be hard for the 2D skeleton extractor to detect the
hand keypoints accurately. To overcome these issues,
following Jiang et al. (2021) and Dafnis et al. (2022),
we reduce the number of skeleton keypoints used for
skeleton graph construction. Our graph consists of 27
nodes corresponding to 10 keypoints for each hand and
7 upper body keypoints: nose, eyes, shoulders, elbows.
The 10 hand keypoints correspond to the base and tip
of each finger. Given the variability in lexically related
mouthing, and our current sample sizes, we did not in-
clude keypoints around the mouth on the graph. We
found that including them did not increase accuracy,
but we hope to incorporate this in the future. Each node
on our graph has a (x, y, c) vector, where (x, y) are the
2D coordinates of the corresponding keypoints and c is
the keypoint detection confidence score.
Forward and Backward Sign Recognition. Follow-
ing Dafnis et al. (2022), we use both the forward and
backward directions of the video data for isolated sign
recognition. In each direction, we use two types of
data streams as input: the human skeleton keypoint
(joint) coordinates, and the bone vector (distance be-
tween keypoints). As demonstrated in Dafnis et al.

(2022), these two streams are the most informative for
isolated sign recognition since, because of noise in the
estimation of joint locations, the joint velocities and ac-
celeration vectors are not reliable.
We generate the bone vectors for our graph by setting
the nose as the root keypoint on the skeleton graph.
Let two ordered connected keypoints vKi,t, v

K
j,t at frame

t, with coordinates vKi,t = (xi,t, yi,t, ci,t) and vKj,t =
(xj,t, yj,t, cj,t) respectively. Then the bone vector is
computed as:

vBj,t = vKj,t − vKi,t,

vBj,t = (xj,t − xi,t, yj,t − yi,t, cj,t − ci,t) ∀(i, j) ∈ V , (2)

where V contains all skeleton keypoint connections.
3.2. Score Fusion
In both the forward and backward directions, our
framework uses multiple streams of information (i.e.,
joints and bones) to make aggregate predictions for
each direction. We first fuse the prediction scores from
all streams in each direction. We use the respective
softmax scores in each stream (Shi et al., 2019b; Shi
et al., 2019a; Shi et al., 2020; Cai et al., 2021; Dafnis et
al., 2022) to compute an optimized weighted summa-
tion of the scores for each direction. We then fuse the
prediction softmax scores for each direction by com-
puting an optimized weighted summation that produces
a prediction of the sign labels.

3.3. Curriculum Learning
To further enhance our recognition accuracy, we use
a type of curriculum learning introduced in Saxena et
al. (2019), which dynamically estimates during train-
ing the order of difficulty of each input video for sign
recognition by using a new family of trainable parame-
ters for deep neural networks called data parameters.
Each sign class and each sign instance are assigned
data parameters, which are updated after every itera-
tion during training. The respective learning process
determines which sign samples and classes need more
attention compared to the others to improve sign recog-
nition automatically, as follows: We define

{(xi, yi)}Nn=1, (3)
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where xi is a data sample (a video of a sign) that is
input to the neural network, yi is the label of xi, and
N represents the number of input samples. The neu-
ral network is defined as fθ, and the logits are zi, i.e.,
fθ(x

i) = zi. We also define the data parameter ϕ∗
i as

the sum of the instance and class parameters as follows:

ϕ∗
i = ϕclass

yi
+ ϕinstance

i (4)

We use the cross entropy loss as the loss function,
where the logits are scaled using the data parameter ϕ∗

i :

Li = −log(piyi), (5)

where
piyi =

exp(ziyi/ϕ∗
i )

Σjexp(zij/ϕ
∗
i

). (6)

Li is the cross entropy, ϕ∗
i is the data parameter, ziyi is

the logit and piyi is the probability of the target class yi

for sample xi. In order to estimate the sign class given
an instance we need to minimize Li:

min
θ,ϕ∗

1

N
ΣN

i=1L
i (7)

During training, the class parameters, ϕclass
yi

, take into
account the average of the gradients from all the class
samples in each mini-batch, while instance parameters,
ϕinstance
i , aggregate the gradients from each individual

sample. This process has the following advantages:
1) Some videos in our dataset are of low resolution and,
as a consequence, those samples are blurry and noisy.
This makes learning from those data difficult, and so
they need to be ignored. Using the learnable instance
parameters, the algorithm can learn which samples help
the recognition part of the model and which samples
should be ignored or paid less attention.
2) If, during training, the data samples of a class are
correctly classified, the corresponding data parameter
of this class is decreased, resulting in the acceleration
of the learning process (the loss function is decreased).
However, if they are misclassified, then the class pa-
rameter is increased, which results in the deceleration
of the learning process (the loss function is increased).
In the above curriculum learning method, we use 3 op-
timizers: 1 for training the model, 1 for training the
class parameters, and 1 for training the instance param-
eters. The optimizers for the class and instance parame-
ters are used only during training, since we do not have
the data parameters ϕ∗ for the test set.
This method is simple and effective, and it boosts the
accuracy of sign recognition, as demonstrated in Sec-
tion 4. Using those parameters, the algorithm can au-
tomatically learn to ignore noisy samples. In addition,
it accelerates the learning of easier classes, while it de-
celerates and focuses on the learning of harder classes.

4. Experiments
The adopted GCN-based framework is tested for iso-
lated sign recognition on the combined WLASL and
ASLLVD isolated sign dataset (with consistent gloss
labeling). Our training and testing protocol for both the

Set ID
Sign

Types

Min. #
samples
per sign

Total #
class
labels

Total #
examples

LEX-6 Lexical 6 1,480 22,853
LEX-12 Lexical 12 983 18,362
ALL-6 All 6 1,502 23,016
ALL-12 All 12 990 18,482

Table 1: Dataset Statistics. All includes lexical signs,
loan signs, and compounds

forward and backward directions is described in Sec-
tion 4.1. Section 4.2 explains the fusion of the forward
and backward streams and the evaluation of the use of
data parameters for curriculum learning.

4.1. Training and Testing Protocol
4.1.1. Dataset Preprocessing
As described in (Dafnis et al., 2022), we modified the
WLASL (Li et al., 2020) gloss labeling to make it con-
sistent with the conventions of the ASLLRP datasets
(which includes the ASLLVD), thereby also enforcing
consistency of gloss labeling for the WLASL videos.
As explained in Section 1.1, we merge the WLASL and
ASLLVD isolated sign datasets (resulting in a set of
23,017 videos for 1,502 signs), and we use either lex-
ical signs, or lexical plus loan signs and compounds;
and we further restrict these sets to signs with at least
either 6 or 12 examples. Increasing the minimum num-
ber of samples per sign also decreases the total number
of available videos. Table 1 presents the numbers of
sign classes and total videos for each set.
We split this dataset following (Li et al., 2020) into
training, validation, and testing sets using a ratio of
4:1:1 for each sign. To evaluate the recognition per-
formance, we use the mean scores of the Top-K recog-
nition accuracy with K = 1, 5 over all sign instances.
4.1.2. Keypoint Extraction & Data Preprocessing
We use the pretrained Alphapose model of Fang et al.
(2017), which estimates 136 keypoints of the whole
body from single RGB images, and construct our skele-
ton graph of 27 nodes. To construct the graph, we first
normalize the keypoint coordinates to [-1,1], and then
apply random sampling, mirroring, rotation, scaling,
and shifting as data augmentation techniques. Since
the videos differ in total number of frames, the length
of all videos is aligned to 200 frames. If a video has
more than 200 frames, the first 200 are extracted from
the video. However, given the length of the signs in
our datasets, no information was lost as a result of this
operation. If a video has fewer than 200, we repeat the
frame sequence until the video length is 200 frames.
4.1.3. Training Details
To speed up and improve the training, we use a GCN
model with pretrained weights from the AUTSL dataset
(Sincan and Keles, 2020). The GCN models are im-
plemented in PyTorch. All experiments were con-
ducted using PyTorch 1.7.0 and an NVIDIA Quadro
RTX8000s. To train the GCN model, the Stochas-
tic Gradient Descent (SGD) with Nesterov Momentum
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Streams
LEX-6 LEX-12 ALL-6 ALL-12

Forward Backward Forward Backward Forward Backward Forward Backward
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Joint 74.05 91.60 73.67 91.38 79.00 94.38 78.24 94.01 72.96 91.42 74.19 91.14 79.18 94.09 78.24 93.78
Bones 71.35 91.12 71.02 90.86 75.87 93.59 75.69 93.56 72.63 91.47 72.09 91.09 76.31 93.51 76.49 93.30

Multi-stream 77.35 94.08 77.54 93.70 82.95 96.08 82.22 95.87 77.58 94.21 77.65 94.24 83.07 95.87 82.26 95.87
Forward Multi- 77.73 93.70 83.20 95.69 77.63 94.34 82.59 96.23stream w/CL

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
Fusion (no CL) 78.54 94.72 84.23 96.69 78.70 94.79 84.70 96.56

Table 2: Recognition accuracy for all subsets.

(0.9) is selected as the optimization algorithm. The
Cross-Entropy loss function is used, and the weight de-
cay is set to 10−4. The batch size for both the training
and testing processes is set to 64, while the total num-
ber of epochs used for training our models is 300. In
addition, the learning rate is initially set to 0.1 and di-
vided by 10 when 150 and 200 epochs are reached.

4.2. GCN Performance
Table 2 shows the Top-1 and Top-5 recognition perfor-
mance of the forward and backward stream directions.
Of the streams for which there is both the forward and
backward direction, the keypoint stream provides the
best accuracy. The score fusion approach for the for-
ward and backward directions further improves overall
recognition accuracy in all the test cases. Table 2 shows
recognition accuracy for all signs with at least 6 and 12
samples. We observe that using more samples per sign
with fewer total sign classes—resulting in a more bal-
anced dataset—increases the recognition rate by 5%.

4.3. GCN Performance with CL
Table 2 also shows the contribution of using curricu-
lum learning (CL) over just using fusion of the forward
streams. The current results are inconclusive; we will
explore varying the CL parameters in the future, in par-
ticular to adapt CL for imbalanced datasets. After opti-
mizing the parameters, we will add CL to the backward
as well as the forward stream prior to fusion, to assess
the extent to which CL may improve overall results.

4.4. Overall Results
Figure 3 summarizes the recognition accuracy for the
subsets of the combined dataset that included all sign
types (lexical, loan signs, compounds) using signs for
which we had a minimum number of samples per sign
of either 6 or 12, showing our fusion results (without
incorporation of improvements from curriculum learn-
ing) for top-1, top-2, top-3, top-4, and top-5.
Table 2 shows little difference in recognition accuracy
for datasets restricted to lexical signs, in part because
lexical signs still predominate in the larger datasets, but
also because we have not yet incorporated into our ap-
proach methods tailored to the specificity of linguistic
properties of lexical signs, as we have done in previous
research (Thangali et al., 2011; Dilsizian et al., 2014).

5. Discussion and Conclusions
We presented a new GCN-based approach to isolated
sign recognition. It is distinctive in these respects:

Figure 3: Summary of Sign Recognition Results:
Based on Fusion (without curriculum learning)

1) Our method uses late fusion of forward and back-
ward streams of joints and bones (following Dafnis et
al. (2022)), not typically used in sign recognition.
2) This is the first time that ASL sign recognition re-
search has been conducted by combining the ASLLVD
and WLASL datasets, which gives rise to a large, rich,
and diverse set of videos. This was made possible by
our modifications to gloss labeling for WLASL videos,
to enforce consistency of gloss labeling across these
datasets, thereby also providing internally consistent
gloss labels for the WLASL (not otherwise available).
3) This represents, to our knowledge, the first explo-
ration of use of curriculum learning in sign recognition,
by attending to the sign classes most difficult to learn,
although our preliminary findings as to its promise for
improving sign recognition accuracy are inconclusive.
To further improve recognition accuracy, in future re-
search: 1) We will develop new curriculum learn-
ing methods to improve the estimation of difficult-to-
recognize input signs, and integrate them with trans-
formers. 2) We will further expand our dataset to in-
clude other data collections shared by the American
Sign Language Linguistic Research Project (also with
consistent gloss labeling). 3) We will conduct new
machine learning research on extraction of 3D models
from 2D video, with explicit integration of handshape
recognition and incorporation of statistical information
about the dataset that reflects linguistic constraints on
the internal structure of signs.
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Abstract
This article presents an original method for automatic generation of sign language (SL) content by means of the animation of
an avatar, with the aim of creating animations that respect as much as possible linguistic constraints while keeping bio-realistic
properties. This method is based on the use of a domain-specific bilingual corpus richly annotated with timed alignments
between SL motion capture data, text and hierarchical expressions from the framework called AZee at subsentential level.
Animations representing new SL content are built from blocks of animations present in the corpus and adapted to the context
if necessary. A smart blending approach has been designed that allows the concatenation, replacement and adaptation of
original animation blocks. This approach has been tested on a tailored testset to show as a proof of concept its potential in
comprehensibility and fluidity of the animation, as well as its current limits.

Keywords: Sign Language, avatar animation, motion capture, representation of Sign Language, AZee

1. Introduction
Rosetta1 is a French project that aimed to study accessi-
bility solutions for audiovisual content. One of the ex-
periments consisted in designing an automatic transla-
tion system from text to Sign Language (SL) displayed
through animation of a virtual signer.
The three main contributions concerning SL in this
project were the constitution of Rosetta-LSF (Dauriac,
2022), an aligned corpus of text and SL captured us-
ing a mocap system, a translation system from text to
AZee (Bertin-Lemée et al., 2022b), a representation of
SL content, and a system allowing to generate virtual
signer animations from AZee input.
This article describes the third contribution: the system
of generation from AZee to virtual signer animations.
After an overview of recent works in the field, we give
some indications on the Rosetta-LSF corpus and the
way it has been annotated in order to facilitate its use
for generation, then we describe the main steps of the
generation system. Finally, we give preliminary results
and discuss the questions raised for evaluation.

2. Sign Language Generation
Sign language generation consists of creating anima-
tions that represent contents in SL, applied to a virtual
character. These creations must be guided by a linguis-
tic model of SL. The first section lists the concepts used
in this article and the second one provides an overview
of representative recent work in the field.

2.1. Avatar Animation
An avatar is made up of a complex 3D mesh that is
given a humanoid shape, forming a virtual skin. It can

1https://rosettaccess.fr/index.php/
home-page-english/

be animated thanks to a virtual skeleton which is a tree
structure composed of rigid segments called bones con-
nected by joints. Each joint represent the six degrees
of freedom (three rotations and tree translations) of a
bone with respect to its parent, also called 3D pose. A
rig makes the link between the skeleton and the skin by
defining the deformation of the latter depending on the
bones’ 3D pose.
An animation is a sequence of avatar poses displayed
at a given frequency. Some poses, defined at a given
timecode, are called keyframes. They act as control
points in space and time, and may not be defined at each
frame. From the main approaches listed by Naert et al.
(2020), one can summarize three main approaches used
for animation creation:

• Hand-crafted: The specification of keyframes is
done manually, possibly assisted by computer and
with techniques such as rotoscoping. The tran-
sitions between keyframes can be automatically
computed using interpolation, resulting in a con-
tinuous movement. The quality of such anima-
tions relies on the skill level of the animator who
select the keyframes. If they are not well chosen,
this can result in movements that are robotic and
perceived as not bio-realistic.

• Automatic keyframing: The principles are almost
the same, except that the sequence of keyframes
is provided by a representation of the sign struc-
ture rather than created by hand. Here also, the
animation can be perceived as not good enough,
because the computation relies on models that do
not always take into account all the properties that
allow the synthesis of a bio-realistic movement.

• Data-driven: The motion is captured on a human
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Generation of basic animation Generation of final animation
Name of the project Hand crafted Automatic keyframing Mocap Simple concat. Edited concat.
JASigning x x
EMBR x x
Naert’s project x x
Paula x x x
Rosetta x x

Table 1: List of the most recent signing avatar systems.

using a motion capture (mocap) device. This al-
lows for a high level of bio-realism but requires
the use of a mocap system, and therefore a post-
processing step on the recorded data.

To generate the final content, there are two main ap-
proaches:

• Simple concatenation: Blocks of animations are
concatenated to form the final animation. These
animations may have been created using any of
the techniques outlined above. A process, called
animation blending and described below, must
then be implemented to link the blocks so that
there is no break between the concatenated ani-
mations.

• Edited concatenation: There is still concatenation,
but, in addition, edition of the blocks of anima-
tions is possible, in order to adapt the block to the
context or to add realism to the whole animation.

One simple way to use existing data and combine them
into new data is to use animation blending. This tech-
nique is implemented in different animation softwares
like Blender or Motionbuilder. Video games industry
relies a lot on blending, for example to generate a tran-
sition from running to walking. This is the same idea
as a video or sound editing software. One can have
several clips of animation on several tracks. Each track
controls the 3D pose of a defined set of bones. On a
given track, depending on the way clips overlap or not,
two methods can be used:

• Temporal interpolation: When there is no overlap-
ping between clips, temporal interpolation can be
controlled between them.

• Blend: When there is overlapping of two clips, a
blend is applied to transition from one clip to an-
other. This blend is basically a weighted average
of the set of 3D poses in the two clips. A “func-
tion of activation” is used to control the fading in
and fading our of each clip across time.

2.2. Virtual Signer Animation
The generation of animations for virtual signers is a
relatively new and underdeveloped field. Despite this,
the different approaches listed above have been tested
in research projects or even commercial products on

SL. We propose here a synthesis of the most recent
ones by positioning them according to these categories,
grouped in Table 1.
A first generation of projects have been based on
“Automatic keyframing / Simple concatenation” ap-
proaches: The first step consists of creating a collec-
tion of animations representing isolated lexical units
(signs) which are stored in a database and identified
by a gloss2. These sign animations are automatically
keyframed, using a sign-level representation that de-
scribes the key poses. The signs are generally described
in their citation form, i.e. not inflected by the linguistic
context. Some procedural processes sometimes allow
to inflect the signs so as to match with their surround-
ing linguistic context, or to add behaviour activity (e.g.
breathing), but generally in a very limited manner. As
a second step, SL utterances are built as a sequence of
animation blocks. As such they are generally based on
a simple concatenative approach. They are extracted
from a database and concatenated to form a SL utter-
ance. To date, the two platforms of this kind that have
been most used are:

• JASigning: The Java Avatar Signing system is a
platform tool for the synthesis of any sign lan-
guage, freely available for research purposes (El-
liott et al., 2008). It has been used for several
projects with various SLs (Ebling and Glauert,
2013; Ebling and Glauert, 2016; Efthimiou et al.,
2019; Roelofsen et al., 2021). The signs are repre-
sented in their citation form using SiGML, which
is built on HamNoSys, a transcription system for
signs. Sign inflection is possible in a limited man-
ner and only at the sign level.

• EMBR (Embodied Agents Behavior Realizer)
(Heloir and Kipp, 2009; Huenerfauth and Kacorri,
2015): The signs are represented in their citation
form using k-pose-sequences called EMBRScript,
coming with explicit timing information. Sign in-
flection is not possible.

These approaches have the same drawbacks: they use
signs in their citation form with little or no sign inflec-
tion capabilities, they do not integrate linguistic struc-
tures such as classifiers, and they do not have a very ad-
vanced management of temporal aspects, either at the

2A gloss is a text label, generally a single word, reflecting
the meaning of the sign it stands for.
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level of signs or utterances. Moreover, as the animation
is built from pure procedural synthesis, the rendering is
rather robotic and far from being bio-realistic.
More recent projects aim to overcome these limitations,
using edition approaches each with its own specificity:

• Naert’s project: This project is based on the use of
a mocap database in which movements have been
annotated using a linguistic model. Several tech-
niques are used to build new signs and to mod-
ify signs regarding the context. These processes
are currently limited to phenomena involving the
hand location and handshape (Naert, 2020).

• Paula: The DePaul University signing avatar
project has been designed first for American Sign
Language but is now being used for various SLs
(McDonald et al., 2016). Initially designed to sup-
port professional animator’s work by including a
number of automation of current processes for the
generation of content in SL, it is based on hand-
crafted animations. It relies on a multitrack ani-
mation engine, allowing for flexible and accurate
synchronisation between the various parts of the
body to be animated. Several procedural tools al-
low to increase naturalness, to modify or adapt
signs to the context, or to create new ones, includ-
ing classifiers, thanks to a formal linguistic repre-
sentation of SL called AZee (McDonald and Fil-
hol, 2021).

The approach we present here, used in the Rosetta
project, is based on the use of gold standard motion
capture for the constitution of a database of LSF ex-
tracts, AZee as the representation that drives the gener-
ation of the final animation, and on an edition approach,
combining concatenation and procedural techniques.

First of all, we briefly present the corpus produced
within the framework of this project.

3. Motion Capture Corpus
In our project we used the first task of the Rosetta-
LSF corpus (Dauriac, 2022), downloadable from Or-
tolang3. This consists in richly annotated LSF trans-
lations of 194 news in French which are between
three and 35 words in length, for instance: “L’Everest
menacé de réchauffement climatique” (Everest threat-
ened by global warming). More details on this corpus
can be found in Bertin-Lemée et al. (2022a). After the
motion capture, a 3D avatar with the same body pro-
portions as the signer was created from the marker set.
The avatar animations were then implemented into a
3D player to produce a video for each acquisition (see
fig. 1), allowing to use an annotation software to anno-
tate the SL content.
While AZee describes the structure and content of the
SL utterance, the annotation scheme was designed to
provide descriptions at the sign level. The annotations
specify articulatory constraints and temporal informa-
tion relevant for the generation process. Two tracks
were used to annotate manual activity of right and left
arms and hands. Annotation was carried out in a clas-
sical way, by segmenting and annotating manual units,
but was not limited to assigning a simple gloss to them
(IdGloss attribute). We added the different constraints
to be applied on these units for any context of use, so as
to inform the generation process about the possibilities
or needs for modification in a new linguistic context.
For each segment, on each track, four attributes have
been specifically defined to help the generation pro-

3https://www.ortolang.fr/market/
corpora/rosetta-lsf

Figure 1: Avatar rendering
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Figure 2: Example of annotation using ANVIL (Kipp, 2014)

cess:

• UnitType: This attribute allows to distinguish
three categories of unit according to the number
of hands involved and the nature of the relation-
ship between the hands. It may have four val-
ues: monomanual (unit performed with one hand,
this is the default value), bimanualequal (unit per-
formed with both hands where there is no domi-
nance of one hand over the other), bimanualdom-
inant (unit performed with both hands for which
there is a relationship of dominance of one hand
over the other), and unknown (in case of doubt).

• ArticulatoryUpTo: This attribute identifies the ar-
ticulatory constraints of the unit for the consid-
ered side. The aim is to indicate to the generation
process the necessary and sufficient constraints,
thus leaving the process free to modify the bend-
ing of certain joints if needed. This concerns the
local constraints of all articulatory segments from
the fingers to the shoulder. It is therefore more
precise than what is usually called “handshape”.
This attribute may have six values: no (uncon-
strained posture), fingers (all the fingers are con-
strained and not the whole hand), wrist (the whole
hand is constrained and not the forearm), elbow
(the hand and forearm are constrained and not the
arm), other (other cases to be detailed in the com-
ments), and unknown (in case of doubt). No more
indication is given (handshape, orientation and lo-
cation), as this is directly retrievable from the mo-
cap data.

• InternalDependency: This attribute describes the
constraints between the hand and other parts of
the body. The objective is to indicate the nec-
essary and sufficient constraints to satisfy when

modifications are applied to certain articulators
(e.g. moving a hand, rotating the head, etc.). It
may have six values: no (no constraints, default
value), otherhand (constraint with respect to the
other hand), head (constraint with respect to the
head), body (constraint with respect to the torso),
other (constraint with respect to another part of the
body, to be specified in the comments), and un-
known (in case of doubt).

• ExternalDependency: This attribute indicates the
possibility or existence of constraints of the hand
with respect to the signing space. The aim is to in-
dicate if the articulation depends on a spatial con-
text (e.g. modification of hand orientation or loca-
tion, movement amplitude), so that the generation
can be adapted to the spatial context. The possi-
ble values are notapplicable (for a sign that cannot
be modified), canonical (when it is not modified),
non canonical (when modified), and unknown (in
case of doubt).

The fig. 2 shows an example of annotation for the sign
“GROUPE” (GROUP) on the Right track: The Domi-
nant attribute value is true (the signer is right-handed),
the sign type is bimanualequal (no dominance of one
hand over the other), and articulatory constraints up to
the wrist (no constraints on other segments on the right
side), with an otherhand internal dependency of one
hand to the other, and an noncanonical external depen-
dency as it is relocated.

To date, all 194 titles in task 1 have been annotated.
This corpus was used to generate new utterances. The
principles used to create these new animations are de-
scribed below.
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4. Generation Methodology
As for the Paula project, the description of the utter-
ance to be generated is given by an AZee description.
AZee is a formal approach to SL discourse representa-
tion (Hadjadj et al., 2018; Challant and Filhol, 2022).
It allows to define production rules that associate forms
to be articulated (to generate an animation in SL) and
identified meaning. By combining them, one builds
tree-structured expressions that generate signed utter-
ances. Each node of the expression hierarchy therefore
represents a portion of the utterance by itself, with the
root node by definition covering the entire discourse.
A “%t” pragma is appended on the AZee source line
of nodes, followed by the corresponding text and the
video frame numbers identifying the beginning and the
end of aligned segment (see fig. 1, top right, second
line: 7713), as illustrated in fig. 3. In this example,
three nodes are defined: the first one is “ont vendu leur
vaisselle” (sold their tableware) from frames 1739 to
1967, and it includes 2 sub-nodes: “vaisselle” (table-
ware) from frames 1767 to 1851, and “vendu” (sold)
from frames 1855 to 1967. Each node with a “%t” is
thus associated with a segment of mocap file forming
an animation block, which we will call AZee block in
the following. The smallest AZee block that can be
found in the corpus is at the level of the sign.

Figure 3: Excerpt from an AZee discourse expression.

Using our corpus, composed of the mocap files, associ-
ated annotations and AZee descriptions, we are able to
generate a new sentence, by collecting blocks of mocap
data, concatenating, and modifying them when needed,
with the approach summarized in fig. 4.
The general principle of the smart blending methodol-
ogy we designed in the Rosetta project is based on the
fact that motion is managed synchronously over sev-
eral animation tracks. Each track corresponds to a set
of anatomical parts representing effectors such as the
right arm, left arm, trunk, head, facial expressions, eye
gaze, and the rest of the body. Thus, using a non linear
animation blending tool on this hierarchical skeleton,
it becomes then possible to assemble several blocs to
generate new sign language sentences while keeping a
multi-track approach. This is the main particularity of
our proposed approach.

A new sentence to be generated is described within an
AZee file: each necessary AZee block is extracted from
the database, then, there are two blending cases:

• either a %fallback AZee block is mentioned,
meaning that no higher-level block have been
found to make the link between one sub-block and
another (“Fallback” box fig. 4).

• Or a sub-block is replaced inside an AZee block
(“Replacement” box fig. 4).

For each case, we have designed one blending method-
ology which corresponds to the two necessary opera-
tions for the creation of the new utterance.
In the first case, the fallback blending, one wants to
transition from the end of one block to the beginning
of the second one. As no information is known on
how to put these two pieces together in a seamless se-
quence, this transition can occur simultaneously on all
tracks (including facial expression, eye gaze, etc.) but
require some precaution on the duration of such tran-
sition. In the corpus, the main end-effectors with the
highest dynamics were found to be the wrists and the
head. To compute the time allowed for transition be-
tween two blocks, i.e. the blending time, 3D position
in the global 3D frame of these end-effectors have been
used. To ensure the bio-realistic dynamics of the tran-
sition and predict the necessary time window, a simple
proportional calculation have been used on the distance
covered by each end-effector (wrist and head) in high
dynamic movements between annotated AZee blocks
from the corpora. The maximum of the predicted time
windows for the three end-effectors has been used.
In the second case, the replacement blending, one
wants to change an AZee sub-block inside an AZee
block. In the simplest case, one wants to change one
sign in a block, a city name for example. In many cases,
animation from the arms have to be replaced while the
rest of the body must be maintained to preserve the
AZee block structure. This replacement may raise sev-
eral problems:

• The block to be replaced and the one to be inserted
don’t have the same duration.

• The position of each segment in the global 3D
frame are not the same between the replaced and
inserted blocks, requiring a blending at the begin-
ning and end.

• The inserted block may not have the same number
of tracks as the replaced one.

For the duration offset between replaced and inserted
blocks, it has been chosen to keep the inserted block
duration. This means that each track where nothing is
replaced (head and eye gaze tracks for example) has to
be stretched or squeezed to match the inserted block
duration. This choice has been made as the majority
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Figure 4: Smart Blending generation approach in Rosetta

of the inserted blocks were longer in duration than the
replaced ones.
Blending time between the previous AZee sub-block
and the next AZee sub-block is maintained on the re-
placed tracks.
For track replacements, for example if one takes the
smallest AZee sub-block, i.e. a sign, it can be mono-
manual or bi-manual. When replacing a bimanual sign
with a monomanual one, the non dominant arm track
needs to be “emptied” and the monomanual animation
of the non dominant arm is not used as it is not mean-
ingful. Between the end of the previous AZee sub-
block and the replaced sub-block end, the animation
on the non dominant arm track is deleted and a blend
is performed between the end of the sub-block and the
beginning of the next AZee sub-block. When replacing
a monomanual sign with a bimanual one, the non dom-
inant arm track is replaced like the dominant one with
the inserted sub-block. The same principle was applied
to bigger AZee sub-blocks and other track conflicts by
searching through the corpora annotations on the artic-
ulatory constraints (UnitType and InternalDependency
Attributes).
At the end of the procedure, a video of the newly gener-
ated sentence has been created with a rendering engine
(Unity4).
The approach aims at minimizing the edition of
recorded movements to leverage the fine-grained pre-
cision of motion capture. For Fallback, motion edition
only occurs during blending on all tracks. For Replace-
ment, the methodology focused on the two arm tracks
and their dependencies with other articulatory tracks.
No edition was made to modify originally directional

4https://unity.com/

signs, nor on facial expressions as they were not anno-
tated.

5. Tests and Discussion
In order to test the whole translation system from text
to SL via the animation of a virtual signer, a testset
was built by creating new sentences mixing segments
from different newstitles of our corpus. 15 sentences
were created and we retained the AZee translation of
seven of them to test the functionality of our genera-
tion system. For example, we got the AZee description
of the following sentence: “Alsace : de grands chefs
ont vendu leur vaisselle pour les plus modestes dans la
banlieue de Gerstheim.” (Alsace: top chefs sold their
tableware for households in the lowest income group in
the suburbs of Gerstheim.).
The corresponding animation was generated using mo-
cap blocks extracted from the LSF translations of the
following three sentences present in the corpus:

• “Samedi 30 et dimanche 31 mars, de grands chefs
ont vendu leur vaisselle en Alsace, à Gerstheim.
(On Saturday 30 and Sunday 31 March, top chefs
sold their tableware in Alsace, in Gerstheim.)

• “Moins de TVA pour les plus modestes: ” Il ne
faut pas traiter ça par le mépris ”,lance Xavier
Bertrand au gouvernement” (Less VAT for house-
holds in the lowest income group: “We must not
treat this with contempt”, says Xavier Bertrand
Bertrand to the government.)

• “Le superéthanol n’est proposé que dans 1 000
stations-service en France, comme ici dans la
banlieue de Bordeaux” (Superethanol is only

26

https://unity.com/


available at 1,000 service stations in France, like
here in the suburbs of Bordeaux.)

From sentence animations, six AZee blocks have been
extracted corresponding to “Alsace”, “Gerstheim”,
“grands chefs”, “ont vendu leur vaisselle”, “pour les
plus modestes” and “comme ici dans la banlieue de
Bordeaux”. Fallbacks where used to associate all the
AZee blocks, apart from “comme ici dans la ban-
lieue de Bordeaux” where “Bordeaux” needed to be re-
placed with “Gerstheim” inside the block. The anno-
tation indicated that “Gerstheim” AZee block has con-
straints: both arms are used (UnitType attribute). The
fallback methodology allowed to compute a blending
time between each AZee block. They lied between
0.19 and 0.49 seconds. The duration of “Bordeaux”
AZee block was 0.24 seconds whereas the “Gers-
theim” one took 3.48 seconds (because this proper
name is fingerspelled). “Bordeaux” AZee block has
been slowed down to match “Gerstheim” AZee block
duration. Then, on the right and left arm tracks, the an-
imation of “Bordeaux” AZee block has been replaced
with “Gerstheim” one. In “comme ici dans la banlieue
de Bordeaux”, the AZee block before “Bordeaux” was
“là” and the one afterwards was “banlieue”. A blend
from the end of “là” AZee block and the beginning
of “Gerstheim” AZee block as well as between “Gers-
theim” AZee block end and “banlieue” AZee block be-
ginning was applied according to the given annotation
duration.
A video showing the result of the whole system (trans-
lation and generation) for the seven sentences can be
seen on the project website5. The second sentence of
the video is the one described here above.
Although a real evaluation could not be carried out on
such a limited number of examples, we were able to
show them to the advisory board of the project which
gave us some qualitative feedback. There were few
comments on the multi-track methodology itself, with
remarks focusing more on possible translation prob-
lems, contextualisation problems with the image added
to the left of the avatar, or signing speed problems,
as the person we recorded signs quickly. A few neg-
ative points were noted related to the appearance of
the avatar (we only had a very simplified avatar in this
project), the presence of a very local sign and therefore
not necessarily known by everyone (the sign represent-
ing the Parisian urban transport company: RATP), and
an error in the choice of a variant for the sign “là”,
probably due to a lack of precision during the anno-
tation process. The positive points that were identified
concern the fluidity of the animation. A comparison
between an animation generated with a classical con-
catenation method and the method presented here was
shown to the advisory board members, who preferred

5https://rosettaccess.fr/index.php/
rosettas-final-demonstrator/ - Note that the
subtitles were also automatically produced, and therefore
may contain errors compared to the spoken French version.

the rendering of the second one. There was no differ-
ence in the perception of smoothness between the ani-
mations with our method and the animations generated
by simply replaying the mocap.
Of course, there are still a number of aspects to be ad-
dressed. For example, we have not yet annotated the
non-manual elements (mouthing, facial expressions,
eye gaze) in the corpus. Once done, there will be no
particular difficulty in taking them into account dur-
ing the animation process because the methodology al-
ready allows for this. Another important aspect con-
cerns the management of the signing space. The an-
notation already provides an indication of whether a
sign is in its canonical form or not regarding the spa-
tial context (ExternalDependency attribute). Several
strategies can be explored. For example, for a given
sign performed in a canonical way, one could gener-
ate a non canonical relocated form by combining the
handshape(s) with the location of another sign, while
respecting the possible internal dependencies.

6. Conclusion and Prospects
We have presented here a new system of automatic
generation from AZee (a hierarchical representation of
SL) to French Sign Language (LSF), by means of the
animation of an avatar, based on smart blending ap-
proaches and the use of an aligned corpus of AZee de-
scriptions and mocap data, the Rosetta-LSF corpus. An
implementation of the system has been made and has
allowed to test its functioning on some examples, thus
providing a proof of concept.
The capacities of this system and the size of the corpus
still need to be extended before real evaluations can be
carried out. But we can already stress that the evalua-
tion of such a system will not be easy.
Metrics for evaluating the quality of translations, such
as the ones proposed in the European QT21 project6,
provide a scoring grid for the types of errors produced
by the translation system, which makes it possible to
highlight the shortcomings of the systems and sub-
sequently prioritise the areas for improvement. This
project has proposed Multidimensional Quality Met-
rics (MQM), which is a framework for describing and
defining custom translation quality metrics. It provides
a flexible vocabulary of quality issue types, a mecha-
nism for applying them to generate quality scores, and
mappings to other metrics.
Some of the error categories, linked to the translation
process itself, are called “Accuracy”. There is an ac-
curacy error when the target does not accurately reflect
the source message. Our generation system does not
handle the translation process, which role is to translate
between French text into AZee description, and so we
cannot use this type of error to analyse the quality of
the animation. Another category called “Fluency” al-
lows us to evaluate the quality of an utterance, whether
it is the result of a translation or not. These errors can

6https://www.qt21.eu/
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be related to grammar, spelling, typography, inconsis-
tency, opacity. In our case, the target is not a text, but
an avatar animation, thus some of these categories can-
not be used at all, and other should be adapted. For
example, it is not necessarily easy to define the types
of grammatical errors for SL. Anyway, it would be in-
teresting to study if this kind of evaluation could be
adapted to our system. To these categories, we will
certainly have to add a category related to “Body Flu-
ency”, allowing to evaluate all the aspects linked to the
naturalness of the movement and its bio-realistic as-
pect, making a distinction between linguistic fluency
and body fluency.
The establishment of a robust and comprehensive eval-
uation protocol is clearly a subject of study in its own
that needs to be pursued in the near future.
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Abstract
In this paper, we investigate the capability of convolutional neural networks to recognize in sign language video frames the six
basic Ekman facial expressions for ’fear’, ’disgust’, ’surprise’, ’sadness’, ’happiness’ and ’anger’ along with the ’neutral’ class.
Given the limited amount of annotated facial expression data for the sign language domain, we started from a model pre-trained
on general-purpose facial expression datasets and we applied various machine learning techniques such as fine-tuning,
data augmentation, class balancing, as well as image preprocessing to reach a better accuracy. The models were evaluated
using K-fold cross-validation to get more accurate conclusions. Through our experiments we demonstrate that fine-tuning a
pre-trained model along with data augmentation by horizontally flipping images and image normalization, helps in providing
the best accuracy on the sign language dataset. The best setting achieves satisfactory classification accuracy, comparable to
state-of-the-art systems in generic facial expression recognition. Experiments were performed using different combinations of
the above-mentioned techniques based on two different architectures, namely MobileNet and EfficientNet, and is deemed that
both architectures seem equally suitable for the purpose of fine-tuning, whereas class balancing is discouraged.

Keywords: facial expression recognition, sign language

1. Introduction

While people are speaking, their facial expressions
convey emotional information. Sign languages are
visual languages that relies on movements of hands,
body, as well as facial muscles. Thus, facial expres-
sions are already involved in conveying the meaning of
a message. To what extent, and how, facial expressions
of signers are also involved in the communication of
emotions is still an open and under-investigated topic.
This work consists of a focused experimentation which
is a preliminary step in the broader research on SL
recognition, where we try to understand if a computer
can recognize facial expressions from a signer as good
as it can already do for the facial expressions of speak-
ing subjects. Since this is one of the first experiments
on this topic, and given the lack of more descriptive
datasets of appropriate size, we hypothesize on the
applicability of deep learning and proceed with spe-
cific assumptions: we are based on a shallow labelling
of only 6 emotions, we don’t consider linguistic con-
tent/markers and we focus on the face, ignoring spatial
and manual elements.
Facial expressions are culture-specific, due to which
most positive emotions are communicated with culture-
specific signals, while the negative emotions can be
recognized across cultures (Sauter et al., 2010). In this
work, we focus on German sign language.
Deep convolutional neural networks (CNN), the state-
of-the-art in image recognition, require a large amount
of data and a limited amount of facial expressions data

is available specifically for the German SL, making it
difficult to train a Facial Expression Recognition (FER)
model from scratch. Therefore, this work uses fine-
tuning of pre-trained models that showed a state-of-
the-art accuracy on common facial expression datasets.
The pre-trained models used during the experiments
follow a lightweight architecture which makes it eas-
ier to fine-tune and still provides high accuracy.
For this study, it was hypothesized that fine-tuning a
pre-trained FER model (trained on a very large im-
age dataset) helps improve the prediction rate on a SL
dataset, annotated with the six basic emotions of ’sad’,
’surprise’, ’fear’, ’angry’, ’disgust’, and ’happy’ along
with the ’neutral’ and ’none’ labels. Apart from fine-
tuning, the experiments include various machine learn-
ing techniques such as data augmentation, image nor-
malization and class balancing to improve the perfor-
mance of the fine-tuned model.
The rest of the paper is organized as follows. A sur-
vey of related literature is given in Section 2. Section
3 includes a description of the methods used. Section
4 contains details about the experiments. Section 5
presents the results of these experiments followed by
Section 6, which concludes the paper.

2. Related Work
As discussed in the previous section, to tackle the com-
plexity of FER, several machine learning (ML) tech-
niques have been used including both conventional as
well as deep-learning-based approaches. A review of
FER in the past years, including a comparison of sev-
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eral techniques based on certain evaluation metrics, is
provided in Ko (2018).
Deep-learning-based approaches such as Convolu-
tional Neural Networks (CNN) and Recurrent Neural
Networks (RNN) can perform end-to-end feature ex-
traction, classification as well as recognition tasks with
high accuracy (Kim et al., 2019; Chu et al., 2017).
However, they need large datasets, computing power,
amounts of memory and are time-consuming for both
the training and testing phases (Ko, 2018). In the re-
minder of this section, we introduce related work in the
detection of facial expressions using CNNs and how to
improve their performance when data is scarce.

2.1. Existing Deep-Learning-Based Models
State-of-the-art techniques involving deep-learning-
based approaches used for FER are presented below.
Savchenko (2021) presented a simple training pipeline
where a model can provide state-of-the-art accuracy
using lightweight neural networks in FER trained on
images and videos of the AffectNet data-set (Molla-
hosseini et al., 2019). The high performance, reduced
speed and model size of this model is the result of pre-
training of facial feature extractor for face identifica-
tion, which was done by a very large VGGFace2 (Gen-
naro and Vairo, 2019) data-set. The features extracted
by this network can be used with more complex classi-
fiers, and therefore can be explored for FER in the case
of SL.
Frame Attention Networks (FAN) can be used to auto-
matically discriminate frames in the network by tak-
ing a videos with various image frames as its input
and produce a fixed-dimension feature representation
which can be then used for FER through a CNN (Meng
et al., 2019). This framework provided a high perfor-
mance on the CK+ (Lucey et al., 2010) and AFEW 8.0
(Kossaifi et al., 2017) datasets (both including seven
emotion labels).
Along with deep-learning-based models, models pre-
trained with Local Binary Patterns (LBP) to extract fa-
cial features and Support Vector Machines (SVM) to
classify them were also recently used, although their
accuracy on some datasets has been lower than that
with a CNN (Ravi et al., 2020).

2.2. Improving CNNs
Data augmentation techniques (O’Mahony et al.,
2019), which include geometric transformations such
as flipping the training images horizontally, as well
as cropping them randomly to increase the training
data, are used for improving the performance of a
CNN (Savchenko, 2021). In most CV tasks involv-
ing image classification, flipping the images horizon-
tally before training is sufficient and helps in improv-
ing the overall performance of the CNN (Zheng et al.,
2020). Apart from data augmentation, using data pre-
processing techniques such as resizing, face detection,
cropping, adding noise, data normalization, histogram

equalization, etc., also helps in boosting the perfor-
mance of a CNN trained for recognizing emotions from
facial images (Pitaloka et al., 2017).
CNN architectures such as EfficientNet (B0 to B7),
MobileNet, ResNet, etc., help in reducing the calcula-
tions required making them more lightweight and faster
(Tan and Le, 2019; Tan and Le, 2021). Using several
optimizers instead of just one also improves the perfor-
mance and generalization of a CNN (Taqi et al., 2018).
Along with the commonly used Adam optimizer, using
an additional optimizer such as the Sharpness Aware
Minimization (SAM) and Stochastic Gradient Descent
(SGD) for the last few epochs boosts the overall per-
formance by providing a better coverage (Savchenko,
2021). Other important parameters that could help
boost the performance of a CNN are: appropriate learn-
ing rates, choice of the activation function, balanc-
ing the imbalanced classes, etc. (Kandel and Castelli,
2020).
Last but not least, transfer learning, i.e., using the pa-
rameters learned for a problem as starting values (in-
stead of random values) to train on a new dataset,
helps in reducing training time (Akhand et al., 2021;
O’Mahony et al., 2019).

3. Methods
This section describes the methods used in the experi-
ments. The methods explained are chosen due to the
state-of-the-art accuracy they provided in Facial Ex-
pression Recognition models presented by Savchenko
(2021).

3.1. Image Preprocessing
Image preprocessing plays a vital role in achieving
state-of-the-art results in a CNN, as the raw data does
not always produce good accuracy. The improvement
in accuracy of a CNN is dependent on the image
preprocessing technique being used along with its
network architecture. This work uses two image
preprocessing techniques: face cropping and image
normalization.

Face Cropping is a technique used in CV to extract the
area of the image which is required for image recogni-
tion or classification tasks. In the case of FER, faces
are cropped from the image dataset to remove the un-
necessary information from the images and only keep
the pixels that constitute the facial information. To
crop faces from an image, Savchenko (2021) has pro-
posed the use of a Multi-task Cascaded Convolutional
Network (MTCNN), a framework used for face detec-
tion and alignment. MTCNN performs three tasks:
face classification, bounding box regression, and facial
landmark localization (Xiang and Zhu, 2017).
The face is cropped from an image in the following
steps: detect and extract the face mesh from images,
extract the face bounds, and then crop the images
(Emami and Suciu, 2012). Detection and recognition
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of faces is done using a Haar Cascade (Soo, 2014),
an object detection method used to locate an object
of interest in images. A Haar-like feature considers
neighboring rectangular regions, sums up the pixel
intensities in each region, and calculates the difference
between these sums, which helps to categorize the
image into subsections. We use the implementation of
OpenCV, which has shown good performance for face
detection (Boyko et al., 2018).

Image Normalization. Studies have shown that for
image classification as well as recognition tasks image
normalization has helped in enhancing the performance
of the CNN (Savchenko, 2021; Koo and Cha, 2017;
Heidari et al., 2020).
Image normalization is a technique where the mean
along each of the features (dimensions of images) from
the training sample is calculated and is subtracted from
every image. This results in normalizing the brightness
of the whole training set concerning each dimension as
shown in the equation below (Pal and Sudeep, 2016):

X ′ = X − µ (1)

where X ′ is the normalized data, X represents the orig-
inal data, and µ is the mean vector across all features
of X.

3.2. CNN Architectures
CNNs are artificial neural networks that play a signif-
icant role in Natural Language Processing (NLP), CV
tasks such as image detection, recognition, etc. (Al-
bawi et al., 2017). Several CNN architectures have
been developed to solve real-world problems. In this
work we use the MobileNet and EfficientNet architec-
tures which are explained below.

The MobileNet Architecture - MobileNet-v1 The
MobileNet architecture (Savchenko, 2021) uses depth-
wise separable convolutions followed by pointwise
convolutions where each input channel is filtered sepa-
rately. This results in a drastic reduction in model size
and cost compared to standard convolutions. In com-
parison to other more efficient architectures, the accu-
racy obtained with MobileNet reduces as the number
of parameters is increased in the model.
The MobileNet v1 architecture has 28 layers wherein
each layer is followed by batch normalization and
a Rectified Linear Unit (ReLU) (Ioffe and Szegedy,
2015). The architecture starts with a regular 3×3 con-
volution, followed by 13 depthwise separable convo-
lutional blocks and pointwise convolutions (Michele et
al., 2019). The depthwise convolution in MobileNet
is the channel-wise spatial convolution (Howard et al.,
2017). Whereas the pointwise convolution is 1x1 con-
volution which is used to change the dimension. These
depthwise and pointwise convolutions result in a reduc-
tion in model size and computation cost by about 8 to
9 times as compared to the usage of standard convolu-
tions (Sinha and El-Sharkawy, 2019).

The MobileNet v1 architecture has been used for a va-
riety of object detection and image recognition appli-
cations such as palm print recognition (Michele et al.,
2019), handwriting character recognition (Ghosh et al.,
2020), FER (Savchenko, 2021), and more.

The EfficientNet Architecture - EfficientNet-B0
EfficientNet (Tan and Le, 2019) is another neural
network architecture that consists of 8 model types,
from B0 to B7. The accuracy and the number of model
parameters increase with the model number. Efficient-
Net uses an activation function called Swish instead
of the Rectifier Linear Unit (ReLU) of the MobileNet
architecture. The main building block for EfficientNet
is the inverted bottleneck MBConv, which consists
of a layer that first expands and then compresses the
channel (Tan and Le, 2019; Sandler et al., 2018). This
architecture has in-depth separable convolutions that
reduce the calculation by almost k2 factor compared
to traditional layers, where k is the kernel size which
denotes the width and height of the 2D convolution
window (Sandler et al., 2018). EfficientNet has been
recently used for several applications such as plant leaf
disease classification (Atila et al., 2021) and automated
diagnosis of COVID-19 (Marques et al., 2020).

The EfficientNet architecture is more efficient than Mo-
bileNet and has provided state-of-the-art accuracy on
several transfer learning datasets as it is easily scalable
(Tan and Le, 2019). On the one hand, when used for
image classification problems, the EfficientNet archi-
tecture scaled up the image size leading to large mem-
ory consumption compared to MobileNet. On the other
hand, the MobileNet architecture is more lightweight
and it works efficiently for a small number of parame-
ters.

3.3. Training
Fine-tuning is the process of initializing a pre-
trained classification network and then training it fur-
ther for a different task (Radenović et al., 2018). It
is applied when there is the need to fit a low re-
source dataset starting from models pre-trained on big-
ger datasets. One of the motivations for using fine-
tuning instead of fully training a model from scratch
is that the low-level basic features are common for
most images and hence an already trained (pre-trained)
model can be useful for classification by just fine-
tuning the high-level features.
The proposed FER technique (Akhand et al., 2021;
Ngo and Yoon, 2020; Savchenko, 2021) is to use a
CNN model pre-trained for image classification, and
fine-tune it by replacing the upper layers with the dense
layer(s) to make it compatible with the target dataset.
These new dense layers are first tuned to the target
dataset, followed by training the whole CNN with this
same dataset.

Optimization in Neural Networks The aim of a
CNN is to learn from the given data by minimizing the
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loss. The loss function is reduced with the help of an
optimization algorithm which is a numerical function
performed on the model parameters. A gradient de-
scent algorithm is commonly used in neural networks
for optimization as it minimizes the objective function
by updating the parameters in the reverse direction of
the gradient of the objective function. Here we briefly
explain the three optimizers used. In addition to the
most popular optimizers (such as Adam and Stocastic
Gradient Descent), Sharpness Aware Minimization
(SAM) is an optimization technique that seeks param-
eters that lie in neighborhoods having uniformly low
loss leading to sub-optimal model quality (Foret et al.,
2020). SAM is shown to improve the generalizabil-
ity of the model across several datasets and to provide
robustness to noisy labels and helped achieve a better
performance when applied on fine-tuned EfficientNet
models pre-trained on ImageNet. Using SAM for opti-
mizing the categorical cross-entropy loss for the last
two epochs also provided a state-of-the-art accuracy
on fine-tuned EfficientNet models pre-trained on Im-
ageNet (Savchenko, 2021).

Data Augmentation Flipping data horizontally be-
fore feeding it to the CNN has been shown to be not
only safe but also one of the most common and effec-
tive data augmentation technique (Shorten and Khosh-
goftaar, 2019). Other augmentation methods, such as
rotation and noise disturbance are not used here, be-
cause as noted by Zheng et al. (2020), they could have
a large impact on the image structure if the images are
small in size, resulting in poor performance.

Class Weights The datasets available for FER do not
always consist of balanced classes as they have a dif-
ferent number of samples in each class. This can result
in incorrect evaluation and a need for balancing these
classes to achieve uniform results across classes. An
algorithm-based technique used to balance the classes
is called class weighting where different weights are
used for every class depending on the number of train-
ing samples present in a class. As explained by Johnson
and Khoshgoftaar (2019), class weights for each class
can be calculated as follows:

cw = maxi|Ci|mini|Ci|

Here, cw is the class weight for a minority class. Con-
sider that the largest class in the dataset has 100 sam-
ples and the smallest class has 10 samples. If the class
weight for the majority class is set to 1 then that for the
minority class will be set to 10.

4. Experimental Setup
The goal of our experiments is to maximize the classi-
fication accuracy of the facial expressions. As baseline
and a basic model for fine-tuning we used the models
by Savchenko (2021), trained on generic facial expres-
sion data, as they provided a state-of-the-art accuracy
with the MobileNet and EfficientNet architectures. In

Figure 1: Images from 7 classes in the FePh dataset

our experiments, the baseline model is first fine-tuned
to a dataset of facial expressions of signers. Then, var-
ious techniques such as data augmentation, image pre-
processing, as well as class weight balancing were ap-
plied one after the other in different combinations.
For every configuration we measure the overall accu-
racy, the sensitivity per class, as well as the average
sensitivity. The overall accuracy is the ratio of the num-
ber of correct predictions to all the predictions, whereas
the sensitivity per class gives the ratio of the correct
predictions of a class over its number of samples.

4.1. Sign Language Dataset
The fine-tuning was targeted on the Facial Expression
Phoenix (FePh) dataset (Alaghband et al., 2021), an an-
notated sequenced facial expression dataset in the con-
text of the German SL. It comprises over 3,000 facial
images extracted from the daily news and weather fore-
cast of the public TV-station PHOENIX. The data was
annotated with the six basic Ekman (1999) emotions of
‘anger’, ‘disgust’, ‘fear’, ‘sad’, ‘happy’, and ‘surprise’
along with the ‘neutral’ class (see figure 1). An adi-
tional ‘none of the above’ class exists for images where
no label could be assigned. Known limitations of this
dataset are the size of the dataset, the existence of only
6 shallow labels, the lack of linguistic/content markers
and the lack of spatial and manual elements. Since to
the best of our knowledge this was the only available
dataset suitable for this task, we proceed with using it
despite the mentioned concerns in order to confirm our
technical hypothesis.

4.2. Data Preparation
The FePh dataset went under three pre-processing
steps. The first step consisted of removing frames
of two types. The first type is the frames labeled as
‘none of the above’, which did not fall neither under
any of the 6 Ekman labels nor ‘neutral’. The second
type of removed frames were asociated with more than
one emotion, and their inclusion would change the ML
task to a multi-label classification problem (Huang et
al., 2019; Durand et al., 2019). Removing these frames
resulted into 2,531 facial images annotated with the 6
Ekman emotions plus ‘neutral’.
The second preprocessing step consists of applying a

4

32



emotion data distribution

Anger 18.30%
Disgust 7.72%
Fear 12.43%
Happy 7.92%
Neutral 7.58%
Sad 14.36%
Surprise 31.85%

Table 1: Labels distribution in the training set.

face cropping (Section 3.1) to the images before feed-
ing them to the CNN. This was needed because the im-
ages in the FePh dataset include some parts of the upper
body. This conforms with the pre-processing applied to
the pre-trained models. The data distribution across the
different emotion classes in the training set is shown in
table 1.
Finally, the FePh sign-language dataset was randomly
split in a training (80%, used for fine-tuning the pre-
trained models) and a test set (20%, used for evalua-
tion). Images belonging to the same video sequence
were kept in the same split. This phase allowed trying
10 configurations on top of the baselines.
The small size of the dataset raises questions on
whether the results may generalize in a bigger dataset.
For this purpose, we applied a 5-fold cross-validation
test to the two baselines models and to their 4 most
promising varied configurations. Across the 5 folds,
the average accuracy and sensitivity per class were cal-
culated together with their standard deviation.

4.3. Pre-trained Models for Facial
Expression Recognition (FER)

Here we provide details about the pre-trained models
available for FER, which aim to recognize the seven ba-
sic Ekman emotions on generic datasets. As explained,
these pre-trained models were fine-tuned on the SL-
specific dataset and several techniques were added. To
get the state-of-the-art results, the models presented by
Savchenko (2021), which provide a lightweight CNN
for the recognition of facial emotions based on two dif-
ferent architectures, were chosen as they achieve state-
of-the-art accuracy.
The two models that were further used in the experi-
ments are based on two CNN architectures: (1) Mo-
bileNet and (2) EfficientNet (Section 3.2). Both pre-
trained models were trained on the AffectNet dataset
(Mollahosseini et al., 2017) which includes almost
440k annotated images, having before been pre-trained
on the much larger VGGFace2 dataset (Gennaro and
Vairo, 2019).
The abbreviations used for the techniques used during
the experiments are shown in table 2. All of the ex-
periment configurations are summarized in table 3 and
are detailed in the following two sections for the ex-
ploratory and the cross-validation phase, respectively.

abbr. technique

FT Fine-tuning
SGD Stochastic Gradient Descent optimizer
SAP Sharpness Aware Minimization
IP Image preprocessing
HF Horizontal flip
CW Class weights

Table 2: Abbreviations used for the techniques used
during the experiments

4.4. Exploratory Phase
This exploration consists of a combination between
pre-processing techniques and hyperparameters that
were tested on a single 20% FePh data split.

4.4.1. Experiments with MobileNet
No-FT: Baseline Pre-trained Model This experi-
ment was performed to check how the existing pre-
trained model performs when tested on the SL data.

FT: Simple Fine-tuning This configuration consists
of fine-tuning the pre-trained model with the 80% split
of the FePh. A simple fine-tuning approach was used
for the MobileNet architecture. In a CNN, the last layer
learns the high-level features, and hence the last few
layers are sufficient for transfer learning (Tajbakhsh et
al., 2016). The last layer of the pre-trained model was
first removed and a new dense layer was added to the
CNN and all the previous layers of the base net were
frozen to train just the last layer. This last layer was
then trained on the new dataset including images from
the SL (FePh) dataset for 3 epochs. Finally, all the pre-
vious frozen layers were unfrozen and the entire CNN
was trained on the FePh data for 7 more epochs. The
categorical cross-entropy loss was optimized by the
Adam optimizer with a learning rate equal to 0.001.

FT-SGD: Fine-tuning with Stochastic Gradient
Descent (SGD) In this configuration, following
Savchenko (2021), the baseline model was fine-tuned
with Adam optimizer for 5 epochs and SGD was used
for the last two epochs with learning rate of 0.0001.

FT-SGD + CW: Class Weights for an Imbalanced
Fine-tuning Set As explained (section 3.3), CNNs
may perform poorly because of an imbalance in the
fine-tuning data caused by a significant difference in
amount of data in a class compared to the others, re-
sulting in an insufficient representation of the minority
classes. To tackle this imbalance across classes, we as-
sign different class weights to each of the classes in
the training data. This results in increasing the loss
value for the classes that are insufficiently represented.
The data distribution across classes in the fine-tuning
dataset is shown in table 1.

FT-SGD + HF: Fine-tuning with Data Augmenta-
tion We horizontally flip images before feeding them
to the CNN, thus doubling the training data.
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architecture configurations description
exploratory c/v

MobileNet No-FT M0 Base model
FT Simple fine-tuning of base model with Adam optimizer
FT-SGD Fine-tuning of base model with Adam and SGD optimizers
FT-SGD + CW FT-SGD + Classes balanced with class weights
FT-SGD + HF FT-SGD + Training dataset augmented with images flipped horizontally
FT-SGD + IP FT-SGD + Images normalized before training
FT-SGD + IP + HF + CW M1 FT-SGD + Image normalization, horizontal flip and class weights
FT-SGD + IP + HF M2 FT-SGD + image normalization and horizontal flip

EficientNet No-FT E0 Base model
FT + SAM + HF + CW E1 Base model fine-tuned with SAM optimizer + horizontal flip + class weights
FT + SAM + HF E2 Base model fine-tuned with SAM optimizer + horizontal flip
FT-SGD + SAM + HF Base model fine-tuned with SAM and SGD optimizers + horizontal flip

Table 3: Configurations used for the experiments

FT-SGD + IP: Fine-tuning with Image Preprocess-
ing Along with fine-tuning, the images were normal-
ized using the preprocessing function in Keras, where
each color channel is zero-centered with respect to the
ImageNet dataset (Ketkar, 2017; Savchenko, 2021).

FT-SGD + IP + HF + CW This is a direct replica-
tion of the similar experiment performed by Savchenko
(2021), but by fine-tuning the pre-trained model with
the FePh fine-tuning dataset. Since it had provided a
state-of-the-art accuracy, this setting was tested to see if
the combined effects of fine-tuning with data augmen-
tation, image preprocessing, and class weights would
improve the accuracy also with the FePh dataset com-
pared to the previous settings.

FT-SGD + IP + HF Fine-tuning with data augmen-
tation and image preprocessing. Here, the experiment
was repeated with image preprocessing and horizontal
flipping but without class weights.

4.4.2. Experiments with EfficientNet
As discussed in Chapter 3, the EfficientNet architecture
provides better accuracy on ImageNet than MobileNet,
and is considered a powerful tool in CV (Wang and
Yu, 2021). Hence, the MobileNet experiments with the
higher accuracy were replicated for EfficientNet to al-
low comparison of the two architectures. Among the
EfficientNet variants, the EfficientNet-B0 architecture
was chosen, as its default input image size (224x224)
is the same as the size of the images in the dataset. Im-
age preprocessing (IP) was not considered for this ar-
chitecture as it was not suggested for the base models
of Savchenko (2021).

No-FT: Pre-trained Model The baseline Efficient-
Net configuration pre-trained on AffectNet data and
tested on the FePh test set.

FT + SAM + HF + CW: Fine-tuning with Sharp-
ness Aware Minimization, Data Augmentation, and
Class Weights This experiment is a replica of the
pre-trained model provided by Savchenko (2021), but
with additional fine-tuning on the FePh dataset. More-

over, this configuration uses the Sharpness Aware Min-
imization (SAM) optimizer (Foret et al., 2020). Ini-
tially, only the last layer is fine-tuned on FePh, for 3
epochs, with a learning rate of 0.001 while freezing all
layers in the base net. Finally, all the layers are trained
with the SAM optimizer with a learning rate of 0.0001
for 6 epochs as was proposed by Savchenko (2021).
This experiment has also used horizontal flip as data
augmentation technique and class weighting.

FT + SAM + HF: Fine-tuning with SAM and Data
Augmentation This configuration uses fine-tuning
with SAM along with horizontal flip. Class weighting
was removed to check its contribution.

FT-SGD + SAM + HF: Fine-tuning with SAM and
Data Augmentation and SGD This configuration
tests the results using Stochastic Gradient Descent as
optimizer while fine-tuning, because it was found to
give the best results with MobileNet.

4.5. Cross-validation Phase
The best performing configurations from the ex-
ploratory phase were further evaluated by performing
cross-validation (summarized in table 3 with their ab-
brevations shown in the ‘c/v’ column). Their descrip-
tion follows.

No-FT (M0 & E0) As a baseline, two pre-trained
models (one for MobileNet and one for EfficientNet)
presented by Savchenko (2021) were evaluated each on
the 5 test sets obtained after splitting the FePh data into
5 folds. The accuracy and sensitivity per class were
calculated and then the average and standard deviation
was calculated.
The MobileNet configurations chosen for the cross-
validation phase were:

FT-SGD + IP + HF + CW (M1) providing a state-of-
the-art accuracy on AffectNet (Savchenko, 2021) and

FT-SGD + IP + HF (M2) showing promising results
during the exploratory phase, despite the lack of class
weighting, so it was chosen for cross-validation.
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Cross-validation was also performed on the Efficient-
Net architecture with the respective configurations FT
+ SAM + HF + CW (E1) and FT + SAM + HF (E2),
which have been described in the previous section.

5. Results
This section showcases the results obtained from
experiments conducted with two CNN architectures
(MobileNet-v1, EfficientNet-B0) with several data pro-
cessing techniques in both the exploratory phase the
cross-validation phase. As evaluation metrics the
model accuracy, the sensitivity per class and the av-
erage sensitivity are given for every model. As base-
line we consider the result obtained from the experi-
ment conducted without fine-tuning, and the rest of the
experiments are compared against that.

5.1. Exploratory Phase: MobileNet-v1
As shown in table 4, fine-tuning improved the overall
accuracy for more than 13%, whereas there was an ad-
ditional small improvement when the model was opti-
mized with the Adam optimizer for the first few epochs
and with the SGD optimizer for the last 3 epochs. It can
be also seen that adding class weights alone reduced
the overall accuracy, but when class weights were com-
bined with image preprocessing and horizontal flip,
it provided the highest average sensitivity of 63.3%.
Data augmentation with horizontal flipping did not pro-
vide any improvement in the accuracy of the fine-tuned
model. Similarly, image normalization did not improve
the accuracy. However, when data augmentation was
combined with image normalization, the accuracy was
increased to 67% providing the best accuracy across all
the models trained.
The setting with the best overall accuracy (M0) and the
one with the best average sensitivity (M1) are chosen
to be further investigated in the cross-validation phase.

5.2. Exploratory Phase: EfficientNet-B0
Table 4 shows that the best accuracy was provided by
the configuration wich combines fine tuning with SAM
and horizontal flipping. Similar to the MobileNet-
v1 architecture, with class weighting from the base
model, the accuracy is 2.6% higher. The EfficientNet-
B0 models took 25% longer to fine-tune due to SAM as
the main optimizer, as compared to the MobileNet-v1
models which use Adam for the most epochs and SGD
for the last two epochs (section 3.2).

5.3. Cross-validation Phase
Table 5 shows the results obtained after averaging the
accuracies across 5 models trained while performing 5-
fold cross-validation, where the average sensitivity and
the sensitivity per class were also recorded in a simi-
lar way. Since these metrics are averaged on different
folds of training sets from the FePh dataset, they are
more suitable in drawing overall conclusions, as the
ones shown in the exploratory phase.

First, it can be observed that fine-tuning using the
best combination of techniques outperforms the model
with no fine-tuning (at least by 17%). This confirms
the main hypothesis that for sign-language FER, fine-
tuning a generic pre-trained model on a sign-language-
specific dataset helps to improve the performance on
this task. Additionally, it should be noted that the
achieved overall accuracy of 62.4-62.8% is compara-
ble to the state-of-the-art accuracy of the base models
in the generic FER tasks (Savchenko, 2021).
For MobileNet-v1, the configuration that significantly
gave the best accuracy was FT-SGD + IP + HF (M2).
By comparing this configuration with its variant lack-
ing class-weights, we can see that class-weights are
harmful in this setting.
For EfficientNet-B0, it was found that the configuration
FT + SAM + IP + HF (E2) gave the highest accuracy
(62.8%). The difference of this setting with the config-
uration including class weights is not significant in this
case, so one cannot say with confidence whether class
weights are improving or harming EfficientNet.
No specific conclusion can be drawn regarding the dif-
ferences between the MobileNet and EfficientNet ar-
chitectures both architectures seem equally suitable
for the purpose of fine-tuning. Nevertheless, one
should consider that EfficientNet took slightly longer
time to fine-tune, which might be an issue in future
works, if larger fine-tuning datasets are considered.
The results based on the average sensitivity as well as
the sensitivity per class vary a lot, e.g. one can see
that different classes seem to be predicted best with dif-
ferent configurations. Nevertheless, these small sensi-
tivity differences do not allow significant comparisons
due to the very large standard deviations, which are at-
tributed to the very small dataset. On the other side,
we can confirm that the settings that provide significant
accuracy improvements are still the optimal ones, since
they do not cause a significant deterioration of the class
and average sensitivities.
By comparing the 7 classes, we see that ‘fear’ has the
lowest sensitivity (29.2%), followed by ‘disgust’ and
‘neutral’. The best predicted class is ‘happy’ (82.7%)
followed by ‘surprise’.

6. Conclusion and Future Work
Through our experiments, we confirmed the hypothesis
that fine-tuning a neural network alreaddy pre-trained
to recognize facial expressions, togather with other the
preprocessing techniques and optimizers, improves the
model performance in classifying facial expressions on
a sign language dataset. The achieved accuracy is satis-
factorily high, as it is comparable to the state-of-the-art
accuracy of the base models in generic FER of prior
work. No significant difference was observed between
the best configurations of MobileNet and EfficientNet
architectures, but the training time for the EfficientNet
models was higher than that of MobileNet.
The overall accuracy improved when image normaliza-
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configuration c/v acc.
sensitivity per class avg.

sens.anger disgust fear happy neutral sadness surprise

MobileNet No-FT M0 52.0 54.5 74.2 26.3 15.8 26.2 11.9 79.6 41.0
FT 65.4 81.1 38.7 45.6 63.1 35.7 50.8 77.8 56.1
FT-SGD 65.7 82.6 58.0 47.4 73.7 33.3 57.6 70.0 60.4
FT-SGD + CW 54.0 65.2 71.0 56.1 78.9 28.6 61.0 42.5 57.7
FT-SGD + HF 64.7 77.3 51.6 50.9 63.2 28.6 55.9 74.3 57.4
FT-SGD + IP 65.3 82.6 35.5 43.9 68.4 28.6 45.8 80.2 55.0
FT-SGD + IP + HF + CW M1 63.7 75.0 74.2 56.1 84.2 38.1 52.5 63.5 63.3
FT-SGD + IP + HF M2 67.0 81.8 61.3 40.4 68.4 33.3 50.8 79.6 59.3

EfficientNet No-FT E0 53.5 50.8 67.7 36.8 47.4 47.6 18.6 73.1 49.0
FT + SAM + HF + CW E1 63.9 62.9 67.7 36.8 84.2 76.2 66.1 67.1 65.9
FT + SAM + HF E2 66.5 68.2 67.7 31.6 84.2 69.0 67.8 73.7 66.1
FT-SGD + SAM + HF 63.9 65.2 71.0 33.3 89.5 59.5 59.3 71.9 64.1

Table 4: The overall accuracy, sensitivity per class, and average sensitivity (in %) obtained for all configurations
(described in table 3) of the exploratory phase (i.e., tested on a single fold). The configurations that have an
abbreviation in the column ’c/v’ are repeated later in the cross-validation phase (table 5).

acc. (std)
average sensitivity per class (std) avg.

sens. (std)anger disgust fear happy neutral sadness surprise

M0 44.1 (4.7) 44.4 (10.3) 58.4 (2.4) 25.8 (12.4) 47.3 (19.3) 20.8 (5.7) 17.2 (9.1) 63.8 (6.7) 39.7 (9.4)
M1 51.7 (7.4) 51.3 (21.4) 37.3 (13.8) 11.6 (5.5) 56.6 (16.4) 75.3 (16.7) 60.4 (23.5) 58.2 (12.0) 50.0 (15.6)
M2 62.4 (3.2) 73.7 (5.9) 41.9 (14.1) 23.6 (9.6) 53.7 (12.2) 50.2 (22.3) 57.2 (16.1) 82.1 (6.7) 54.6 (12.4)

E0 45.7 (4.7) 42.3 (7.7) 55.6 (3.9) 30.1 (14.4) 53.3 (12.7) 54.6 (16.8) 19.5 (11.3) 59.7 (12.1) 45.0 (11.3)
E1 62.2 (2.4) 65.3 (9.3) 57.5 (12.6) 35.8 (13.3) 72.3 (9.8) 66.1 (10.0) 59.1 (16.8) 68.5 (6.4) 60.7 (11.2)
E2 62.8 (4.7) 62.3 (8.6) 45.4 (18.8) 29.2 (16.6) 82.7 (11.7) 59 (17.6) 52.7 (22.2) 79.2 (8.5) 58.6 (14.9)

Table 5: The overall accuracy, sensitivity per class, and average sensitivity (in %) with the standard deviation (std)
obtained for all the MobileNet-v1 and EfficientNet-B0 configurations calculated during the cross-validation phase

tion was used in combination with augmenting training
data with horizontally flipped images. Despite the ob-
vious lack of balance between the classes in the dataset,
balancing classes with the help of class weights can
harm the accuracy.

The best models obtained from the experiments con-
ducted were configured as following: MobileNet-v1
fine-tuned with Stochastic Gradient Descent using tun-
ing data normalized and augmented using horizontally
flipped images, and EfficientNet-B0 fine-tuned with
Sharpness Aware Minimization using tuning data aug-
mented with horizontally flipped images.

It is obvious through our analysis that further work
would require bigger datasets that would allow more
robust results, if possible also including spatial and
manual elements and offerring better resolution, a
broader domain and reacher modalities (e.g., full video
sequences). Additionally, one should consider cover-
age of other sign languages and cultural backgrounds,
whereas we are actively working on the adaptation
of the labels to include linguistic content/markers and
other affective aspects relevant to communication pur-
poses.
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Abstract 
The direct involvement of deaf users in the development and evaluation of signing avatars is imperative to achieve legibility and raise 

trust among synthetic signing technology consumers. A paradigm of constructive cooperation between researchers and the deaf 

community is the EASIER project1, where user driven design and technology development have already started producing results.  One 

major goal of the project is the direct involvement of sign language (SL) users at every stage of development of the project’s signing 

avatar. As developers wished to consider every parameter of SL articulation including affect and prosody in developing the EASIER SL 

representation engine, it was necessary to develop a steady communication channel with a wide public of SL users who may act as 

evaluators and can provide guidance throughout research steps, both during the project’s end-user evaluation cycles and beyond. To this 

end, we have developed a questionnaire-based methodology, which enables researchers to reach signers of different SL communities 

on-line and collect their guidance and preferences on all aspects of SL avatar animation that are under study. In this paper, we report on 

the methodology behind the application of the EASIER evaluation framework for end-user guidance in signing avatar development as it 

is planned to address signers of four SLs -Greek Sign Language (GSL), French Sign Language (LSF), German Sign Language 
(DGS) and Swiss German Sign Language (DSGS)- during the first project evaluation cycle. We also briefly report on some 

interesting findings from the pilot implementation of the questionnaire with content from the Greek Sign Language (GSL).  

Keywords: signing avatar performance1, on-line questionnaire2, evaluation methodology3, signing avatar rating4, signer involvement5, 

deaf-friendly interfaces6. 

1. Introduction 

The use of avatars in signed communication can be 
implemented in multiple communication contexts 
permitting a significant degree of freedom in content 
creation and signer anonymization. Avatars offer the 
advantage of being flexible to editing changes of the signed 
content and anonymity of the user. These features enable 
avatars to serve as agents for various interactive 
environments and communication platforms. However, 
currently SL avatars have not yet reached a level of 
performance that would make them acceptable to their end-
users.  
To identify how human signers perceive and evaluate the 
performance of an avatar’s synthetic signing, within 
EASIER project, we have developed a shell environment 
which incorporates an on-line questionnaire for feedback 
collection. This allows for easy creation of targeted on-line 
questionnaires to be addressed to signer groups of different 
SLs to collect feedback on various aspects of interest 
regarding research work on synthetic signing technology. 
The paper reports on the implementation framework of this 
user involvement methodology, the goal being the steady 
improvement of animation regarding legibility and clarity 
of synthetic signing.   
In section 2, we present the on-line questionnaire structure 
along with the methodological approach adopted to 

 
1 https://www.project-easier.eu/  

optimize its usability and structural design, aiming to 
eliminate common and uncommon biases. 
Starting from the shell questionnaire design, the goal has 
been to create an environment which would maintain user-
friendly characteristics and respect accessibility 
requirements of its target audience while guarding against 
bias. To exemplify application of the adopted 
methodology, in section 3, we also present results from the 
questionnaire’s first pilot implementation with content 
from the Greek Sign Language (GSL). Finally, section 4 
provides a discussion on our goals and up-to-date 
experience. 

2. The EASIER Questionnaire for Avatar 
Performance Evaluation  

The key performance indicators (KPIs) regarding the 
EASIER avatar performance are clearly user-centric, 
identified around perceived naturalness and 
comprehensibility. To encourage user engagement in the 
evaluation process, the users themselves participated in the 
development of the questionnaire format from the state of 
its design. To further facilitate usability of the 
questionnaire, comprehensibility is subject to a yes/no 
response, while naturalness is related to a rating scale from 
1 to 5 (various aspects of collecting user feedback with 
similar focus is also reported in (Kipp et al., 2011) and 
(Kacorri et al., 2015) among others). It becomes also clear 
that user involvement from early stages of development 
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becomes mandatory, if both these qualities are to be judged 
positively during an official evaluation procedure (EUD, 
2018; WFD, 2018 on user attitude). Here we present the 
overall rationale as well as those specific parameters which 
led decision-making regarding the design of the shell 
questionnaire environment that allows creation of targeted 
on-line questionnaires for the evaluation of the various 
aspects of avatar performance under development, making 
use of language material from different SLs.  

2.1 Questionnaire Content Design 

While designing the architecture of the shell on-line 
questionnaires we considered various parameters which 
allow for generation of the overall layout of each specific 
questionnaire. Among the issues to be tackled are decisions 
as to how the questionnaire should be best distributed to its 
audience along with the profile of those it would be 
addressed to. This is directly connected also with the need 
to regularly address end-users while proceeding with 
different stages of technological development (Wolfe et al., 
2021). Thus, decisions on questionnaire content led to 
focused, short lasting questionnaire implementations.  
One of our main concerns was to balance between a 
reasonable questionnaire duration (maximum 20 minutes) 
that would not cause discomfort or fatigue to the 
participants, and adequate content to provide clear data on 
the intended user preferences for which feedback is 
requested. By setting up a viable, easily updated on-line 
survey we opted to engage in a steady dialogue with 
signers’ communities with respect to novel enhancements 
in the signing avatar technology. 
Having the possibility to adapt the survey outline according 
to the evaluation requirements at each stage of avatar 
development was a decisive factor that weighed on the 
survey framework design. We needed to provide options 
for one item viewing at a time or head-to-head alternative 
performance presentations so that viewers can express their 
preference, but also provide scorings associated with each 
performance. To test content presentation settings and 
design adequacy regarding collection of user opinions in 
view of the project evaluation procedures, the pilot 
application of the on-line questionnaire involved two 
distinct avatars and was composed of two parts that address 
a set of evaluation questions from different angles. In this 
setting, the first questionnaire part presented the two 
avatars on the same screen in a head-to-head manner, while 
the second part presented one avatar at a time. In this way, 
we had the opportunity to gather user feedback regarding 
the entire range of options for content presentation and 
rating mechanisms incorporated in the shell-questionnaire 
environment. The customizable aspect of this shell 
environment allows for tailored, easy, and fast content 
integration on targeted questionnaires, independent from 
language specific characteristics or context induced 
particularities.  
Special care was taken so that in the questionnaire pages in 
which two different versions of signing avatar performance 
appear, these are presented in similar body and face 
dimensions and against a similar background, to minimize 
bias in display settings.  

2.2 Questionnaire Usability and Technical 
Features 

A major concern was to provide a survey shell fully adapted 
to the three-dimensional language modality. Considering 

that language is the principal tool for human interaction, we 
ensured that all questionnaire parts and items can be 
accessible with the use of sign language only. Hence, in 
every stage of the questionnaire participants are provided 
with instructions as to what they are expected to do and 
how they may interact with the questionnaire environment 
in the following three ways:  

i. Via SL videos recorded by an L1 signer of the 

addressed SL community,  
ii. Via written text available to be viewed if selected, 

in a text box below each instructive video, and  
iii. Via screen capture videos demonstrating the 

requested action by the user in the form of a visual 

manual.  
An introductory video presents the scope of the 
questionnaire, the identity of the research team and a brief 
description of the EASIER project.  
Questionnaire pages make use of color code to indicate user 

selections. Color is also used to notify for missing actions 

which are required to be completed in a given page before 

the user is allowed to move to the next page. Checking 

graphical signals are also used to help visualization of user 

selections ( 
Figure 1). 

 

Figure 1: Photo from the screen capture video presenting 

the instruction module with SL video display and 

visualizing user selections. 
 
Written text instructions to guide user preference selection 
have also been subject of extensive study aiming to avoid 
disorienting the users from the focus point of each 
questionnaire page.  
The pilot implementation of the on-line survey was 
performed with input from the Greek Sign Language (GSL) 
and was addressed to GSL signers. Therefore, all 
instructions were linguistically adapted to the target 
language.  
Each on-line questionnaire is available via a URL in which 
participants can watch avatar productions in the form of 
embedded videos. Regarding software technologies, the 
shell questionnaire is created using the open-source 
Cascading Style Sheets of the Bootstrap Framework. 
Bootstrap is a framework that allows the creation of 
responsive, mobile-first web applications. Thus, web 
applications created by Bootstrap Framework can be 
executed by most desktop as well as mobile browsers. 
However, due to the considerable number of images and  
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videos in the application, participants are encouraged to use 
Firefox or Chrome for optimum performance. The user 
interface has been created using HTML5 and JavaScript 
(jQuery). The database in which participants’ answers are 
stored is MySQL. Php is used to store the data in the 
database.  

3. Aspects of the Pilot Questionnaire 
Application 

For the pilot survey, the questionnaire was divided in two 
parts, Part A and Part B.  Part A targeted GSL user opinion 
on affect, hand movement, hand, and finger configuration 
accuracy in isolated signs and in fingerspelling, and Part B 
targeted smoothness of transition in short phrases. Both 
parts made use of the EASIER signing avatar “PAULA” 
(McDonald et al., (2016), (Wolfe et al., 2011) initially 
developed at DePaul University (http://asl.cs.depaul.edu/), 
and the Dicta-Sign signing avatar “FRANÇOISE” 
(Jennings et al., 2010) developed at the University of East 
Anglia (UEA) (http://vh.cmp.uea.ac.uk).  
The linguistic content of the questionnaire was distributed 
in the following manner:  
In Part A the participants were presented with pairs of 
avatars, head-to-head in randomized order.  There were 19 
signing instances in all, grouped into 4 categories. For each 
pair, participants indicated the avatar they preferred and 
rated the performance quality of both avatars.   The four 
categories were: 
(i) Avatar expressivity via inspection of still images of 
avatar face, in various affect expressions.  
(ii) Avatar productions performing signs with varying 
articulatory formations  
(iii) Avatar performance in proper name fingerspelling 
tasks 
(iv) Avatar productions of short phrases composed from 
previously evaluated isolated signs integrated with signs 
not yet viewed by participants.  
In Part B participants observed one avatar at a time. Each 
avatar performed a set of signs and short phrases. In this 
part each of the two avatars displayed different content. The 
aim here was to lead viewers to focus on specific features 
of interest in each avatar performance. Tasks included 
rating each avatar separately in respect to:  
(i) Overall hand motion performance, 
(ii) Overall body motion performance,  
(iii) Head and eyes movement, 
(iv) Mouth movement.  
The pilot survey has focused on L1 and L2 signers’ 
different preferences of the two avatars. Hence, the sample 
of the population to which the questionnaire was offered, 
consisted of L1 and L2 GSL signers, L1 signer group 
including deaf, hard of hearing or hearing signers that 
acquired GSL from their immediate family environment 
from early childhood, and L2 signer group including deaf, 
hard of hearing or hearing signers that acquired GSL via 
educational procedures (Costello et al., 2006). L1 signers 
where not further defined as deaf or codas. 
Due to General Data Protection Regulation (GDPR) issues 
and research ethics guidelines and regulations, responding 
to the questionnaire was anonymous, while participants 
personal information was restricted to a minimal set of 
metadata concerning demographic information on gender, 
age group, education level and GSL manner of acquisition 
(L1 vs L2).  

Within a three-week period, the questionnaire was 
distributed among members of the GSL Community 
including deaf clubs and educational institutions. 91 
distinct IP addresses were identified as having visited the 
questionnaire. However, only 32 participants completed 
the questionnaire, of which 17 identified themselves as L1 
signers and 15 as L2 signers. Thus, only the responses of 
those 32 participants were considered in the analysis of the 
results. All participants were adults between 18 and 61 
years of age.  

3.1 Overview of the Results from the Pilot On-
Line Survey 

Participants were asked to rate the performance of each 
avatar in each signing occurrence in a 5-scale rating (Bad / 
Rather Bad / Average / Good / Very Good). The relative 
frequency distributions on this 5-scale rating for parts A 
and B are illustrated in the bubble charts of Figure 2 and 
Figure 3, respectively, where the size of each bubble 
denotes the percentage of responses for a specific rating.  In 
Part A, about 76% of the participants considered PAULA’s 
performance “good” or “very good”, while only 6% assign 
a low rate of “bad” or “rather bad”. The relative frequencies 
for FRANÇOISE were 41% for good/very good ratings and 
20% for bad/very bad ratings (Figure 2).  
 

Figure 2: Relative frequency distribution of 5-scale rating 
for all signing occurrences of Part A. 

 
The frequency distributions of Part B were similar as can 
be seen in Figure 3. Obviously, the pairs of bubbles (for 
FRANÇOISE and PAULA at each rate) are either very 
close or significantly overlapped. For instance, about 36% 
and 39% of the rates were at the level “good” for PAULA 
and FRANÇOISE, respectively. Moreover, the relative 
frequencies at “rather bad” and “average” are also 
comparable. This similarity would become apparent if one 
drew lines that connect the centers of the bubbles for each 
avatar.  
Considering the data from both parts, the descriptive 
analysis of results shows an overall preference for PAULA 
avatar performance. However, our goal is to investigate the 
preferences that the two sub-groups (L1 and L2) expressed 
towards the two avatars. Even though the collected 
metadata were based on participants’ statements (e.g., they 
identified themselves as L1 or L2 signers), we strongly 
believe that nobody would benefit from misleading us 
given that the evaluation’s scope is to strengthen the 
constructive cooperation between researchers and the deaf 
community. 
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In this sense, we considered the L1 and L2 participants two 
independent groups. It is worth mentioning that we target 
signers who favor this cooperation such as the volunteers 
who participated. To this end, we consider the participants 
a sample of the targeted population. However, we are aware 
of the random sampling process, and we plan to adopt it in 
the next evaluation phase when many more participants 
will be involved. 
 

 
 

Figure 3: Relative frequency distribution of 5-scale rating 

for all signing occurrences of Part B. 
 

3.1.1 Preferences Investigation of L1 and L2 
Signers 

In the light of the above, we hypothesized that the two 
subgroups expressed the same preferences towards the two 
avatars (NULL hypothesis). To explore this hypothesis, we 
conducted Mann Whitney U Tests2 to test if there is a 
statistically significant difference in the rating of an avatar 
between the two groups. We applied the analysis on both 
PAULA and FRANÇOISE for Part A and Part B. 

 

Figure 4: Part A: Distribution of relative frequencies of 

the 5-scale rating in Part A for both avatars in the two 

sub-groups (L1 and L2 signers). 
 
The distribution of relative frequencies on the 5-scale 
rating for both avatars in the context of parts A and B for 
each group are illustrated in Figure 4 and Figure 5 
respectively. Based on these results, one could observe (by 
comparing the first two columns of Figure 4) that the results 

 
2 The Mann Whitney U Test is the alternative of the independent t-test. It is a non-parametric test proper for statistical 

analysis when the data are ordinal and there is no assumption of the distribution of the population and the two groups have 

unequal sizes. 

for PAULA in Part A are very similar for both groups of 
signers. Although it seems that there are differences in the 
other cases i.e., rates of L1 and L2 groups for FRANÇOISE 
in Part A (3rd and 4th columns of Figure 4), and Part B (3rd 
and 4th columns of Figure 5), and for PAULA (first two 
columns of Figure 5), the statistically significant ones, will 
be concluded by inferential statistics. 
In Part A, the comparison of the two signer sub-groups (L1 
vs L2) for both avatars resulted in the following:  
PAULA: the resulted p-value was 0.17 > 0.05 (the selected 
significance level), hence the NULL hypothesis cannot be 
rejected which can be interpreted that both sub-groups rate 
PAULA’s response similarly.  
FRANÇOISE: the resulted p-value was 0.0004 < 0.05 and 
thus we can accept the alternative hypothesis and state that 
there is a statistically significant difference between the 
rates provided by L1 and L2 signers. Given that the median 
values of rates of each sub-group are equal to "AVERAGE” 
(i.e., percentages for “BAD”, “RATHER BAD” and 
“AVERAGE” sum up to more than 50% in both groups of 
green shades), we cannot decide which sub-group provides 
higher rates to FRANÇOISE. However, by observing the 
modes of each sub-group (i.e., 43,34% of L1 and 37,89% 
of L2 rated this avatar of “AVERAGE” and “GOOD” 
performance respectively) we could say that L2 signers 
graded FRANÇOISE higher than what L1 signers did. 
 

 

Figure 5: Distribution of relative frequencies of the 5-

scale rating in Part B for both avatars in the two sub-

groups (L1 and L2 signers). 
 
In Part B, the comparison of the two signer sub-groups in 
respect to their ratings of the two avatars provides the 
following results:  
PAULA: the resulted p-value was 0.087 > 0.05, hence the 
NULL hypothesis cannot be rejected which can be 
interpreted that both sub-groups rate PAULA’s response 
similarly. It is worth mentioning that this conclusion was 
also conducted for this avatar in Part A.  
FRANÇOISE: the resulted p-value was 0.022 < 0.05 and 
thus we can accept the alternative hypothesis and state that 
there is a statistically significant difference between the 
rates provided by L1 and L2 signers. In Part B (see last two 
columns of Figure 5), the median values of rates of L1 and 
L2 signers are “AVERAGE” and “GOOD” respectively 
(i.e., percentages for “BAD”, “RATHER BAD” and 

42



   

 

   

 

“AVERAGE” sum up to more than 50% in L1 group, while 
“GOOD” is required to be included in L2 group ), and thus 
we could say that again the L2 signers sub-group graded 
FRANÇOISE slightly higher than what L1 signers did. 
 

3.1.2 Interpretation of Results with Respect to End-
User Preferences 

Regarding the first part (Part A) of the survey and the head-
to-head presentation of the two avatars, for which 
participants were asked to choose the avatar that had a 
signing performance closer to the performance of a human, 
results showed that PAULA was the avatar of preference, 
as shown from the ratings as well as from the responses 
count from the Head-to-Head comparison; out of the total 
608 signing occurrences (19 stimuli of images and videos 
multiplied by 32 participants), Paula was chosen in 428 of 
them. 
The statistical analysis showed that the most frequent 
response for the totality of the signing occurrences for 
PAULA is “Good” and for FRANÇOISE is “Average” 
(Figure 2). This finding is consistent with the obtained 
results from the head-to-head avatar comparison.  
Even though a larger amount of data is necessary to safely 
draw conclusions, the here attempted interpretation of the 
results simply highlights the general tendency which favors 
PAULA’s signing over FRANÇOISE’s one.  
In the second part of the questionnaire (Part B), each avatar 
was individually rated for its signing performance with 
respect to a compilation of signing occurrences consisting 
of isolated lemmas and phrases. The overall inspection of 
the collected data for Part B attests that both avatars 
performed equally well. An investigation of their 
performance with respect to the four movement parameters 
that were evaluated (hand movement, body movement, 
head and eye movement, mouth movement) led to the 
following findings: PAULA received higher rankings for 
hand movement and eyes movement, while FRANÇOISE 
was preferred over PAULA for her mouth movement. Both 
avatars were equally evaluated with respect to their body 
movement. These are important findings that need to be 
investigated in more signing occurrences, within context as 
well as in isolated instantiations.  

With respect to the preferences comparison of two sub-

groups among the GSL signers we comment on the 

following: In both parts of the questionnaire the two sub-

groups expressed the same preferences regarding PAULA. 

However, the difference between them regarding 

FRANÇOISE’s rating is a finding worth further 

investigating. Further interpretation of this finding given 

the collected data yields two additional insights; a good 

avatar performance is rated similarly by both groups of 

signers, L1 and L2. However, an average signing 

performance gives room for varying ratings among signers. 

In this case L1 signers are shown to be more consistent in 

their ratings than the group of L2 signers who participated 

in the survey. To be able to interpret these results it is 

important to redress this issue in the follow-up surveys.  
For this pilot implementation of the on-line survey, the 
number of participants was sufficient to perform an initial 
descriptive analysis. However, to further investigate the 
participants’ choices and their respective ratings with 
respect to different variables (i.e., gender, age, SL manner 

of acquisition (L1 vs L2), educational status etc), we need 
to extend our survey aiming at a broader randomly selected 
pool of participants.  

4. Discussion 

The reported findings from the pilot on-line survey on 
avatar performance evaluation provided significant 
feedback not only with respect to the targeted aspects of 
avatar performance, but also regarding methodological 
issues such as the outreach of the survey so that statistical 
analysis of results is better supported, various distribution 
issues among participant groups, the size and structure of 
the survey content and the phrasing of the requested tasks. 
This feedback is exploited in the user evaluation surveys 
the design of which is reported here. These will constantly 
address different SLs in the framework of our strategy of 
ongoing signer consultation on avatar development as 
implemented within the EASIER project. 
The pilot implementation of the on-line survey has 
demonstrated a successful user-centered design and 
incorporates accessibility features of the shell 
questionnaire environment which may effectively achieve 
to engage signers in the development of signing avatar 
technology.  
Planned accommodation of content from four SLs (GSL, 
LSF, DGS and DSGS) will enable a wide application of the 
questionnaire in the next period, which will provide 
significant input from the part of users regarding how they 
perceive the parameters of naturalness and 
comprehensibility of the synthetic signing and will further 
guide development of the EASIER avatar. 
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Abstract
The reliance of deep learning algorithms on large scale datasets represents a significant challenge when learning from low
resource sign language datasets. This challenge is compounded when we consider that, for a model to be effective in the real
world, it must not only learn the variations of a given sign, but also learn to be invariant to the person signing. In this paper, we
first illustrate the performance gap between signer-independent and signer-dependent models on Irish Sign Language manual
hand shape data. We then evaluate the effect of transfer learning, with different levels of fine-tuning, on the generalisation of
signer independent models, and show the effects of different input representations, namely variations in image data and pose
estimation. We go on to investigate the sensitivity of current pose estimation models in order to establish their limitations and
areas in need of improvement. The results show that accurate pose estimation outperforms raw RGB image data, even when
relying on pre-trained image models. Following on from this, we investigate image texture as a potential contributing factor
to the gap in performance between signer-dependent and signer-independent models using counterfactual testing images and
discuss potential ramifications for low-resource sign languages.

Keywords: Sign language recognition, Transfer learning, Irish Sign Language, Low-resource languages

1. Introduction
Modern deep learning techniques rely heavily on large
scale datasets. However this becomes a significantly
limiting factor when such large datasets are unavail-
able or difficult to obtain, as is the case with many
low-resource sign languages. This limitation is not
unique to sign language recognition, with several tech-
niques being proposed to perform image classification
within this resource-constrained setting (Larochelle et
al., 2008; Sharif Razavian et al., 2014). Sign language
recognition adds an additional nuance to this challenge
as models not only need to generalise to different vari-
ations of hand signs but also to new signers. Training
models on a low number of signers causes them to learn
the characteristics of particular individuals leading to
significant levels of bias in the models and limited ap-
plicability in real-world settings (Kim et al., 2016).
In this work, we first quantify the disparity in per-
formance between signer independent and signer-
dependent models for Irish Sign Language (ISL) letter
hand shape recognition. We show the effects of differ-
ent input representations on the performance of signer-
independent models trained on low-resource data and
the tendency of raw image data to lead to significant
bias, even when transfer learning is used. The experi-
ments show that pose estimation alone may lead to in-
creased performance in this scenario. To study the effi-
cacy of pose estimation models, the effects of colour on
existing pose estimation models are shown. Finally, we
experiment with different levels of fine-tuning to assess
whether this provides a regularisation effect.
The remainder of this paper is structured as follows.
Section 2 describes current works studying the area
of low resource datasets and signer-independent mod-
els along with the preprocessing techniques used; Sec-

tion 3 describes our approach to evaluating transfer
learning and input representations for low-resource
sign language recognition; Section 4 describes the de-
tails of the dataset used in our experiments, models and
evaluation techniques. We present and discuss the re-
sults of these experiments in Section 5. Finally, we con-
clude with a summary of our findings and a discussion
on potential future work in Section 6.

2. Related Work
One of the over-arching issues associated with sign
language recognition research is a distinct lack of
large-scale, diverse datasets. In particular, less preva-
lent languages such as ISL and Italian sign language
(LIS) whose users number approximately just 40,000-
60,000 (Leeson et al., 2015; Branchini and Mantovan,
2020) experience this to a greater degree.
Due to the low-resource nature of these types of
datasets, it is imperative that we consider the poten-
tial influences this has on real-world recognition sce-
narios. While differences in camera quality, lighting,
and scenery are all valid and important considerations,
it is also important that our methods properly account
for diversity of signer. We must therefore also be con-
siderate of gender, skin-tone, fluency, age, disability,
etc (Bragg et al., 2019).
The lack of signer variety that comes with low-resource
datasets is a recurring challenge in the literature.
Specifically, there are many sign languages where data
is extremely limited, both in availability and size. For
example, (Nakjai and Katanyukul, 2019; Fagiani et al.,
2015; Oliveira et al., 2017a; Oliveira et al., 2017c) ex-
periment on datasets with fewer than 12 signers. This
inevitably leads to bias in the models trained on these
datasets. For example, the dataset used in our experi-
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ments consist of just 6 signers (3 male, 3 female), all
of whom are of similar skin-tone, dressed in dark long
sleeves, and are recorded in extremely similar studio
conditions. It is therefore clear that we need to ad-
dress both preprocessing and training in a different way
compared with scenarios where signers and data are in
abundance.
In terms of preprocessing, several works have utilised
raw images as input or a combination of images
and auxillary features. Both Openpose (Cao et al.,
1812) pose estimation and RGB values were used
by (De Coster et al., 2021), optical flow and RGB val-
ues were combined by (Shi et al., 2018), data augmen-
tation on raw images was performed by (Pigou et al.,
2016) including rotation, stretching and shifting, while
(Oliveira et al., 2017c) experiment with raw images
alone. Other works take a more domain specific ap-
proach, using several image processing and feature se-
lection techniques. (Nakjai and Katanyukul, 2019) per-
form thresholding and calculate the maximum contour
area of each image before classification, (Fagiani et al.,
2015) obtain the centroid coordinates of the hands with
respect to the face, (Oyedotun and Khashman, 2017)
convert images to binary and apply noise filtering while
(Oliveira et al., 2017a; Oliveira et al., 2017c) also ex-
periment with PCA and image blurring. (Fowley and
Ventresque, 2021) create synthetic data for ISL finger-
spelling recognition, achieving high performance in a
signer independent setting. Though the authors are ap-
proaching a similar problem to that we aim to tackle,
we instead focus on a less language specific-approach
that does not require synthetic dataset design. Signer
independent models are also addressed by (Kim et al.,
2016) using neural network adaptation, however this
assumes that a small number of examples from the test
signer is available which we assume will be unavailable
in our work.
While other works have studied signer independent
models (Fowley and Ventresque, 2021; Kim et al.,
2016), we do so explicitly in a low resource context.
We experiment with the most effective preprocessing
techniques in the literature and determine their con-
tribution to classification performance in this context.
Specifically, we examine the generalisability of dif-
ferent input representations in isolation, determine the
most useful method of fine-tuning for pre-trained mod-
els, and discuss the impact of these experimental design
choices on the overall classification performance.

3. Adapting to Low Resource Sign
Languages

For languages where availability of data is limited, i.e.
low-resource languages, training deep learning algo-
rithms can be challenging due to their dependence on
large-scale datasets (LeCun et al., 2015). Furthermore,
as with other tasks that utilise bio-metric data, perfor-
mance of subject-independent models tends to be dis-
tinctly lower than subject-dependent models (Kim et

al., 2016; Lockhart and Weiss, 2014). This negative
effect on performance tends to be amplified for low
resource datasets as the number of subjects contained
within them will naturally be lower.

3.1. Transfer Learning
An obvious choice for learning with limited image data
is transfer learning (Sharif Razavian et al., 2014) due
to the wide availability of pre-trained image models.
However, the degree of fine-tuning needed to exploit
the features learned from pre-trained models for sign
language recognition is less obvious. In this paper we
investigate the effect of fine-tuning an entire network
on this domain-specific data versus fine-tuning only the
final classifier. We assess whether it is necessary to ad-
just the parameters in the earlier layers of the network
in order to adapt to this task or whether the potential
regularising effects of simply training the final layers
are more beneficial. We also assess this specifically
in the signer-independent scenario compared to the
signer-dependent scenario to determine whether signer-
independent models benefit more from this regularising
effect.

3.2. Input Representation
Though transfer learning alone vastly improves the
ability of a network to learn image features with a small
amount of data, there remains a question as to whether
these are, in fact, the features the network should be
learning in order to generalise to the largest number
of signers possible. We seek to directly compare two
of the most common input representations for sign-
language recognition: raw image data with minimal
pre-processing and pose estimation keypoints. Below
is a discussion on the motivation for this comparison
for low-resource sign language data.

3.2.1. Raw Image Data
The use of raw image data in deep learning models has
become ubiquitous in computer vision. Raw color val-
ues, for instance, are vital in order to identify varying
objects and textures. However, for low resource com-
puter vision, there is a question as to whether color fea-
tures are desirable to learn directly from the data re-
lating to the task at hand. The role of incorrect white-
balance, for instance, has been found to cause errors in
deep learning models due to bias in datasets towards
white-balanced data (Afifi and Brown, 2019). When
we keep in mind that low-resource datasets have a low
number of signers, the potential for the particular char-
acteristics of signers such as skin tone, dress colour etc.
to bias datasets is undeniable. We will show the sen-
sitivity of sign language recognition models to colour
by determining the disparity in performance between
greyscale and RGB images.

3.2.2. Pose Estimation
Given the potential dependence of low resource com-
puter vision models on less than optimal features, we
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seek to determine whether extracted pose estimation
could potentially outperform raw images (even with
pre-trained models) and generalise better to signers not
in the training data. Though many state-of-the-art pose
estimation tools also use raw images as training data,
they are typically trained on far more data than could
ever be collected in a low-resource scenario. We hy-
pothesise that using a highly accurate pose estimation
model’s output as sign language recognition model’s
input will allow for better generalisation, as the sign
language recognition model is forced to learn only from
the features that matter the most, i.e. the coordinates
of body parts and their relationship to each other, with
minimal dependence on the personal characteristics of
the signer.

4. Experimental Setup
4.1. Dataset
The following section describes the dataset used for ex-
periments. We describe the different dataset configura-
tions we created to assess the affect of certain attributes
on the overall performance and generalisation.

4.1.1. ISL Hand-shape Dataset
The dataset of Irish Sign Language Hand-shapes (ISL-
HS) was originally curated by (Oliveira et al., 2017b)
and is publicly available for download1.
The dataset consists of 468 RGB24 videos of 3 male
and 3 female signers performing the 26 ISL alpha-
bet hand-shapes. Each hand-shape was recorded three
times at 30 frames per second (fps) and resolution of
640 x 480 pixels. The curators of this dataset have also
extracted the frames from these videos, converted them
to greyscale and removed background features using a
pixel-value threshold. The resulting frames include just
the single hand and forearm used to perform the hand-
shape. These hand-shapes can be further distinguished
into two subcategories:

1. Static hand-shapes: All English letters with the
exception of ‘J’, ‘X’ and ‘Z’ which include no dy-
namic movement in their action. These signs were
performed using an arcing motion (vertical to hor-
izontal) to better simulate real-world gestural per-
mutations. There are on average 2291 grey-scale
frames per hand-shape.

2. Dynamic hand-shapes: English letters ‘J’, ‘X’
and ‘Z’ which were performed only using the mo-
tion of the gesture itself thus resulting in relatively
fewer frames on average (1809 frames per hand-
shape) with ‘X’ having the least of all (1443).

4.1.2. Data Configurations
In order to ascertain the disparity in performance of
signer-dependent versus signer-independent models,
we create the following two dataset configurations.

1https://github.com/marlondcu/ISL

1. Signer-dependent dataset: Three trials of each
letter are signed by each person in the dataset. The
first trial is used for training, the second for vali-
dation and third for testing. This ensures that data
from all signers present is available for training,
validation and testing, while ensuring the frames
used in each set are different. We also assess
the effect of image colour composition on perfor-
mance with the following variations.

(a) The greyscale frames provided by (Oliveira
et al., 2017b), see Figure 1a.

(b) The RGB frames we extracted from the
videos provided by (Oliveira et al., 2017b),
see Figure 1b. We noted that this process lead
to 143 fewer frames than the greyscale data
provided in the public dataset. This is seem-
ingly due to a small number of the original
videos being very slightly longer than those
provided in the public data.

2. Signer-independent dataset: To keep the signers
in each set separate, data from Person 1 and 2 is
used for training, Person 3 and 4 is used for vali-
dation and Person 5 and 6 is used for testing. This
also ensures that a similar number of examples are
present in each set of this dataset as the signer-
dependent dataset. Next we perform pose esti-
mation on the signer-independent dataset to cre-
ate a third data configuration. This is to assess
the extent to which pose estimation can close the
gap in performance between signer-dependent and
signer-independent models. We use MediaPipe
Hands (Zhang et al., 2020). Where the detection
confidence surpasses a minimum threshold, we
plot the pose estimation co-ordinates in 2D, mod-
ifying the default pose estimation plots to prevent
landmarks from becoming visually overcrowded,
see Figure 1c. Where the pose estimation confi-
dence does not meet this minimum criteria, the
raw frame is simply used. The minimum detec-
tion confidence set for our experiments was 0.5.
We stress that though it is certainly possible to use
the pose estimation co-ordinates directly as input
features, this transformation into a 2D “image” al-
lows a direct comparison of the same model ar-
chitectures irrespective of the input and to hold all
other algorithmic features and hyper-parameters
constant. The following data configurations are
used:

(a) Greyscale frames provided by (Oliveira et al.,
2017b)

(b) RBG frames of from the videos provided by
(Oliveira et al., 2017b). In the same way
as the signer-dependent dataset, this lead to
fewer RGB frames for each video than those
provided in the grey-scale dataset.

(c) Pose estimation images for greyscale frames.
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(a) Greyscale. (b) RGB. (c) Pose estimation.

Figure 1: The letter U performed by Person 2 in Greyscale, RGB and the corresponding pose estimation.

(d) Pose estimation images for RGB frames.

4.2. Models
For all experiments the same deep architecture and hy-
perparameters are used. This was done in order to en-
sure that all but the desired aspects of the data or model
being tested were kept constant.

Table 1: Hyperparameters used across all VGG models.

Hyperparameter Value

Normalisation Standard for VGG16 a

Image resizing (120, 160)
Optimiser Adam
Initial learning rate 0.0001
Batch size 64
Number of epochs 50
a https://pytorch.org/vision/
stable/models.html.

4.2.1. VGG network
For this network, we used an ImageNet pre-trained
VGG network (Simonyan and Zisserman, 2014)2. An
additional layer with 4000 unit, with ReLU (Nair and
Hinton, 2010) activation and Dropout (Srivastava et al.,
2014) of 0.5 was added along with and a classification
layer with 26 outputs.

4.2.2. Fine-tuning
Fine-tuning was performed in two ways for each
model:

1. The added layers of the network alone were fine-
tuned on the ISL training set.

2. The entire network, including pre-trained layers,
were fine-tuned.

This process was performed to determine whether a
regularisation effect could be achieved by excluding the
pre-trained layers from the fine-tuning process.

2https://pytorch.org/hub/pytorch_
vision_vgg/

5. Results
This section first details the results of signer indepen-
dent compared to signer dependent models in subsec-
tion 5.1. We then move on to compare raw images to
a pose estimation representation in subsection 5.2. Ad-
ditionally, we provide a discussion on our results and
further analysis in subsection 5.3.

5.1. Signer-Independent Models
We can see in Table 2 that there is a sizable dispar-
ity between signer-independent and signer-dependent
models, trained on greyscale images, even for a rela-
tively homogeneous dataset. It is reasonable to expect
that there would be an even larger gap in performance
between these models for signers with significantly dif-
ferent characteristics to those in this dataset, highlight-
ing the challenge with datasets of this size. One may
expect that this drop in performance is an indicator of
over-fitting however when we plot the validation accu-
racy over all 50 epochs in Figure 2, we can see that
these models never perform anywhere near as well as
their signer-dependent counterparts. This, once again,
highlights the tendency of these models to learn char-
acteristics of the training images not useful to gen-
eralisation. With respect to fine-tuning, interestingly,
signer-independent models gain slightly more benefit
from fine-tuning all layers in the network more than
the signer-dependent models.
This disparity in performance is not unique to sign-
language models with similar behaviour to be seen
in fields like activity recognition (Lockhart and
Weiss, 2014) and electroencephalography classifica-
tion (Zhang et al., 2019). The performance of the
signer-independent models shown here closely mirror
that achieved by other authors (Fagiani et al., 2015; Shi
et al., 2018) - diverting from the higher performance
results achieved in the signer-dependent work of (Nak-
jai and Katanyukul, 2019; Oyedotun and Khashman,
2017; Oliveira et al., 2017a; Oliveira et al., 2017c).
All this indicates that models trained on raw images
have a tendency to utilise signer-specific features when
classifying hand shapes. Of course, a larger number
of signers would likely help remedy this behaviour,
though for low-resource languages such as ISL, this
data tends not to be available. Therefore we con-
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Figure 2: Validation accuracy for the signer-dependent and signer-independent models trained on greyscale images
with only layers added to the pre-trained VGG network fine-tuned. Minimum and maximum values are labeled.

clude that signer-independent models using raw RGB
images have limited generalisability for these low re-
source scenarios, even when pre-trained image classifi-
cation models are used. This motivates a more gener-
alisable input representation.

Table 2: Signer-dependent versus signer independent
models on greyscale data. Added layers refers to mod-
els where only the layers added to the end of a pre-
trained network were fine-tuned. All layers refers to
models where all layers of a pre-trained model were
fine-tuned.

Type Fine-tuning F1-Score

Signer-Dependent
Added layers 0.885
All layers 0.882

Signer-Independent
Added layers 0.433
All layers 0.463

5.2. Raw Images vs. Pose Estimation

Table 3: Pre-trained VGG network’s performance on
signer-independent data.

Fine-tuning Input F1-score

Added layers
Greyscale (∼48% MP frames) 0.486
RGB 0.369
RGB (∼99% MP frames) 0.545

All layers
Greyscale (∼48% MP frames) 0.468
RGB 0.399
RGB (∼99% MP frames) 0.542

For our main results in 3, we first look at the effect of
converting greyscale images to MediaPipe landmarks,
with roughly 48% of these images being successfully
converted. We can see that these pose-estimation fea-
tures increased the performance for greyscale images,
especially when pre-trained weights are kept fixed,
with this variation achieving a 4.8% increase over the
best performing signer-independent model in Table 2.
We also evaluated models trained on the corresponding
RGB frames. Neither models trained on raw RGB im-
ages exceed the performance of the best model trained
on greyscale images. Again, we can see in Figure 3
that validation accuracy for raw RGB data remains in
this region of performance for the entire training pe-
riod. This, at first, seems surprising given that pre-
trained models are trained on colour images. However,
we hypothesise that this is caused by features that are
signer-specific, but irrelevant to the characteristics of a
given sign, being more successfully learned by these
models, leading to poor generalisation. This is de-
spite the fact that regularisation is used in the form of
Dropout in the second to last layer added to the VGG
network. This behaviour is actually exacerbated when
pre-trained weights are not fine-tuned. We can see that
fine-tuning all layers leads to slightly increased perfor-
mance for raw RGB images. In fact, we can see that
both raw greyscale and RGB images show that a sim-
ilar increase in performance can be gained from fine-
tuning all layers of the network. Interestingly, we do
not see such an increase when including pose images
generated from MediaPipe.

Finally, we look at the effect of converting RBG images
to MediaPipe pose estimation landmarks, with over
99% of images successfully converted. There is over
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Figure 3: Validation accuracy for raw RGB frames with fine-tuning on added layers and for raw RGB frames with
fine-tuning on all layers.

an 11% improvement compared to the next best mod-
els (greyscale images converted to MediaPipe, added
layers fine-tuned), a pronounced boost in performance.
It is fascinating that models trained on raw RGB im-
ages, in fact, come last in terms of performance. This
provides evidence that pose estimation with minimal
use of RGB images (less than 1% due to low pose es-
timation confidence) provides greater generalisation to
unseen signers than utilising RGB images for a low re-
source dataset. We also observe greater performance
when excluding pre-trained layers from fine-tuning.

5.3. Feature Analysis
We observed that some features had a significant effect
on the overall performance of both pose estimation and
sign recognition. We discuss some of our further anal-
ysis and observations below.

5.3.1. Pose Estimation
The effect of removing colour from images on pose es-
timation performance, even when using a popular pose
estimation model trained on a large amount of data,
illustrates the sensitivity of such models to colour in
images. Table 4 compares the number of successfully
converted greyscale images compared to RGB images.
Figures 4a and 4b further break down this comparison
by letter and signer ID respectively.

Table 4: Results of the Mediapipe conversion on both
greyscale and RGB frames

Frame
Type

# Frames
Available

# Frames
Converted

No. Frames
Non-Converted

% Frames
Converted

Grey-scale 58,114 27,840 30,274 47.9
RGB 57,971 57,850 121 99.7

On the face of it, this may not appear to be a prob-
lem, due to the fact that modern images are unlikely to
be in greyscale. However, the reliance on colour indi-
cates that performance could also be greatly affected by
lighting conditions and scenes not present in the train-
ing data. This type of behaviour has been observed in
other computer vision tasks (Afifi and Brown, 2019).
This should be taken into consideration if sign language
recognition systems rely on such models and might mo-
tivate other types of feature pre-processing before pose
estimation such as optical flow.

5.3.2. Signer-specific Characteristics
The large gap between signer-dependent and signer-
independent models in the case of raw RGB images is
challenging as it can be difficult to determine which
of the characteristics specific to each signer is being
learned when trained on low-resource data. Models
pre-trained on ImageNet have indeed been found to
be biased towards image texture over shapes of objects
within images (Geirhos et al., 2018), which in this case
translates to the texture of the clothes being worn by the
signer and their skin texture. To evaluate whether this
could be a large contributing factor, we create counter-
factual examples of the signer-independent RGB test
set described in 4.1.2 by applying a Gaussian blur to
images to smooth the image texture. We do, in fact,
see a decrease in performance for the model which was
trained on raw RGB images which suggests that this is
a contributing factor. This feature alone, however, is
clearly just a single aspect that influences this gap in
performance and further evaluations are needed to as-
certain other contributing factors.
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(a) Hand-shapes.

(b) Signers.

Figure 4: The number of frames converted to pose estimation for both hand-shapes and signers between the grey-
scale and RGB images.

Table 5: VGG model with a Gaussian blur applied to
test set

Fine-tuning Input F1-score

Added layers RGB 0.359
All layers RGB 0.384

6. Conclusion
In this work we have illustrated the large per-
formance disparity between signer-independent and
signer-dependent models in Irish Sign Language. We
show that using accurate pose estimation as input when
training on low-resource sign language datasets in-
creases recognition performance. We have investigated
the improvements needed for pose estimation models

to become more effective and have used counterfactual
examples to show the effect of texture on models us-
ing raw RGB data. It should be noted that these im-
ages account for just a small subset of ISL manual hand
shapes. We also recognise that the resolution of the im-
ages used in these experiments and their distinct lack
of background noise is often an overly optimistic rep-
resentation of real-world finger spelling. However, this
work is merely the beginning of a line of research that
will perform more extensive analysis on the effects of
input representation, the ways that this representation
can be made more robust and the role of the network
architecture in improving signer-independent generali-
sation.
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Abstract  
Facial movements and expressions are critical features of signed languages, yet are some of the most challenging to reproduce on signing 
avatars. Due to the relative lack of research efforts in this area, the facial capabilities of such avatars have yet to receive the approval of 
those in the Deaf community.  This paper revisits the representations of the human face in signed avatars, specifically those based on 
parameterized muscle simulation such as FACS and the MPEG-4 file definition. An improved framework based on rotational pivots and 
pre-defined movements is capable of reproducing realistic, natural gestures and mouthings on sign language avatars. The new approach 
is more harmonious with the underlying construction of signed avatars, generates improved results, and allows for a more intuitive 
workflow for the artists and animators who interact with the system.  

Keywords: signing avatars, sign language representation, computer animation   

1. Introduction  
The translation of spoken language to signed language is 

not only a translation of meaning, but also modality. It is 

therefore the place of the signing avatar to act as the 

intermediary between verbal and visual communication. In 

spoken language, most of the linguistic and syntactic 

information is conveyed by voice through the mouth while 

the hands provide secondary gesture and nuance. Signed 

languages are the opposite, with most of the lexical 

information occurring on the hands, allowing the face to 

supply grammatical and prosodic information. While 

research efforts have made progress on generating the 

primary hand and arm movements of signed languages, the 

processes on the face have not been examined so 

thoroughly, although the Deaf community has expressed 

their concerns on this matter (Verlinden, et al., 2001; Kipp, 

et al., 2011; Ebling, et al., 2015; Huenerfauth, et al., 2011).  

Due to the complexity of the task, a perfect recreation of a 

real human is both unnecessary in practice and logistically 

untenable. Therefore, a major challenge in developing a 

representation of a human avatar is simplification. Any 

framework for a signed avatar must be complex enough to 

achieve the desired results while being simple enough to be 

workable by artists and procedural algorithms.  

2. Previous Work  
One of the primary descriptions of human facial movement 

is the Facial Action Coding System (FACS) (Ekman and 

Friesen, 1978). The basis for this system is a set of 

combined facial muscle movements first described by 

(Hjorstjo, 1970) and coded as a set of action units, each 

defining a specific motion on the face. These action units 

can be combined to classify all possible movements of the 

human face based on the underlying musculature. FACS 

has continued to be an on-going resource to industry 

professionals and academics studying the motion of the 

human face (Seymour, 2019).  

  

FACS has been widely influential in the parameterization 

of human facial movements. One such example is the 

standardized facial representation in the MPEG-4 file 

description (Pandzic and Forshheimer, 2003). This 

attempted to define a minimal set of parameters necessary 

to recreate the facial actions observed by descriptive 

systems such as FACS. These parameters are 

conceptualized as a set of markers across key portions of 

the face. Each marker acts as a feature point for either an 

artist or procedural computer algorithm to control the shape 

and position the facial features. Figure 1 shows the control 

points defined for the mouth.  

This implementation has been the foundation for previous 

developments in signed avatar technology such as the work 

of EMBR Virtual Human Animation System (Huenerfauth 

and Kacorri, 2015), the VSign sign synthesis web tool 

(Papadogiorgaki et.al., 2004), and the Paula avatar of 

DePaul University's American Sign Language Avatar  

Project (Wolfe, et al., 2018), the latter of which will be used 

by way of example. In Paula's case, the original underlying 

framework defines the landmarks as a set of joints that are 

skinned to the mesh, allowing the avatar's geometry to 

follow the movements of the joint. 

Machine learning implementations for generating 

expressive facial animation, such as the Tacotron2 

developed by Apple, yield promising results (Hussen 

Abdelaziz et.al., 2021). However, their major drawback is 

the sheer amount of data needed to adequately train an 

algorithm, especially a neural network. Tacotron2 used a 

dataset consisting of 10 hours of data captured from real 

human performance to train their convolutional neural 

network (CNN). Another research group based in the 

United Kingdom implemented a similar system using a 

temporal generative adversarial net (GAN) which used 

over 26 hours of video for its training data (Vougioiukas 

et.al., 2019). Even projects that have achieved success with 

far less training data such as the one developed by (Laine 

et.al., 2017) still require every desired facial movement be 

present in the training data. These restrictions make such 

models expensive to develop. They also require entirely 

separate data to properly model movements and gestures in 

other languages, limiting their generalizability. 
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Motion-tracking based frameworks such as the ARTUS 

project (Bailly et.al., 2006) present an alternative that is 

more extendible and can be used in broader real-time 

applications such television broadcasts. Their use of 

marker-less tracking also allows their system to function on 

a variety of video clips in order to generate clearer lip 

movements for Deaf and hearing-impaired viewers to 

follow, as opposed to traditional subtitles. This 

methodology has proven to be effective in generating 

realistic facial movements, but is reliant on the underlying 

video. Further research would be beneficial to evaluate its 

performance in generating original movements in the 

absence of human video. 

 

            

Figure 1: The mouth landmarks from MPEG-4 (Ekman 

and Friesen, 1978).  

 

3. Revisiting Avatar Facial Representations  
While they must appear similar in their final renderings, 

humans and avatars have little in common in terms of 

underlying structure. Humans are made up of layers of skin, 

fat, muscle, and bone. Mobility is achieved via the 

contraction of various muscles that pull on the underlying 

bones and ligaments. In contrast, signing avatars are 

defined primarily by geometric positioning and color 

information. Any movement is caused by some sequence 

of matrix operations on the avatar's positional data. These 

two highly contrasting modalities must nevertheless 

facilitate the same results: realistic and believable 

phonemes, visemes, and gestures.  

 

The previous implementation of these facial processes on 

the Paula avatar utilized a FACS-based approach using the 

MPEG-4 facial marker definition. Although FACS is good 

at describing the process of observed actions on real human 

faces, an avatar framework instead needs to 

mathematically manipulate geometry to produce a final 

effect. The MPEG-4 representation attempts to define a 

complex series of muscle contractions with 28 points of 

positional control in two dimensions. Not only is there no 

strong structural connection between these modalities, but 

insistence on anatomical accuracy can distract from the 

ultimate goal of rendering expressive movement that 

garners the approval of the Deaf community. Ultimately, 

the underlying structure is only as useful as its ability to 

generate results. An improved model will be more 

congruent with the medium of avatar technology while 

allowing for greater artistic freedom and expediency.  

 

Probably the biggest shortcoming of the MPEG-4 modality 

is its reliance on positional movement while ignoring 

rotation. For example, when the muscles around the sides 

of the mouth are activated, they pull the corners of the lips 

out towards the sides of the face. However, instead of 

simply shifting all the muscle and fat farther to the side, the 

lips are pulled around the curvature of the teeth in an arc. 

This kind of curved movement path is so fundamental to 

animation and recreating naturalistic motion, it is one of the 

twelve foundational principles of animation as defined by 

the original Disney animators (Johnston and Thomas, 

1995).  

 

This lack of rotation also creates an inability to reproduce 

several of Ekman's action units, in particular, the Lip 

Funneler (AU 22) and the Lip Suck (AU 28) as seen in 

Figure 2. These two actions are particularly challenging to 

recreate with positional movement because of the way the 

lips curl over the teeth and push away from the face 

towards the camera. These limitations have led to 

undesirable results on the avatar. 

  

 
Figure 2: Two action units from FACS (Ekman and Friesen, 

1978) that are difficult to recreate using only 

positional facial markers. 

 
Figure 3: The best result achieved for AU 28 Lip Suck. 
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4. An Improved Framework  

4.1 Geometric Marker Placement  

In light of these considerations, the new representation is  

based not on positional translation, but rather the rotation 

of 44 individual mouth landmarks about a series of local 

pivot points. These landmarks lie along the surface of the 

geometry, centered on significant underlying geometry, 

and following the curvature of the lips. The original 

MPEG-4 landmarks are based on a general model of the 

movement of human facial anatomy, following the 

underlying muscles that pull on the lips. However, in a 

geometric representation, the landmarks should follow the 

underlying geometry that they will be transforming. This 

allows the model to work with the structural form of the 

avatar rather than retro-fitting a technique developed for an 

entirely separate modality. While this does technically 

increase the absolute number of control points from 28 to 

44, through the use of rotational movement, the final 

structure allows maximum control to the artist with far 

fewer controls. 

 

 
 
Figure 4: The original set of 28 control points (top); Red 
markers are the outer lip controls, white markers are the 
inner lip controls. Compare to the new set of control 
points and their geometric positioning (bottom).  
 

It should be noted that there are a number of approaches to 
determining optimal marker placement. The work of (Le 
et.al., 2013) attempts to find a minimal layout that is 
effective for motion capture retargeting based on their 
effectiveness at recreating a given series of deformations in 
motion. Additionally, (Reverdy et.al., 2015) and (Will et.al., 
2018) find compelling results on their motion tracker 
placement by using clustering methods to identify areas of 
the mesh with the strongest deformations while performing 
a series of expressions. This research does find marker 
placements that appear to perform more efficiently than the 
empirical placements such as the ones presented here. 
However, the primary goal of this new approach on the 
Paula avatar is to reduce the complexity of the work 
required of skilled artists, not necessarily the underlying 
computation.  

Of particular concern is the number of  control points 
surrounding the lips. The proposed optimization methods 
take the entire face into account when evaluating 
performance, which may mask underlying issues with 
localized performance in certain deformations. With the 
use of parameterized script controls as described in section 
4.2, there can be greater flexibility in the absolute number 
of markers without placing undue strain on the artists' 
workflow. This yields the additional advantage of allowing 
the more complex control to be exposed to the artist if 
necessitated by a specific situation. 

 

4.2 Major controls  

Instead of the artist directly manipulating all 44 control 

points, the new system defines twelve major lip movements 

based on industry best practices (Osipa, 2010):  

1. Lip spread                           7. Show upper teeth  

2. Jaw drop                              8. Show lower teeth  

3. Upper lip roll                       9. Left upper snarl  

4. Lower lip roll                     10. Right upper snarl  

5. Left lip corner                     11. Left lower snarl  

6. Right lip corner                   12. Right lower snarl  

The artist control structure for this system is presented as a 

set of sliders, each one dictating the intensity of each of 

these twelve movements. Here, 'intensity' refers to how 

extreme the movement appears on the face and is defined 

by a set of positional and rotational values for each relevant 

marker. These values are obtained by artist-generated 

extreme poses, intended to represent the most intense form 

of the movement an animator is likely to need. The slider 

values are normalized to lie between 0 and 100. This 

abstracts the complexities of generating the final shape to a 

single number, easily understood and manipulated by 

artists. When used in conjunction with one another, it is 

possible to recreate a wider range of action units than 

Paula's previous MPEG-4 framework with only a dozen 

single values for the artist to manage. 

Each slider is connected to its relevant landmarks on the 

face with a script. These short pieces of code contain the 

needed positions and rotations of the landmarks to generate 

the most extreme form of the movement. They are also 

responsible for managing the intensity of the pose by 

interpolating between the neutral and the extreme. The 

slider value dictates the proportion by which this 

interpolation should occur. For example, when a user 

moves the jaw drop slider to open the mouth and sets the 

value to 50, the markers will move from their neutral values 

to 50% of their most extreme positions. 

Further implementation details concerning the technologic 

connection between the landmarks and the sliders is 

presented in (McDonald, et al., 2022).  

This interface gives artists complex control over the 

geometry with a minimal number of controls to manage. 

Furthermore, not all controls must be used to produce every 

individual mouth movement, reducing the complexity of 

the animators' work. Extended controls can be revealed to 

the user as needed should smaller corrections be needed. 

Other potential uses for this slider interface could include 
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connecting the slider values to motion tracking markers, 

allowing for the retargeting of motion capture data. 

4.3 Marker Pivot Placement  

A rotation is defined by movement about some axis and 

centered around a pivot point. These define the local 

deformations of the geometry by the facial landmarks to 

portray the desired shape. For the lip landmarks, pivot 

points are derived from the sweep of the arc that the final 

movement must follow. For example, in the case of lip 

spread, the control points need to follow a curved path to 

simulate the pull of the lips across the teeth in a real human. 

Figure 5 shows the derivation of such a path with a simple 

circle following the curvature of the teeth as a guide. The 

circumference of the circle should extend past the teeth just 

enough to account for the mass of the lips sitting on top. 

The center of this circle is the pivot point for each lip 

landmark during any movement that spreads the lips wide. 

The arrow shows the connection between the circle center 

and the position of the landmark. 

 

 
Figure 5: The guide circle for determining the appropriate 

pivot point of the lip spread control markers.  

  

This same principle can be applied on an orthogonal plane 

to achieve the rotation necessary for AU 22 and AU 28. 

The difference in these movements is the location of the 

pivot. Instead of sweeping across the teeth, the lips in AU 

28 need to curl under the teeth. Additionally, each 

landmark needs its own custom pivot point based on its 

exact location on the lips. This is because in order to avoid 

collisions with the teeth, the amount of rotation will be 

variable depending on the thickness of the lip at that 

location. This inward rotation must also account for the 

naturally curved orientation of the landmarks as the lips 

follow the curvature of the teeth, even when in a neutral 

pose. The same guiding curve of the previous example can 

determine the precise locations of these pivots as well. 

Instead of following the curvature of the teeth, this guide 

curve follows the thickness of the lips along the orientation 

of the geometry defining that section. 

Human artists determined the exact position and orientation 

of these curves based on the orientation of the underlying 

geometry, specifically the edge loops that define the shape 

of the lips. While these positions have yet to be determined 

analytically, the initial results of the new approach were 

promising enough to continue with development. Future 

improvements may include optimization of these 

orientations, especially for application in the general case 

of any humanoid avatar. 
 

 
 

Figure 6: The guide circle for determining the appropriate 

pivots for the lip roll control markers.  

By utilizing this rotational movement rather than relying 

exclusively on positional information, the markers 

naturally follow the curvatures of the face, yielding more 

realistic results. Additionally, rotational movement allows 

for the complex lip behaviors that were difficult to replicate 

with the previous MPEG-4 landmarks.  

5.    Results 
The new system of empirically-placed facial markers 

driven by pre-set animation scripting is capable of 

reproducing all poses the original MPEG-4 framework 

could manage, while surpassing it in both control and 

flexibility. While each marker maintains only a small area 

of influence during a deformation, the combination of all 

markers working together gives more complex results with 

a far simpler interface for the artists. The results on the 

avatar are much improved in range of motion and 

expressivity. 

One of the most compelling aspects of this design is its 

extendibility. The framework can accommodate any 

number of additions by simply defining another set of pivot 

points for each landmark. Figures 7 and 8 demonstrate the 

capabilities of the new parameterized framework. Artists 

are able to recreate subtle, intricate nuance in the shape of 

the mouth with relatively few controls. Further extensions 

may include generalized parameterization of the placement 

of the markers and their pivots for application to other 

avatars. 

  

\ 
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Figure 7: AU 22 (left) and AU 28 (right) created by an artist 

using the new framework. AU 28 can be generated by 

adjusting only two sliders.  

 

Figure 8: Example expressions created on Paula using the 

new framework. The system is capable of generating a  

wide range of expressions and mouth postures.  

 

6. Future Work 
Due to the extendibility of the system, future work will 

include additional support for many signed languages 

including German Sign Language (DGS) and French Sign 

Language (LSF). Some expressive features of these 

languages require additional capabilities beyond those of 

both the new framework and the MPEG-4 description. For 

instance, there are several DGS mouth gestures that require 

interaction between the tongue and cheek. This complex 

deformation has yet to be recreated satisfactorily on a 

signing avatar. 

 

Previous research on clustering-based facial marker 

placement may be of use in extending the expressivity of 

the Paula avatar. One area in need of improvement is the 

extent to which the cheeks and surrounding areas react to 

wide movements on the lips. While there are landmarks in 

areas such as the upper cheeks that are scripted to react to 

certain artist input, informal subjective assessment of the 

results indicates that additional naturalism might be 

possible without increasing the workload on the artists. 

These studies could inform the optimal locations of 

additional markers to allow more flexibility in these 

secondary movements. 

Furthermore, a perceptual user study will be conducted to 

better assess the subjective quality of the final results 

compared to previous attempts on the Paula avatar. 
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Abstract
We introduce a new sign language production (SLP) and sign language translation (SLT) dataset, NIASL2021, consisting of
201,026 Korean-KSL data pairs. KSL translations of Korean source texts are represented in three formats: video recordings,
keypoint position data, and time-aligned gloss annotations for each hand (using a 7,989 sign vocabulary) and for eight different
non-manual signals (NMS). We evaluated our sign language elicitation methodology and found that text-based prompting had
a negative effect on translation quality in terms of naturalness and comprehension. We recommend distilling text into a visual
medium before translating into sign language or adding a prompt-blind review step to text-based translation methodologies.

1. Introduction
In this paper, we introduce a new Korean and Korean
Sign Language (KSL) translation dataset, NIASL2021,
containing 201,026 paired Korean-KSL samples from
the emergency alert message and weather broadcast do-
mains. NIASL2021 was created to support KoSign, a
sign language translation (SLT) and sign language pro-
duction (SLP) development project, and can thus be
used for SLT and SLP and serve as a reference for
avatar development. We also present a critical eval-
uation of the translation methodology used in NI-
ASL2021 to inform future collection methodologies.
Our contributions are:

• Introduction of the complete NIASL2021 dataset

• Quantitative evaluation of the translation method-
ology used in NIASL2021, which revealed that
text-free prompting produced better translations
than text-based prompting.

In section 2 we briefly review relevant research and de-
velopment projects before introducing the new transla-
tion dataset in section 3. We then present a quantitative
evaluation of our translation methodology in section 4
and present our conclusions in section 5.

2. Background
The primary language for many Deaf and hard of hear-
ing (DHH) individuals is their region’s sign language.
While hearing people can easily access a wide variety
of news sources, DHH signers are usually limited to
a handful of deaf news services or must consume me-
dia through text. Though using an interpreting service
is reasonable for large events and critical news broad-
casts, it is usually impractical to do so for daily news,

weather reports or non-critical alert messages. We sug-
gest that an automatic sign language translation en-
gine targeting this domain would be highly impactful
to DHH signers as a supplement to existing interpret-
ing services, underscoring the need for new emergency-
situation translation datasets.

2.1. Translation Data Collection
Translation datasets are multilingual datasets with a
semantic alignment between each language. A com-
mon trend in collection methodologies for monolingual
datasets is to prompt for expressions in the informants
native language or in a neutral medium (like images) to
reduce the influence of a foreign language as is men-
tioned in (Filhol and Hadjadj, 2018), (Nishio et al.,
2010), and (Hong et al., 2009). However, for transla-
tion datasets, a non-native language prompt is usually
used to create translations. Even when employing pro-
fessional translators, an increase in so-called transla-
tionese is unavoidable. See (Koppel and Ordan, 2011)
for a discussion. If the training data is intended to be
non-directional, a common method to reduce transla-
tionese imbalance is to collect an equal proportion of
source data from each language as in (Bojar et al.,
2018), where 50% of language A is translated into lan-
guage B and 50% of language B is translated into lan-
guage A for every language pair A and B in the dataset.
Source language texts are usually collected from exist-
ing material.
Since sign languages are extremely low-resource, ex-
isting sign language source material for a given trans-
lation topic will be insufficient. Therefore, the above
50-50 solution must be abandoned or data must be
manually generated from structured, semi-structured,
or unstructured interviews for sign language datasets.
Unstructured interviews will yield inconsistent content
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while structured interviews that allow fine control over
content will be subject to unwanted language influence
and translationese. We are not aware of any accepted
solution to this problem, and most projects assume that
using professional interpreters will minimize the sever-
ity of translationese.
The two most common benchmark translation datasets
for sign languages are RWTH-PHOENIX-Weather
2014T from (Camgoz et al., 2018) and How2Sign
(Duarte et al., 2020). RWTH-PHOENIX-Weather
2014T contains German and German Sign Language
(DGS) translation pairs from weather broadcasts while
How2Sign contains English and American Sign Lan-
guage (ASL) translation pairs from a variety of do-
mains. Both feature text, sign video translations, and
single-channel gloss annotations. Recently, (Camgöz et
al., 2021) introduced several news and weather broad-
cast sign language datasets with an order of magnitude
more data than in RWTH-PHOENIX-Weather 2014T.
Sign language datasets use the terms sign, type, and
gloss to encode and explain a signed passage. We re-
fer to (Johnston and Schembri, 1999)’s definition of a
sign: signs are “a relatively stable, identifiable visual-
gestural act with an associated meaning which is re-
produced with consistency by native signers and for
which, consequently, particular agreed values can be
given for hand shape, orientation, location, and move-
ment.” Types are a fixed naming system for signs, and
each type is distinct in appearance or in meaning. We
refer to (Konrad et al., 2020) for further discussion of
types. Finally, glosses are the text representations or an-
notations of a sign.

2.2. Sign Language Production
Though there is some overlap in the usage of “sign lan-
guage translation” (SLT) and “sign language produc-
tion” (SLP), literature is becoming clearer in using SLT
to refer to translating sign into text or speech (a natu-
ral extension of sign language recognition) and SLP to
refer to translating text or speech into sign language.
However, SLP also covers topics of avatar generation
and how to digitally express signing.

2.3. The KoSign Project
KoSign is an ongoing SLT and SLP engine develop-
ment project that started in 2021 and is funded by
the Korean Ministry of Trade, Industry, and Energy.1

The project is a collaboration between five domestic
member organizations: EQ4ALL, KETI, KAIST, Test-
Works, and the Korean Association of the Deaf. To
support continued development, we secured additional
funding for a large-scale Korean-KSL translation data
collection project (see section 3) and are continuing to
acquire funding for other projects in support of KoSign.
The scope of this project is two-fold:

• Research machine-learning-based SLT and SLP
(including relevant avatar technologies)

1산업통상자원부 in Korean.

• Develop a usable, bi-directional Korean-KSL
translation engine

We are leading the project and conducting SLP re-
search and development. We utilize transformer-like
models to predict type tokens and sign timing data, de-
coding into a multi-channel signing space. We are con-
ducting human evaluations for our models and will re-
lease our results in the future.
A brief overview of our avatar player was provided in
(Kim et al., 2022). We divide our avatar into five chan-
nels: left hand, right hand, body, lower face, and upper
face. We then use inverse kinematics (IK) and anima-
tion composition to model each channel and combine
them into one animation. This method is a simple way
to expand a limited number of animations into a large
set of complex animations.

2.4. Other Sign Language Production
Projects

There are a number of ongoing projects of similar
size and scope to KoSign. (EASIER, Accessed 2022
04 04) and (SignON, Accessed 2022 04 04) are two
projects funded by the EU’s Horizon 2020 research
program. Both projects aim to create models for au-
tomatic translation between sign languages and spo-
ken/written languages. Both projects target multiple
European sign and spoken languages. (AVASAG, Ac-
cessed 2022 04 04) (Avatar-basierter Sprachassistent
zur automatisierten Gebärdenübersetzung) on the other
hand is a research project focusing on developing a
real-time controlled avatar for translating German texts
into sign language.

3. NIASL2021
We2 introduce NIASL2021,3 a new Korean-KSL trans-
lation dataset, collected over the domains of Korean
government emergency alert messages and weather
broadcasts. Collection was a multi-organization effort
and native signers were intimately involved in the pro-
cess.
NIASL2021 contains 201,026 unique data samples
(segmented at the Korean sentence and multi-sentence
level) and can be used to train both SLT and SLP
(gloss-, pose-, or video-generating) models. KSL trans-
lations use 7,989 unique types, and all samples fea-
ture a single signer only. Data samples are organized
into one of forty-three categories: weather and forty-
two emergency alert categories. There are many similar
categories, and since multiple disaster events often co-
occur, there is significant overlap between categories.

2In this section, we use “we” to refer to our work and the
passive voice for work conducted by other parties.

3The project was funded by the Korean National Informa-
tion Society Agency (NIA). The dataset will be released in
late 2022, accessible through https://aihub.or.kr/; we will host
an in-depth user guide at https://eq4all-data.github.io from
the fourth quarter of 2022.
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For example, the landslide and flooding categories have
overlap with heavy rain and typhoon categories.
Each sample in the dataset has five components: meta-
data about the sample, Korean text, a KSL video trans-
lation of the text, gloss annotations, and automatically-
extracted keypoint estimations. For simplicity, we bun-
dle the metadata, Korean text, gloss annotations, and
keypoint data together in a JSON file so that each
sample can be expressed with only a video file and a
human-readable data file.
Since there is an abundance of emergency alert and
weather broadcasts available in Korean and none orig-
inally in KSL, KSL videos in every sample are trans-
lated from the associated Korean text. As discussed in
2.1, this may introduce undesired translationese in the
KSL samples, but we took as many steps as possible to
reduce this risk.
Note that a subset of NIASL2021 was used in (Kim et
al., 2022).

3.1. Korean Text Data
Korean text was initially scraped from government alert
and news websites to create a raw Korean text dataset.
This dataset had extreme class imbalance. Categories
related to recent issues like Covid-19 had many sam-
ples, but other categories like terrorism had few or
none. Additional samples were manually created based
on government text outlines for categories with too few
samples.
This raw text dataset was split into two subsets, one
subset set aside for the final dataset and one subset used
to train a series of GPT2-like natural language gen-
eration models for offline-augmentation as in (Kumar
et al., 2020). Using these models, each category was
oversampled (except for weather broadcasts and the in-
fectious diseases alert categories, which already had
a sufficient number of samples). Generated sequences
were then reviewed based on grammar and similarity
with training samples to ensure that synthetic data was
in distribution. Synthetic samples were then combined
with the unused text subset to create the final set of Ko-
rean text. Note that sample metadata indicates if it is a
synthetic or original sample.

3.2. KSL Video and Annotation Data
Based on feedback from KSL experts, we allowed mul-
tiple translations to be made for each Korean source
text. For each source, KSL experts determined how
many sign language translations should be prepared,
ranging from one to three translations. Researchers
should be aware of this detail when using the dataset
as over one-fourth of the data is made up of one-to-
many translations. If needed, researchers can reduce
the dataset to a 148,984 sample subset of one-to-one
translations.

3.2.1. Translation and Video Capture
After translation duplicity was determined for a source
text, we would assign the text to a translator and an

evaluator three days before a scheduled translation
filming date. We instructed translators and evaluators
to research each sample and prepare for translation and
evaluation, respectivley, during this three-day period.
On the day of filming, evaluators would review the pre-
pared translations. Translations that required little or no
correction could be filmed, and translations judged as
insufficient were corrected right away or returned to the
translator for improvement. Based on initial discussion
with KSL experts, we felt that this method should be
effective for producing high-quality translations.
Translations were filmed either in a studio with two or
five cameras or were crowd-sourced and filmed with
phone cameras or web cams. Of the 201,026 samples
in the dataset, 127,624 (63.49%) samples were created
in-studio and 73,402 (36.51%) were crowd-sourced.
The multi-camera setups captured one frontal view of
the signer and one or four 45◦ angled view(s) of the
signer (45◦ views were offset from above, down, left,
and right for the five-camera setup and left for the two-
camera setup).
All translators and evaluators were native signers and
had previous experience translating Korean into KSL.
Official translation videos may feature the translator or
may be filmed with a different signer who re-signed the
prepared translation exactly. Translator, evaluator, and
signer IDs were all collected in sample metadata.
Though all signers and evaluators were native signers,
we received feedback from participants that the crowd-
sourced videos may be of a lower quality than in-studio
translations. This is to be expected from crowd sourc-
ing but also indicates the need for more strict review of
crowd-sourced translations in the future.

3.2.2. Annotation
Filmed translations were annotated by hand with 90-
95% of samples annotated by deaf participants and the
remaining 5-10% by hearing signers. Additionally, our
type system was created and managed by deaf partici-
pants.
A single-channel gloss list would not sufficiently pre-
serve the meaning of the KSL translations in this do-
main. For example, one common translation pattern
was a disaster event like a fire that would be expressed
with one hand while the other hand explained what to
do about the event (take a detour, go the opposite way,
etc.). After consulting with KSL experts, we decided to
annotate the dominant hand4 and non-dominant hand
separately, as well as eight types of non-manual signals
(NMS): puffed cheeks (denoted Ci), head shake (Hs),
eye brow furrow (EBf), head nod (Hno), mouthings
(Mmo), rounded lips (Mo1), tongue out (Tbt), and
smile (Mctr). We refer to these ten different annotation
types as tiers. All annotations are time aligned to the
corresponding translation video.
Following the convention from (Kita et al., 1997), hand
signs can be segmented into four movements: prepara-

4All recorded signers self reported as right-handed.
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tion, stroke, hold, and retraction. The movement most
associated with a sign is the stroke. Preparation and
retraction are more akin to inter-sign movements and
hold is an optional movement where the articulator
is held in the sign or gesture’s final position. We in-
structed annotators to align annotations with the start
of the stroke and the end of the hold.
Each annotation in the sign tiers was from one of four
categories: type, dynamic number (signs combining
number hand shapes with gestures to express certain
quantities, such as dates, times, durations, and ages),
fingerspelling (FS), and number. We annotated FS and
numbers separately since a series of digits and a multi-
digit number need to be expressed differently (for ex-
ample, 555 can be either “five five five” or “five hun-
dred and fifty five”), and annotating groups of FS num-
bers together significantly eased the annotation bur-
den given the frequent phone numbers, addresses, and
quantity expressions in the dataset.
Though existing annotation tools like ELAN (Witten-
burg et al., 2006) are well-developed, we designed our
own webtool to have more control over the annotation
interface and for better integration into our online data
pipeline. This allowed us to create a separate annotation
insertion menu for each of the annotation categories,
streamlining the user interface.
In addition to the manual gloss annotations, pose data
was automatically extracted from each KSL video
using OpenPose. For videos filmed from more than
one angle (the in-studio five-camera and two-camera
videos), OpenPose-generated 2D keypoints from two
separate camera angles were used to calculate 3D key-
points for each frame using MATLAB. Since crowd-
sourced videos only have a single view, they contain
2D keypoint data.

3.3. Challenges
3.3.1. Signing Dates
In KSL, the day of the month cannot be signed without
also signing the month. For example, “the 11th” can-
not be signed by itself in KSL, but “the 11th of Jan-
uary” can be signed. However, it is common to ex-
press only the day of the month in Korean, especially
in emergency alert messages and weather broadcasts
since these sources are not intended to be relevant out-
side of a small temporal window. To create realistic
training data, we included samples with this pattern
and instructed translators to denote the month using the
zero value hand shape when translating. We also added
a flag in sample metadata so researchers can choose
to remove these data points or find some other work
around.

3.3.2. Translating Unclear Context
One of the biggest hurdles was translating low-context
and unclear phrases into KSL. There were two root
causes for this ambiguity: differing context require-
ments between Korean and KSL and poor Korean
source text segmentation.

The first problem refers to when something in Korean
can be expressed with ambiguity, but any translation to
KSL (as with most sign languages) is highly context-
dependent.
Since recording long sequences increases the need for
multiple takes and increases signer fatigue, source text
was intentionally segmented into short sequences. Ad-
ditionally, most of the synthetic text data (see section
3.1) was generated at the sentence level. This led to
the second problem mentioned above. Many such cases
were removed, but we allowed some to be translated
since it was not always clear what samples reflected
real-world data (because of the first problem above)
and what samples were vague due to processing error.
For future projects, we recommend segmenting at a
higher level or assigning consecutive samples to the
same translator.

3.3.3. Annotating Productive Signs
Following (Johnston and Schembri, 1999), we differ-
entiate between two classes of signs in NIASL2021:
established and productive signs. Established signs
are simply signs collectively known to users of a
sign language. Productive signs are created through a
novel combination of sign building-blocks (known as
phonomorphemes) or the selective modification of one
or more established signs or phonomorphemes. These
are new or modified signs spontaneously expressed
based on the signing context.
We annotated productive signs by labeling them with
the most similar type (referred to as its “parent type”)
and adding up to three special symbols and an optional
string identifier. We added a “#” character to the end of
every productive sign annotation, and optionally added
a short explanatory string after the “#” character. If the
sign terminated prematurely, we added a “@” charac-
ter after the “#” and optional string. Finally, when the
hand shape varied from the hand shape of the parent
type, we added a “&” character to the beginning of the
annotation.
For example, if the signer indicates that a car turns
left using a productive sign derived from the par-
ent type “car1”, then we might annotate the type as
“car1#turnleft”. If the hand is shaped a little tighter
to indicate that the car is small, it will be annotated
as “&car1#turnleft”. Finally, if the signer indicates that
the car starts to turn left but stops the sign abruptly (per-
haps to indicate that left turns are not allowed), the an-
notation would be “car1#turnleft@”. Note that actual
types are in Korean.

4. Translation Methodology Evaluation
Anecdotally, we noticed that some of the KSL transla-
tions were unclear without checking the Korean source.
Based on qualitative review, we tentatively identified
two reasons for low quality signing: unclear Korean
source passages (see section 3.3) and spoken language
influence on translations (see section 2.1). We can miti-
gate source ambiguity by aligning longer segments, but
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Figure 1: Overview of evaluation video generation. Best viewed in color.
*Source text is made available after initial review.

Figure 2: Example of an image prompt created from
part of a weather report. Only location names and
morning/evening abbreviations are expressed as text.

avoiding spoken language influence will require a new
translation methodology.
To evaluate translation quality and to explore the in-
fluence of spoken language in prompted sign language
translation, we designed two new translation method-
ologies: NIA+VID and IMG+TXT. Both are two step
methodologies with an initial translation (what we call
NIA and IMG video translations, respectively) and a
translation correction (VID and TXT corrected trans-
lations, respectively). Thus, NIA+VID and IMG+TXT
videos refer to corrected videos and any initial transla-
tions that are not corrected.
NIA+VID uses the NIASL2021 translation methodol-
ogy as the initial translation (for convenience, we use
translations from the dataset) and an initially prompt-
blind evaluation step. For IMG+TXT, prompts are first
converted into image representations. Signers then de-
scribe the image as the initial translation. The signer is
then shown the original prompt and given the option to

Figure 3: An example from our evaluation web tool.

update their initial translations. See figure 1 for a visual
overview of the two methodologies.

We further define signing quality as the aggregate of
signing naturalness and comprehensibility, evaluated
on a likert scale, and make the following hypotheses:
H1: TXT < IMG Text-aware correction decreases the
signing quality.
H2: NIA < VID Text-unaware correction increases the
signing quality.
H3: NIA < IMG Image-prompted translations are of a
higher quality than text-prompted translations.
H4: NIA+VID < IMG+TXT Image-prompted transla-
tions are of a higher quality than text-prompted trans-
lations, even with corrections.

Finally, it is important that we validate the adequacy
of all sign videos with respect to the source texts as
there are likely trade offs in adequacy, naturalness, and
comprehensibility.

63



4.1. Methodology
We sampled fifty source sentences from NIASL2021
and worked with four native signers to generate video
translations for each sample following the two proce-
dures outlined above. The four signers do professional
work related to sign language.
To measure the effects of prompting, it was important
that no signer translated the same source text for both
NIA+VID and IMG+TXT, so we used a round-robin
assignment method.
In total, signers created 148 videos: 50 NIA videos, 9
VID videos, 50 IMG videos, and 29 TXT videos. We
then had two native signers review the videos to find
cases where video quality or lack of signer preparation
may interfere with evaluations. These videos were re-
signed exactly (including hand signs and NMS) accord-
ing to the original video but with a more stable camera
and with the signer having practiced before filming.
We then arranged for nine native signers to evaluate the
videos. Three of the evaluators work professionally in
sign language translation and annotation with us, one
is involved in sign language research, and five work
in fields unrelated to sign language. Similar with the
translation procedure assignment above, it was crucial
that evaluators not review multiple videos correspond-
ing to the same source sentence since this could affect
comprehensibility. We used the latin-square method to
balance evaluator assignments and guarantee that each
video was reviewed at least two times.
We required evaluators to watch an introductory video
of a native signer explaining the goal of the research,
the importance of honest feedback, and how to inter-
pret the likert items. We also worked with our sign lan-
guage team to design an online evaluation tool for deaf
users. To encourage evaluations without influence from
written or spoken language, we removed as much text
from the evaluation interface as possible. We replaced
the standard likert text prompts with video prompts
that play when activated by the mouse cursor. Using
text was reported as too confusing and hard to look at,
and using continuous video prompts was reported as
being too distracting. The likert scale was also based
on significant user feedback. Rather than text labels,
we used three symbols to augment number labels: a
thumbs down over 1, a horizontal thumb over 4, and
a thumbs up over 7. The naturalness and comprehen-
sibility prompts translate as “the signing in this video
is natural” and “the signing in this video is understand-
able”, respectively. The scale values range from 1 for
strongly disagree to 7 for strongly agree. The evalua-
tion interface can be seen in figure 3.
After videos were evaluated, we became aware of
a possible quality difference between crowd-sourced
translations and in-house translations (see section
3.2.1). To avoid introducing bias into our analysis, we
removed samples that used crowd-sourced translations
from NIA and VID. This removed a total of nine videos
and twenty-seven evaluations from our analysis.

We also arranged for two professional interpreters to
evaluate all 148 videos in terms of adequacy with the
source texts (i.e., source-based direct assessment). This
evaluation used two two-point likert items and one
four-point likert item for each video. The first prompt
translates to English as “Compared to the Korean, the
KSL translation has added content” with a true/false
response. The second prompt translates similarly as
“Compared to the Korean, the KSL translation has
missing content” with identical response values. Fi-
nally, the third prompt translates as “The main points
of the Korean and the KSL translation are. . . ” with a
response of 1 for the same, 2 for slightly different but
acceptable, 3 for different and unacceptable, and 4 for
very different and unacceptable.

4.2. Results
We collected a total of 304 likert scale evaluations for
naturalness and comprehensibility. Raw likert results
are summarized in table 1.
We calculated Cronbach’s alpha for the two likert items
to be 0.889. According to (Nunnally, 1994)’s interpre-
tation for applied research, this is a sufficient level of
reliability between the two indicators, and we com-
bined the scores into one aggregate quality score. For
hypothesis testing, we applied ordinal logistic model-
ing with mixed effects to measure the effect of video
type on signing quality. For tests between IMG and
TXT and between NIA and VID, we limit IMG and
NIA to videos matching TXT and VID, respectively.
We also present quality z-scores normalized over eval-
uators in table 2 to build intuition.
Treating video type as a fixed effect and evaluator and
source sentence as random effects produced the best fit-
ting model for all four tests. We used Holm-Bonferroni
correction for multiple hypothesis testing to recalculate
p value thresholds. Models were implemented using the
“ordinal” R package, and we used likelihood ratio tests
to calculate p values as per (Christensen, 2019).
For H1, we restricted analysis to IMG (encoded as 0)
and TXT (encoded as 1) videos. For H2, we restricted
analysis to NIA (encoded as 0) and VID (encoded as 1)
videos. For H3, we restricted analysis to NIA (encoded
as 0) and IMG (encoded as 1) videos. For H4, we used
the combined video sets NIA+VID (encoded as 0) and
IMG+TXT (encoded as 1). See table 3 for results.
Regarding adequacy scores, IMG+TXT videos scored
higher than NIA+VID on average, but no statistically
significant differences could be found, and the esti-
mated effect size (based on Cliff’s Delta) is below the
minimal small threshold according to both (Vargha and
Delaney, 2000) and (Romano et al., 2006).

4.3. Discussion
The mode of scores for all translation videos is six or
seven for both likert items. By subdividing our scale
into disagreement (responses 1, 2, or 3), neutral (re-
sponse 4), and agreement (responses 5, 6, and 7), we
found that, for naturalness, NIA videos had a 66.33%
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Video Total 1 2 3 4 5 6 7 5+6+7

NIA 101 5.94% 2.97% 6.93% 17.82% 18.81% 26.73% 20.79% 66.33%
VID 12 8.33% 0.00% 0.00% 8.33% 25.00% 33.33% 25.00% 83.33%
IMG 127 0.00% 3.15% 6.30% 12.60% 19.69% 25.98% 32.28% 77.95%
TXT 64 4.69% 1.56% 9.38% 15.63% 18.75% 29.69% 20.31% 68.75%

NIA+VID 101 6.93% 1.98% 2.97% 17.82% 20.79% 26.73% 22.77% 73.29%
IMG+TXT 133 2.26% 3.01% 9.02% 10.53% 20.30% 27.82% 27.07% 75.19%

NIA 101 1.98% 6.93% 5.94% 13.86% 22.77% 23.76% 24.75% 71.28
VID 12 0.00% 0.00% 0.00% 16.66% 25.00% 33.33% 25.00% 83.33
IMG 127 0.79% 0.00% 8.66% 11.81% 15.75% 23.62% 39.37% 78.74
TXT 64 1.56% 6.25% 10.94% 7.81% 12.50% 32.81% 28.13% 73.44

NIA+VID 101 1.98% 5.94% 4.95% 12.87% 23.76% 23.76% 26.73% 74.25
IMG+TXT 133 1.50% 3.01% 9.02% 10.53% 14.29% 27.82% 33.08% 75.19

Table 1: Top: Naturalness likert results. Bottom: Comprehension likert results. VID and TXT are included for
reference, but NIA+VID and IMG+TXT are more informative for comparison. Mode response values are in bold.

Type Total mean std

NIA 101 -0.3051 1.1148
IMG 127 0.2432 0.8292

NIA (matched) 12 -0.5439 1.5002
VID (matched) 12 0.2450 0.8091
IMG (matched) 64 0.1923 0.7584
TXT (matched) 64 -0.0471 1.0399

NIA+VID 101 -0.2114 1.0430
IMG+TXT 133 0.1257 0.9746

Table 2: Signing quality z scores (calculated over eval-
uator). For comparison, scores are grouped by transla-
tion step, and high scores are presented in bold.

rate of agreement while VID and IMG (both created
from text-free prompts) had an agreement rate of over
75%. Furthermore, NIA agreement for naturalness in-
creased to over 73% after text-free correction was intro-
duced (NIA+VID). On the other hand, IMG agreement
dropped slightly to 75.19% when the text-aware cor-
rection was introduced (IMG+TXT). While agreement
for comprehensibility scores follows the same trend, it
did not vary as drastically.

Based on the above and on user-normalized z-scores for
the aggregate signing quality score, all of our hypothe-
ses seem to be supported. However, statistical tests re-
vealed that we can reject the null hypotheses only for
H3 and H4 and not for H1 or H2.

Given that there was no loss in adequacy, it is clear
that text-free prompting produced better translations
then text-based prompting (H3: NIA < IMG), and the
IMG+TXT procedure produced better translations than
those from the NIA+VID procedure (H4: NIA+VID <
IMG+TXT). Both produced better translations on aver-
age than NIA translations.

5. Conclusion
We introduced NIASL2021, providing an overview
of the dataset, the collection methodology, and chal-
lenges. We then provided an evaluation of the transla-
tion methodology used for NIASL2021. We found that
text-free prompting produced better translations than
text-based prompting. We recommend the following
for future data collection projects:

1. Prompting from visual media. Text-to-image dis-
tillation can be used for small projects or when a
standardized rubric can be developed.

2. (If text-based prompts are used) introducing an
evaluation step where the evaluator does not have
access to the source text.
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Abstract 
An avatar that produces legible, easy-to-understand signing is one of the essential components to an effective automatic 
signed/spoken translation system. Facial nonmanual signals are essential to natural signing, but unfortunately signing 
avatars still do not produce acceptable facial expressions, particularly on the lower face.  This paper reports on an innovative 
method to create more realistic lip postures.  The approach manages the complexity of creating lip postures, thus making 
fewer demands on the artists making them.   The method will be integral to our efforts to develop libraries containing lip 
postures to support the generation of facial expressions for several sign languages. 

Keywords: signing avatars, sign language representation, computer animation 

 

1. Introduction 

To improve deaf accessibility, multiple efforts have 
explored automatic translation from spoken to signed 
language.  However, since signed languages have no widely 
accepted written form, any output from machine translation 
will necessarily require a display on a computer-generated 
human form. One of the most promising methods is a signing 
avatar, and while efforts to utilize avatars have been ongoing 
since the late 90’s, the acceptability of signing avatars in the 
Deaf community has been lukewarm at best (Austrian 
Association of Applied Linguistics, 2019).  

One of the primary criticisms from the Deaf community has 
been the lack of adequate motion on the face, including the 
lack of adequate mouthing (Verlinden, Tijsseling, & 
Frowein, 2001), (Kipp, Nguyen, Heloir, & Matthes, 2011), 
(Ebling, et al., 2015). This paper revisits the existing 
technologies for mouthing on human avatars and proposes a 
novel approach that is tuned to the unique requirements of 
sign language, allowing for greater expressivity, and 
imposing fewer demands on the artists creating signed 
discourse.  

2. Background 

The technology of applying mouthing to a signing avatar 
draws on the traditional lip sync process used in character 

 
1 Another term commonly used in the animation industry is 

“blend shapes”.  

animation (Parent, King, Fujimura, & Osamu, 2002). The 
process involves four steps:  
 

1. Generate phonemes corresponding to a 

spoken word. 

2. Map each phoneme to a viseme, which is the 

phoneme’s visual appearance. 

3. Retrieve facial poses (or settings) 

corresponding to each viseme from a library. 

4. Apply facial poses to the avatar as animation 

keys. 

A prerequisite to this process is the creation of a library of 
visemes. Creating a realistic set of facial postures to portray 
visemes is a difficult and time-consuming task that does not 
always yield satisfactory results (Brumm, Johnson, Hanke, 
Grigat, & Wolfe, 2019). This paper describes an innovative 
approach to viseme creation that manages the complexity of 
the process in an animator-friendly way. The approach is 
sufficiently general that it also supports the creation of 
postures for mouth gestures as well as for visemes. 
 
There are two main approaches to creating visemes: using 
morph targets1 and using muscle simulation. Morph targets 
have the advantage of simplicity (Alexa, 2002). To create a 
library of visemes, artists manually sculpt each viseme from 

Figure 1: No linguistic or extralinguistic process has an exclusive franchise on a facial feature. 
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a copy of the original model and can utilize their favorite 
sculpting tools. From a software development standpoint, 
morphing is straightforward to implement. However,  the 
same simple implementation can create unanticipated 
effects. All changes in position in morphing follow a linear 
path, which is not compatible with human facial anatomy. 
Additionally, there is a deeper concern because in sign 
language, no one linguistic or extralinguistic process has an 
exclusive franchise over a facial feature and multiple 
processes can co-occur. With a morph implementation, 
multiple morphs will directly affect the same regions of the 
face simultaneously, but in an additive manner. The 
resulting effects are not natural-looking. Finally, from an 
implementation standpoint, morph representations require 
extensive in-memory storage. This is not necessarily a 
problem in desktop environments, but it can become a 
consideration on mobile devices. 

The alternative to morph-based systems are muscle-based 
systems. Park and Waters (2008) examined facial structure 
beneath the skin and developed a parametric representation 
to simulate muscles. A muscle-based approach has the 
advantage of producing more natural results, as the 
underlying representation more closely mimics the muscle 
behavior in a human face. A distinct disadvantage of this 
approach is the increased burden placed on an artist using 
the system. A case in point is simulating the orbicularis oris 
to control lip shape.  

The orbicularis oris is a complex multi-layered set of 
muscles that attach to the upper and lower lip. Researchers 
point out that, although anatomically it is a single muscle, 
from a functional viewpoint it actually consists of several 
components that either act independently or in concert with 
other facial muscles (Jain & Rathee, 2021).  Figure 2 
displays a simplified schematic of 10 of the 20 muscles 
attached to the orbicularis oris.  

3. Previous Work 

Previous signing avatars have used both the morph-based 
(Jennings, Elliott, & Kennaway, 2010), (Kipp, Heloir, & 
Nguyen, 2011) and the muscle-based (Wolfe, et al., 2018) 
approaches, but feedback from deaf communities indicated 
that the mouth postures were not satisfactory. These avatars 
relied on the MPEG-4 H-Anim standard for manipulating 
the mouth (Ostermann, 2002). In the standard, there are 28 
landmarks available to control lip postures. This was 
sufficient for early interactive agents to demonstrate the 
approach, but a rig capable of accurately portraying lip 
postures required more landmarks.  Johnson (2018).  
developed a rig with 44 landmarks instead of 28. This 
facilitated smoother lip postures and made it possible to 
portray a wider variety of mouth postures than with the 
original H-Anim landmarks.  

4. An Improved Approach 

With the new capabilities for precision and a wider range of 
expressive possibilities came problems with usability. From 
an animator’s perspective, the new rig was a step backwards. 
Instead of working with 28 landmarks to manipulate the 
face, the animator was confronted with the prospect of 44 
landmarks to manipulate. In this state, the new workflow 
made it more difficult, not less difficult, to create believable 
mouth poses. 

To counter this problem, Johnson began by organizing the 
facial muscles into groups, based on the perceived effect 
each group has on the face. He characterized the effect of 
various muscle groups on the lips, with the goal of making 
the lip posing process more manageable. Not surprisingly, 
the orbicularis oris is a member of each group. The other 
muscles in a group create localized changes to the geometry 
of the orbicularis oris.  For a discussion of building the 
muscle representation, please see (Johnson, 2022).  

 

Figure 2: Selected muscles affecting lip shape, including levator labii superioris (A), zygomaticus minor (B), zygomaticus 

major (C), orbicularis oris (E), risorius (F), depressor labii inferioris (G) and depressor anguli oris (H) (Chen, et al., 2012). 
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The muscle groups are attached to controls in the user 
interface in DePaul’s Expression Builder (Schnepp, Wolfe, 
McDonald, & Toro, 2013). Each control is simply a slider, 
and there is one slider for each muscle group. The first six 
groups listed in Table 1 appear in the Lips panel, as seen in 
Figure 3. (The second six groups appear in the Teeth panel 
of the interface.)  Per Table 1 all the sliders involve the 
orbicularis oris. Most of the sliders also manipulate 
connecting muscles that in turn affect the orbicular oris. In 
all, an artist has access to twelve sliders to manipulate the 
lips. This compares quite favorably to the 28 H-Anim 
landmarks and certainly a better approach than requiring the 
manipulation of a set of 44 landmarks. Artists can use this 
system to create not only visemes suitable for mouthing, but 
also postures for mouth gestures. 

 
Effect Cooperating muscle group Layer 

1 Lip Spread 

left/right risorius,  

left/right buccinator,  

obicularis oris 

1 

2 Jaw Drop 

left/right depressor  

      labii inferioris,  

mentalis,  

orbicularis oris 

2 

3 
Upper Lip 

Roll obicularis oris 
4 

4 
Lower Lip 

Roll 

left/right mentalis,  

left/right depressor 

    labii inferioris, 

obicularis oris 

4 

5 
Left Lip 

Corner 

left Zygomaticus major, 

left Depressor anguli oris, 

obicularis oris 

3 

6 
Right Lip 

Corner 

right Zygomaticus major,  

right Depressor anguli oris, 

obicularis oris 

3 

  
  

7 
Show Upper 

Teeth 

left/right zygomaticus minor,  

left/right levator labii 

     superioris alaeque  nasi, 

obicularis oris 

5 

8 
Show Lower 

Teeth 

left/right depressor labii  

      inferioris,  

left/right mentalis,  

obicularis oris 

5 

9 
Left Upper 

Snarl 

left levator anguli oris,  

left levator labii superioris 

       alaeque nasi,  

obicularis oris 

6 

10 
Right Upper 

Snarl 

right levator anguli oris,  

right levator labii superioris 

       alaeque nasi,  

obicularis oris 

6 

11 
Left Lower 

Snarl 

left depressor labii  

        inferioris,  

left depressor anguli oris, 

obicularis oris 

6 

12 
Right Lower 

Snarl 

right depressor labii  

        inferioris,  

right depressor anguli oris, 

obicularis oris 

6 

Table 1: Muscle groups and their effect on the lips. 

5. Implementing the approach 

The last part of this approach involves developing the 
infrastructure required to manage the behavior of the 44 

landmarks in response to the manipulation of the sliders. 
Consider a single slider “Lip Spread” from the interface. It 
controls the effects of the buccinator muscles, which 
compress the orbicularis oris and the risorius muscles which 
spread it. Moving the Lip Spread slider to the left activates 
the buccinator which puckers the lips. Moving the Lip 
Spread slider to the right activates the risorius which widens 
the mouth. 

 
A negative Lip Spread compresses the lips. 

 

 
A positive Lip Spread widens the lips. 

 
Figure 3: Artists use sliders in the interface to create facial 

postures 

 

5.1 Basic algorithm 

Now consider a single landmark of the 44 landmarks on the 
mouth. The landmark has three positions of interest – one 
when the lips are fully pursed, one when the lips are fully 
spread and one when the lips are in the neutral position. 
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These three points define a path. Instead of following a 
straight line from one extreme to neutral to the other 
extreme, as in a morphing approach, the transition path 
follows an arc which approximates the local contour of the 
head. This creates a natural-looking transition, with no 
awkward or unnatural intermediate positions.  

A script within the landmark connects2 the landmark’s 
position to the user interface slider “Lip Spread”. The slider 
value controls the landmark’s position along its path. Each 
of the 44 landmarks has a customized script connected to the 
“Lip Spread” slider that controls its path movement. When 
an animator adjusts the slider, the landmarks all move in 
concert, see Figure 3. The same scalar from the  slider 
controls the rotations for all the landmarks.  

Thus, the slider value is the parameter for all of the landmark 
scripts. This requires creating a strict consistency in the 
slider values in the user interface. For each parameter, a 
value of zero corresponds to the neutral position on the 
landmark. For symmetric sliders, the range is always -10 to 
10. For asymmetric sliders, the range is always 0 to 10. (The 
jaw drop slider is slightly different for historic reasons, but 
its neutral position is at zero.)  

Adhering to this consistency results in shorter scripts, and 
quicker code development. Further, resetting the entire face 
to neutral is simply a matter of setting all of the values of the 
user interface sliders to zero.  

We used the scripting capability of a commercial animation 
package to prototype the approach. Figure 4 gives the 
pseudocode script for a landmark controlled by the Lip 
Spread slider. The initial statement designates the user 
interface slider as the connecting parameter; the second line 
ensures that the incoming parameter absolute value is no 
more than 1. The if statement distinguishes between the 
spread (positive) and pucker (negative) cases. The slerp 
(spherical linear interpolation) function calculates the angle 
of rotation for the landmark. Note that a single slerp 
operation between qmaxPucker and qmaxSpread cannot in 
general be assumed here because the half-way point between 
the two rotations may not be identity.  

Some landmarks, particularly those on or near the center 
line, will be influenced by multiple muscles, and each 
muscle will have a different behavior. Scripts can 
accommodate this situation and blend the influences to 
derive a smoothly changing transition. 

Figure 4: Pseudocode to control landmark position from user 

interface. 

 
2 Commercial animation packages refer to these as “wires”. 

5.2 Organizing multiple influences 

As is demonstrated in Figure 4, the scripts for controlling a 
single cooperating muscle group are straightforward. 
However, on the human face, the orbicularis oris has 
multiple influences from many sets of cooperating muscles. 
Attempting to incorporate all influences into the landmark 
scripts would become unmanageable.  

To accommodate the many influences while keeping script 
complexity under control resulted in a layered organization. 
Instead of having a single set of 44 landmarks, there are six 
sets of landmarks, one each for spread, jaw drop, lip roll, 
(mouth) corners, show teeth and snarl.  Table 1 lists their 
layer assignments, with smaller layer numbers being more 
global (proximal) in the hierarchy.  Each layer has its own 
set of scripts, and the complete lip posture is a result of 
multiplying the transform matrices of the corresponding 
landmarks in each layer. 

5.3 From prototype to production 

Our avatar modeling, rigging, and texturing occur in several 
commercially available animation packages (3ds Max, 
Maya, Substance Painter), and a custom exporter package 
converts these into a format compatible with our real-time 
avatar display. Likewise, the scripts connecting the user 
interface to the landmarks originated in a commercial 
package and needed to be exported to the real-time system. 
This presented a knotty problem, because the complexity of 
the scripts would require the addition of a parser to export 
them. 

As an alternative, we added a specially formatted comment 
line at the beginning of each script.  A colon-delimited line 
specifies 

• Number of muscles influencing the movement 

• Names of slider controlling the movement 

• Whether the range of the slider control is 

symmetric or asymmetric 

• Extreme maximum value of the landmark rotation 

(positive values of slider) 

• Extreme minimum value of the landmark rotation 

(negative values of slider) 

• Normative factors to convert incoming parameters 

from sliders to range from -1 to 1 or 0 to 1, 

depending on whether the parameter range is 

symmetric or asymmetric 

• Weights corresponding to the influence of each 

muscle 

For the pseudocode in Figure 4, the pseudo comment line 
would be 

--:1:LipSpreadSlider:symmetric:qmaxSpread: 
qmaxPucker:10:-10:100:100  

Please note that the strictures of the paper format required a 
line break.  Thus, the exporter only had to consider the first 
(comment) line of a script when exporting it. Given the 
adherence to a consistent writing style for the scripts, we 
were able to express the intent of the scripts in the form of a 
comment line.  The exporter required only a few additional 

 

dependsOn LipSpreadSlider 

t = LipSpreadSlider / 10 

if t >= 0 then 

 slerp identity qmaxSpread  t 

else 

 slerp identity qmaxPucker -t  
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lines of code to process the scripts, and a single, generalized 
shader in the real-time avatar display accommodated all the 
scripted behavior. 

6. Controlling motion 

Posture is, of course, only part of the equation when dealing 
with avatars, since much of what distinguishes natural vs. 
robotic signing is carried in the motion between the 
animation keys.  Thus, intuitive control of the interpolation 
between animation keys is critical, and the new facial bone 
structure and control set has several distinct advantages over 
both the MPEG-4 H-Anim localized control and the original 
Paula rig: 

• A more compact control count (56 as opposed to 

800) affords more space in the database for 

velocity/acceleration control, 

• Each of the controls is a single scalar rather than a 

3D position or set of Euler Angle rotations, so a 

single animation control can affect all of 

position/rotation information encoded in each 

script.  Interpolating a scalar is more 

straightforward than interpolating a position and 

certainly more straightforward than interpolating a 

rotation, 

• Each control affects multiple bones in a 

coordinated and intuitive manner, e.g., lip spread, 

rather than controlling highly localized position on 

the skin. This allows a single animation control to 

affect multiple bones with a more coordinated and 

predictable result for the animator. 

To compliment the Expression Builder, the Paula system 
provides an interface (Figure 5) offering the following 
animation parameters for each facial muscle control group.  
They are based on a Tension-Bias-Continuity interpolator 
(Bartels, Beatty, & Barsky, 1995), but with the parameters 
renamed to give a more intuitive set of controls for the 
animator: 

• Speed: maps to the Tension parameter and 

controls the rate of change of the control values 

through the key 

• Bounce: maps to the Continuity parameter and 

controls the degree to which the speed changes 

abruptly or more smoothly at a key 

• Overshoot: controls the degree and direction of 

overshoot through a key which is an inherent 

feature of most interpolators and can be beneficial 

for creating abrupt “snap” effects 

• Ease In/Out: Controls the classical Disney style 

animation features of ease at a key 

• Compound controls: These are special controls 

that coordinate settings of the other controls for 

specific effects 

These controls afford the animator with more direct ways to 
create the explosive motion out of a B or a P, or to create 
softer entries more subtle motions into a pose. 

7. Conclusion and future work 

We have retooled all the controls in the Expression Builder 
to this scripted approach.  It gives artists more flexibility in 
creating not only lip postures, but convincing poses 
involving the entire face.   

 

Figure 5: Animation controls. 

The approach has also lightened data storage demands.   The 
previous version of the Expression Builder required over 
800 values to record a single facial pose.  Now the 
Expression Builder only stores the 56 slider values from the 
user interface, but the slimmed-down value set allows for 
more precision and flexibility in creating lip postures and 
eye apertures. Additionally, the more compact 
representation has made it possible to control the local speed 
of the motion of a slider at each key using Tension-
Continuity-Bias controls that makes it easy to control 
overshoot, bounce, and many other dynamical properties. 
Future plans are to create additional viseme sets to support 
mouthing in multiple signed languages, including LSF, 
GSL, DGS and DSGS, and then to test the resulting 
animations with the Deaf community.  
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Abstract
We present the requirements, design guidelines, and the software architecture of an open-source toolkit dedicated to the
pre-processing of sign language video material. The toolkit is a collection of functions and command-line tools designed to
be integrated with build automation systems. Every pre-processing tool is dedicated to standard pre-processing operations
(e.g., trimming, cropping, resizing) or feature extraction (e.g., identification of areas of interest, landmark detection) and can
be used also as a standalone Python module. The UML diagrams of its architecture are presented together with a few working
examples of its usage. The software is freely available with an open-source license on a public repository.

Keywords: sign language, video pre-processing, open source toolkit, software engineering

1. Introduction and Related Work
In these years, there is a consistent amount of public-
funded research on sign language recognition and
translation. In particular, two EU-funded projects,
SignOn1 (Shterionov et al., 2021) and EASIER2, at-
tempt to provide bi-directional translation from and to
spoken and sign languages of different European lan-
guages.
In addition to its contribution to the EASIER project,
the German Research Center for Artificial Intelligence
(DFKI) works on the nationally funded AVASAG3

(Nunnari et al., 2021a) and SocialWear4 (Nunnari et
al., 2021b) projects. All of those projects share the use
of the latest generation of artificial intelligence tech-
niques, based on neural networks, for video analysis.
In all cases, video material needs to be analysed and
pre-processed before being fed to convolutional neural
networks (CNN) architectures.

In machine learning, data pre-processing is a common
task that ensures some form of data normalization and
possibly some pre-computation of features that facili-
tates the training of the neural architectures.
In the realm of sign language, such video pre-
processing might include identifying body parts
(hands, face, lips, eyes) and cropping the portion of
video frames containing a higher resolution of such
items. Other pre-processing steps might include the
identification of landmarks (i.e., transiting from pixel-
based features to 2D/3D vector information).
However, despite being recognized as a necessary step,
pre-processing is performed again and again among
different projects using highly customized scripts that
are hardly reusable across projects or datasets. This is

1https://signon-project.eu
2https://www.project-easier.eu
3https://avasag.de
4https://affective.dfki.de/

socialwear-bmbf-2020-2024/

due to many factors. One of them is the storage format
of the video material, which is for example available
as images sequence in the PHOENIX corpus (Forster
et al., 2012) and as compressed videos in the Hamburg
DGS corpus (Hanke et al., 2020). Other typical
differences relate to different ways of organizing and
naming the video sources.

For those reasons, the DFKI started a software project
with the goal of collecting in a single open-source
repository all of the algorithms broadly needed to per-
form pre-processing of sign language videos, to max-
imize reusability across projects, but leaving out the
specific details that are hindering its portability.
The project is called Sign Language Video process-
ing Tools5 and it is available as a public open-source
repository on the popular GitHub platform. The soft-
ware package is essentially a collection of command-
line tools, usable also as Python modules, developed
by aggregating several popular open-source libraries
and tools such as ffmpeg6, MediaPipe (Lugaresi et al.,
2019), OpenCV (Bradski and Kaehler, 2000), MTCNN
(Xiang and Zhu, 2017). Figure 1 shows some examples
of the toolkit in action.
The added values of this toolkit, compared to directly
using directly its underlying libraries, are described in
detail in section 2. Section 3 lists the tools implemented
so far. Finally, section 4 summarizes the paper and de-
scribes future work.

2. Framework Goals and Design
The framework has been designed to fulfill the three
following requirements:

1. Usable both as command line tools as well as
Python functions;

5Sign Language Video Processing Tools code repository:
https://github.com/DFKI-SignLanguage/
VideoProcessingTools

6https://ffmpeg.org
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Figure 1: Examples of the toolkit applied to a test video of the PHOENIX corpus. From left to right: face bounds
detection, cropping, detection, and normalization of facial landmarks. For the latter, the blue dots are the landmarks
detected by MediaPipe, while the red dots are the landmarks after normalization of the head orientation.

2. Support video streams both as encoded videos and
as image sequences;

3. The parameters of the command-line tools are de-
signed to be concatenated with build automation
tools.

In the following, we describe how those requirements
have been addressed.

As for Requirement 1, all of the video process-
ing tools are organized as stand-alone Python mod-
ules. Figure 2 shows a UML diagram of the top-
level slvideotools package, which contains a sub-
package for each of the available tools. Packages and
sub-packages are implemented as Python sub-modules.
Every sub-module acts as wrapper for a specific func-
tionality. Each wrapping sub-module contains a top-
level code acting as the main execution point, parsing
the command line arguments, and invoking the corre-
sponding video processing function; the latter has the
same name as the containing sub-module.
For example, the crop video tool is implemented in
the slvideotools.crop video sub-package and
can be invoked as CLI command:
python -m slvideotools.crop_video\

--inframes myface.mp4\
--inbounds face_bounds.json\
--outframes cropped_frames/

At the same time, the function crop video(...) is
available within pure Python code and can be imported
and reused:
from slvideotools.crop_video import crop_video
from slvideotools.datagen import\

create_frame_producer, create_frame_consumer

with create_frame_producer(
dir_or_video="myface.mp4") as prod,\

create_frame_consumer(
dir_or_video="cropped_frames") as cons:

with open("face_bounds.json", "r") as bounds_fp:

bounds = json.load(bounds_fp)

crop_video(frames_producer=prod,
bounds_tuple=bounds,
frames_consumer=cons)

The next paragraph describes what are frame producers
and consumers.
Requirement 2 Sign language video material is often
stored as a video stream. However, in some cases, to
more easily feed single frames to a convolutional clas-
sifier, or to avoid video compression artifacts, videos
are stored as a sequence of single images, usually col-
lected inside a folder. To seamlessly support frame se-
quencing from both videos and image folders, the class
structure depicted in Figure 3 was adopted. The pro-
duction and the consumption of frames are managed
through two abstract classes: FrameProducer and
FrameConsumer. Their subclasses are responsible
for implementing a method to read frames from a video
or a directory, and to store frames in a video or direc-
tory. To further facilitate code flexibility, two factory
methods (Gamma et al., 1994) create the correct Pro-
ducer/Consumer subclass by checking if the source or
the destination is a video file or a directory. Finally,
the Producer/Consumer top classes support the con-
text management interface7, allowing for for automatic
resource disposal through the with ... as ...
statement.
As a result, the typical recipe to process frames from/to
video containers or directories is illustrated in the fol-
lowing code snippet.
from slvideotools.datagen import\

create_frame_producer, create_frame_consumer

with create_frame_producer(
dir_or_video="my/frames/") as prod,\

create_frame_consumer(
dir_or_video="my_final_video.mp4") as cons:

7https://docs.python.org/3/reference/
datamodel.html#context-managers
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slvideotools::trim_video

+trim_video(input_path: str, output_path: str, start_frame: int, end_frame: int)
+main()

slvideotools::extract_face_data

+extract_face_data(
    in: FrameProducer,
    composite_frames_out: VideoFrameConsumer,
    normalize_landmarks: bool):
        Tuple[ndarray, ndarray, ndarray, ndarray]
+main()

slvideotools::extract_face_bounds

+extract_face_bounds(in: FrameProducer, method: str: head_focus: bool): Tuple[int, int, int, int]
+main()

slvideotools::draw_bbox

+draw_bbox(in: FrameProducer, bbox: list, out: FrameConsumer)
+main()

slvideotools::crop_video

+crop_video(in: FrameProducer, bounds_tuple: list, out: FrameConsumer)
+main()

slvideotools
+crop_video
+draw_bbox

+extract_face_bounds
+extract_face_data

+trim_video
+datagen

Figure 2: The UML diagram of the data video processing tools package.

datagen

+create_frame_producer(dir_or_video: str): FrameProducer
+create_frame_consumer(dir_or_video: str): FrameConsumer

::ImageDirFrameConsumer
-dest_dir: str
-frame_name: str
-img_ext: str
-img_counter: int
+__init__(dest_dir: str, base_frame_name: str, img_ext: str)__
+consume(frame: ndarray)
+close()

::VideoFrameConsumer
-target_video_path: str
-ffmpeg_video_out_process
+__init__(video_out: str)__
+consume(frame: ndarray)
+close()

datagen:FrameConsumer

+consume(frame: ndarray)
+close()
+enter()
+exit()

::ImageDirFrameProducer
-dir_path: str
-dir_files: List[str]
+__init__(source_dir: str)
+frames(): np.ndarray
+close()

::VideoFrameProducer
-ffmpeg_read_process: process
-video_w: int
-video_h: int
+__init__(video_in: str)
+frames(): np.ndarray
+close()

datagen:FrameProducer

+frames(): ndarray
+close()
+enter(): None
+exit(): None

Figure 3: The UML diagram of the data generation subpackage.

for in_frame in prod.frames():
# Process your frame
# out_frame = ...

# Feed the frame to output video
cons.consume(frame=out_frame)

Finally, for Requirement 3, the command line tools
must be usable from wrapping build automation sys-
tems like the popular GNU Make8 or equivalent more

8https://www.gnu.org/software/make/

advanced systems like Luigi9.
Video datasets can grow consistently, and running
video preprocessing over many video samples can be
time and resource-consuming. Hence, when preparing
a new dataset, it is important to avoid the repetition of
a video processing step (e.g., feature extraction) when
not required, e.g., when only a few new samples are
added or a few samples are updated (e.g., re-takes).
To fulfill this requirement two simple guidelines were

9https://github.com/spotify/luigi
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followed. First, the command line interfaces have been
designed to take explicit filenames as input and out-
put, avoiding any automatic generation of filenames
or any custom convention about naming. For exam-
ple, automatic filename composition, like appending
a timestamp to a base file naming, is avoided. Au-
tomatic filename generation can be handy to run sev-
eral tests while avoiding overriding previous results,
but hinders reproducibility and increases the complex-
ity in the maintenance of data folders (also, potentially
leading to uncontrolled space occupation). Hence, file
names must be unambiguously provided and naming
conventions are left to project-specific needs. Second,
every script is designed to manage single files (or single
folders containing video frames). Iteration over files or
directories, which normally requires dealing with pecu-
liar naming conventions, is left to external automation
tools.
For example, the following Makefile scans a direc-
tory for videos with extension .mp4 and for each video
generates a corresponding .bounds JSON file with
information on the bounding box containing the face
of the speaker in the video.
# Directory containing the .mp4 files
DIR=videos
# Lists all of the MP4 videos
invideofiles := $(wildcard $(DIR)/*.mp4)
# Compose the names of output .bound files.
boundfiles := $(subst .mp4,.bounds,$(invideofiles))

all: $(boundfiles)
@echo "Extracted face bounds."

$(boundfiles): $(DIR)/%.bounds: $(DIR)/%.mp4
@echo "Finding bounds for video $< ..."
python -m slvideotools.extract_face_bounds \

--invideo $< \
--outbounds $@

@echo "Saved to $@."

Every time the make command is invoked, each
.bounds file will be created or updated if the corre-
sponding source video is renewed.
The use of automated dependency checking systems
is of extreme advantage when dealing with evolving
datasets where single animation clips might be added or
updated as the dataset is populated. Using dependency
systems ensures that only the minimal set of video pro-
cessing operations is performed to keep the dataset in a
consistent state.

3. Implemented Tools
At the moment of writing, the following command-line
tools and functions are fully implemented.

extract face bounds This tool analyzes a video clip
and identifies frame-by-frame a bounding rectangle
containing the face of a speaker. The bounding box
(upper-left x and y corner, width, height) of the full
video is then computed so that the face is always visi-
ble during the whole video. For sign language analysis
this approach helps in dealing with frames where the
hands cover the face. In those situations, face detec-
tion tools fail. By gracefully skipping frames without

a visible face, the global bounds containing the face
for the whole video can still be inferred from the other
video frames, where the face is detected. Two detection
methods are currently supported: using the MediaPipe
library (Lugaresi et al., 2019), which is faster, or the
MTCNN (Zhang et al., 2016), which is more robust
for faces at variable distances from the camera. The
bounding information is saved into a simple JSON ar-
ray file.

draw bbox This tool takes as input a video and
bounding box information and produces a new video
with the bounding information as an overlay. This is
useful for debugging the face detection procedure.

crop video takes as input a video and bounding box
files and outputs a cropped video. This is useful for
cropping the face, hands, lips, or any other information
which requires zooming on a body part for normaliz-
ing image size, increasing resolution, removing noisy
information, and thus improving further analysis.

extract face data is a complex tool able to extract
four kind of information. First, it uses Mediapipe to
extract the set of 468 landmarks describing the move-
ment of the face of a subject. Second, it outputs the
position of the tip of the nose, which can be used as
reference to identify the position of the face in a video
frame. Third, it infers the rotation of the head; this is
done with vector operations involving the landmarks at
the border of the forehead, which are not involved by
facial muscle activation (Figure 4 shows the process).
Fourth, it calculates a scaling factor, estimating the dis-
tance of the face from the camera, useful to normalize
the face size before using it in further facial expression
recognition algorithms, such as the classification of fa-
cial expressions (Savchenko, 2021).

trim video is useful to trim out initial and ending
frames of a video, for example to insulate stroke
and hold phases of a motion while removing the
preparation and release phases. This script is the only
one not using the Producer/Consumer mechanism, but
takes as parameters the input and output video file
paths, and relies of the ffmpeg core functionality to
trim a video while avoiding uncompressing and recom-
pressing the stream (which might hinder video quality).

Command Elapsed frames/sec
extract face bounds (MTCNN) 44s 5,5

extract face bounds (MediaPipe) <1s >242
draw bbox 6s 40,33
crop video 2s 121

extract face data 9s 28,89
trim video < 1s > 242

Table 1: Results of the speed test measuring the execu-
tion time on a 242-frame sample video.

To measure performances, we monitored the time
needed for the execution of all the implemented com-
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Figure 4: Computing the head rotation from the Mediapipe 3D facial landmarks. To calculate the rotation of the
head, we need to define a new orthogonal system with axes X , Y , and Z, which must be already approximately
aligned with the absolute reference axes x,y,z when the subject is looking straight forward. The new system
must be computed using landmarks that do not move with the facial muscles. The new X axis is computed by
considering two landmarks on the forehead. A new A axis is computed considering the midpoints of two horizontal
segments joining the sides of the face. Because of noisy information and approximations, A is rarely perfectly
orthogonal to X; hence, the new Y is computed from A by subtracting its projection on X . Finally, the new Z is
the cross-product between X and Y . The new XY Z reference system is then compared with the global xyz axes
to produce a 3x3 rigid rotation matrix.

mands on a sample sign language video. The sample
video is the longest found in the PHOENIX 2014-T
corpus: 242 frames, resolution 210 X 260 pixels. The
reference hardware is a MacBookPro (model 2019)
with Intel i9 CPU. Table 1 reports the results. It can
be noticed that the slowest process is the extraction of
the face bounds with MTCNN, while the same process
executed with MediaPipe lasts less than one second. It
is worth specifying that the test machine doesn’t sup-
port GPU acceleration, meaning that MTCNN might
perform significantly better on other hardware.

4. Conclusions
We presented the requirements and architecture design
of an open-source software toolkit dedicated to the pre-
processing of sign language videos. The goal of such a
toolkit is to centralize, into a single repository, pieces of
code that are often copied and scattered around many
projects requiring pre-processing for developing sign
language recognition systems. The software architec-
ture of the toolkit has been designed with extensibility
in mind.
The toolkit offers already the scripts needed to pro-
cess face information and will be extended to integrate
ad-hoc analysis of other body parts (head, upper body,

hands) and features (eye blinks, eye gaze, etc.). Other
tools will be likely dedicated to color normalization.
We are updating this toolkit with the code that we de-
veloping for three different projects dedicated to sign
language analysis and translation. Our goal is to help
the research community in speeding up video mate-
rial pre-processing, without re-implementing it from
scratch, and involve other researchers in sharing other
pre-processing techniques in a common open reposi-
tory.
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Abstract
There has been increasing interest lately in developing education tools for sign language (SL) learning that enable self-
assessment and objective evaluation of learners’ SL productions, assisting both students and their instructors. Crucially, such
tools require the automatic recognition of SL videos, while operating in a signer-independent fashion and under realistic
recording conditions. Here, we present an early version of a Greek Sign Language (GSL) recognizer that satisfies the
above requirements, and integrate it within the SL-ReDu learning platform that constitutes a first in GSL with recognition
functionality. We develop the recognition module incorporating state-of-the-art deep-learning based visual detection, feature
extraction, and classification, designing it to accommodate a medium-size vocabulary of isolated signs and continuously
fingerspelled letter sequences. We train the module on a specifically recorded GSL corpus of multiple signers by a web-cam
in non-studio conditions, and conduct both multi-signer and signer-independent recognition experiments, reporting high
accuracies. Finally, we let student users evaluate the learning platform during GSL production exercises, reporting very
satisfactory objective and subjective assessments based on recognition performance and collected questionnaires, respectively.

Keywords: Greek Sign Language recognition, MediaPipe, MobileNet, ResNet, CNN, BiLSTM, sign language learn-
ing, user evaluation

1. Introduction

Sign languages (SLs) involve a complex non-vocal
means of communication in the 3D visible space
around the signer, with both manual and non-manual
articulation carrying linguistic content of a set of
glosses (Armstrong et al., 2002). Such complexity ren-
ders SL education a difficult and time-consuming pro-
cess (Kemp, 1998) for both learners and their instruc-
tors, thus motivating recently the development of au-
tomatic SL assessment and tutoring tools (Aran et al.,
2009; Zafrulla et al., 2011; Ebling et al., 2018; Joy et
al., 2019; Mohammdi and Elbourhamy, 2021). A crit-
ical functionality in such applications is the ability to
assess the validity of the learners’ SL productions, ne-
cessitating automatic SL recognition (SLR) of the pro-
duced videos in a signer-independent fashion and under
realistic, non-ideal recording conditions. Not surpris-
ingly, this constitutes a challenging problem, due to the
aforementioned complexity of SL production, coupled
with the intricacies of robust video processing (detec-
tion, tracking, representation) and inherent inter-signer
production variability.
Motivated by the above, in conjunction with the lack
of learning tools in the under-resourced Greek Sign
Language (GSL), we have recently initiated the “SL-
ReDu” project (Potamianos et al., 2020). This aims
to considerably advance the current state-of-the-art in
automatic recognition of GSL from videos, while fo-

cusing on the use-case of standardized GSL teaching
as a second language. For this purpose, in previous
work we have already developed a suitable platform
that allows “passive”-type GSL learning exercises (e.g.,
multiple-choice questions) and populated it with ap-
propriate learning material (Sapountzaki et al., 2021;
Efthimiou et al., 2021). However, we have not yet en-
abled “active”, production-type assessment, which re-
quires an appropriate SLR module.

In this paper, we proceed to enable such functionality,
presenting our initial GSL recognition module that we
integrate to the SL-ReDu platform. In particular, we
focus on two recognition problems: (i) that of isolated
GSL signs within a medium-size vocabulary, develop-
ing separate models for numerals and non-numerals,
and (ii) that of continuous sequences of fingerspelled
letters of the Greek alphabet. Note that the latter task
plays a critical role in SLs, as it is regularly used for
words that lack unique signs, such as names, technical
phrases, and foreign words, among others (Armstrong
et al., 2002).

We develop the corresponding SLR module incorporat-
ing state-of-the-art deep-learning techniques. Specifi-
cally, we utilize the MediaPipe library for detecting the
signer and relevant landmarks from RGB video (Lu-
garesi et al., 2019), thus avoiding the use of special
sensing equipment, such as hand gloves (Mehdi and
Khan, 2002) or depth cameras (Ren et al., 2011). Fur-
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Figure 1: Illustration of the SL-ReDu prototype system
web-based architecture.

ther, we employ convolutional neural networks (CNNs)
for visual feature learning, namely a 3D CNN (Tran et
al., 2018) and MobileNet (Howard et al., 2017). Fi-
nally, in the case of fingerspelling, for sequence learn-
ing we use a bidirectional long short-term memory
(BiLSTM) encoder (Schuster and Paliwal, 1997) and
connectionist temporal classification (CTC) based de-
coding (Graves et al., 2006).
We train and evaluate the recognition module on a suit-
able GSL corpus, collected as part of this work. The
data contain multiple signers, recorded using a typi-
cal web-cam in non-studio conditions. We report both
multi-signer and signer-independent recognition exper-
iments on this corpus. Moreover, we evaluate the SL-
ReDu platform and its recognition functionality with a
small number of student users that conduct GSL pro-
duction exercises, reporting both objective and subjec-
tive evaluation results.
The rest of the paper is structured as follows: Section 2
overviews the SL-ReDu platform; Section 3 describes
the developed SLR module; Section 4 presents the SLR
corpus and its evaluation; Section 5 discusses the user
evaluation; and Section 6 concludes the paper.

2. The SL-ReDu Platform
The SL-ReDu platform attempts to handle the draw-
backs of conventional practice and testing strategies in
learning GSL as a second language by enabling self-
monitoring of learning and objective learner evaluation.
For the system’s design all aspects of GSL linguistics
are being considered, i.e. GSL semantics, as well as
morpho-syntactic effects in both GSL recognition and
GSL production. In particular, teaching techniques and
content are integrated into the system design, including
various SL practice assignments that cover GSL phe-
nomena from sign formation to complicated syntactic
and semantic utterance production. Ordinary multiple-
choice questions that utilize images, videos, and text
to elicit a response from the user, as well as user feed-
back by means of video recordings of GSL production,
are examples of exercise types. With the integration of
SLR technology, SL-ReDu enables the user to actively
sign and be assessed for the capacity to appropriately
generate signs.
The SL-ReDu prototype system is a web-based appli-
cation that runs on a web server managing the end-
user’s interaction. Self-monitoring and objective as-
sessment system modalities entail a variety of compo-

nents, namely the system database, the front-end and
back-end user interfaces, as well as image and video
files. Further, the system involves a content manage-
ment system (back-end) that is exploited by the instruc-
tor to create learners’ assessment tests and track perfor-
mance over time. Figure 1 depicts the adopted architec-
ture.
To build the dynamic web platform, the PHP program-
ming language in conjunction with HTML5, CSS3, and
JavaScript is used. A MySQL open-source database
is employed for the construction of the web applica-
tion, including the storage of the content, as well as the
results of the platform users. An Apache Web Server
hosts the web application.
SLR represents a separate module of the system that
runs as standalone on the learner’s device (typically a
higher-end laptop with an available camera). The tech-
nical details of the communication between the web
server and the SLR engine are available in a Technical
Report (Potamianos et al., 2021).

3. The GSL Recognition Module
We next detail the SLR module for the two GSL recog-
nition tasks considered, namely that of isolated signs
and continuous fingerspelling. The module also con-
tains a pre-processing stage.

3.1. Pre-processing
This stage is employed to detect the signer, extract the
region-of-interest (RoI), and provide feedback in case
signer positioning is incorrect.
Specifically, the recorded video frames are fed to the
MediaPipe holistic tool (Lugaresi et al., 2019). This
is a multi-stage pipeline that integrates separate mod-
els for pose, face, and hand components, extracting
543 whole-body landmarks from RGB data (33 pose,
468 face, and 21 hand landmarks per hand). Lack of
detected landmarks of the two hands, face, and upper
torso is assumed to imply incorrect user positioning
with respect to the camera field of view. In such case,
the signer is prompted by the system to reposition.
If user positioning is correct, the detected landmarks
are utilized to extract the RoI for subsequent appear-
ance feature generation. In the case of isolated signs,
where multiple articulators may participate in signing,
the entire upper body is cropped producing the RoI (see
also Figure 2(a)). This is then normalized to the sub-
sequent CNN input layer size (i.e., 256 × 256 pixels
of ResNet2+1D). In the case of fingerspelling though,
where typically one hand constitutes the sole articula-
tor, the RoI consists of the signing hand only (see also
Figure 2(b)), which is determined based on the motion
of the landmarks (3D skeletal keypoints) of each hand
in the video. The RoI is then normalized to the input
layer size of the MobileNet CNN (i.e., 224 × 224 pix-
els). Note that we use the estimated landmarks exclu-
sively for RoI extraction, thus minimizing the impact of
occasional MediaPipe failures (Moryossef et al., 2021).
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(a)

(b)

Figure 2: Schematics of GSL recognition modules for (a) isolated signs and (b) continuous fingerspelling.

3.2. Isolated Sign Recognition
A 3D CNN is employed for isolated sign recogni-
tion (see also Figure 2(a)). Specifically, the 18-layer
ResNet2+1D model is used (Tran et al., 2018) that sep-
arates spatial and temporal convolutions of 3D CNNs.
Note that two recognition subtasks are considered em-
ploying separate models, one for numeral signs with a
vocabulary size of 18, and a second for non-numeral
ones with a vocabulary size of 36.
Note that in all cases the CNN is pretrained on the
Kinetics dataset (Carreira et al., 2018). Model train-
ing (finetuning) then proceeds via the Adam opti-
mizer (Kingma and Ba, 2014) with initial learning rate
set to 0.0001 and weight decay 0.0001. For sign predic-
tion, the cross-entropy loss is used with label smooth-
ing (Szegedy et al., 2016). The mini-batch size is fixed
to 16.

3.3. Continuous Fingerspelling Recognition
A CNN-BiLSTM combination is employed for recog-
nizing continuously fingerspelled sequences of the 24
Greek alphabet letters. In the adopted approach (see
also Figure 2(b)), the CNN serves as visual feature
learner of each video frame and the BiLSTM learns
their temporal relations. Specifically, the CNN uses
the MobileNet architecture (Howard et al., 2017), pre-
trained on the ImageNet corpus (Deng et al., 2009).
Feature maps are generated by taking the output of the
last fully-connected layer, yielding 1024-dimensional
(dim) features. These are then fed to a linear projec-
tion layer for size reduction, resulting in 512-dim fea-
tures. Subsequently, a two-layer BiLSTM encoder is
employed with 512-dim hidden states (Schuster and
Paliwal, 1997) followed by CTC decoding (Graves et
al., 2006) for letter sequence prediction.
The model’s linear projection layer is jointly trained
with the BiLSTM. Training is conducted using the
Adam optimizer with initial learning rate equal to
0.001, decayed by a factor of 0.1 if the validation score
remains consistent for 9 steps. In addition, a dropout
rate of 0.1 is used, and the mini-batch size is fixed to
16. Finally, during inference, beam search decoding is
adopted with beam width 3. Note also that no letter

language model is employed.

4. GSL Data and Experiments
To support the development of the GSL recognizer, we
have collected a suitable database. We describe it next,
followed by the adopted experimental framework and
our GSL recognition experiments on it.

4.1. The GSL Database
Signing data by multiple volunteer informants (both
native and non-native in GSL) have been collected to
allow isolated GSL recognition of numerals (18-sign
vocabulary), isolated SLR of non-numerals (36-sign
GSL vocabulary), and continuous recognition of fin-
gerspelled sequences of the 24 Greek alphabet letters.1

The data have been recorded indoors, under realis-
tic, non-studio conditions with varying background and
lighting, using a Logitech C615 web-camera at a frame
rate of 30 Hz, YUV411 video format, and 640×480-
pixel resolution.
In the case of numeral signs, data from 20 signers have
been collected. Each signer articulated the 18 numer-
als 5 consecutive times, resulting in a total of 1,800
database videos.
In the case of non-numeral signs, data from 17 sign-
ers have been collected. Each informant articulated the
36 signs five times. In addition, these data have been
supplemented with videos from the publicly available
ITI GSL corpus (Adaloglou et al., 2022), resulting to 7
more informants signing the same 36 signs five times.
Note that the latter have been recorded using an Intel
RealSense D435 RGB-D camera under studio-quality
conditions, but here only the RGB stream is utilized.
Thus, the combined data contain 24 (17 + 7) signers
and a total of 4,320 videos.
Finally, in the case of fingerspelling, data from 12 sign-
ers have been recorded. Each informant signed once
the 24 Greek alphabet letters in isolation, as well as 50
fingerspelled words (unique to each signer) composed

1All informants have signed consent forms, and the data
will become publicly available in the future, as part of a larger
data release of SL-ReDu project resources.
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Figure 3: SI isolated GSL recognition accuracy (%) per signer for (a) numerals and (b) non-numeral signs.

of 4-5 letters. In addition, 7 informants performed 16
words (common to all) composed of 3-7 letters, and 3
signers expressed an extra 71 words of 4-5 letters. This
process resulted in a total of 1,071 videos. Note that
each informant has signed each letter at least 4 times.

4.2. Experimental Framework
We are interested primarily in signer-independent (SI)
SLR, since learner users of the SL-ReDu platform are
typically “unseen” during GSL model training. For
comparison purposes, we also report multi-signer (MS)
recognition results, where data from all signers are used
for both training and test sets (with the sets remaining
disjoint), being an easier learning scenario.
In the MS case, we use ten-fold cross-validation. In
each fold, we allocate 80% of all videos to training
(numerals: 1,440; non-numerals: 3,456; fingerspelling:
857), 10% to validation (numerals: 180; non-numerals:
432; fingerspelling: 107), and the remaining 10% to
testing (same number of videos as in validation).
In the SI scenario, we employ 20-fold cross-validation
in the numerals case, 24 folds for non-numerals, and 12
ones for fingerspelling. In all cases, each fold contains
one test signer, while the model is trained on all others.
In addition to these paradigms, GSL models are also
trained to be used by the SL-ReDu platform in its user-
evaluation, as reported in Section 5. For this purpose,
we allocate 90% of the available videos to training (nu-
merals: 1,620; non-numerals: 3,888; fingerspelling:
964) and the remaining 10% to validation (numerals:
180; non-numerals: 432; fingerspelling: 107).

4.3. Recognition Results
In Table 1, we report the recognition performance of
the isolated GSL and continuous fingerspelling tasks
on the datasets of Section 4.1, under both MS and SI
training/testing paradigms of Section 4.2. Results are
reported in word accuracy (WAcc), %, and in the case
of fingerspelling in letter accuracy (LAcc), %, as well.
In all cases, performance degrades in the SI case, com-
pared to the MS scenario, which is not surprising. Nev-
ertheless, WAcc remains satisfactory in both isolated
SLR tasks (in the 95% WAcc range for SI), showing

the potential of utilizing the module in learning plat-
forms like SL-ReDu. Note also that performance varies
among signers, as shown in Figure 3 for the isolated
tasks in the SI case, remaining nevertheless well above
80% WAcc, even for the worse performing ones.
Concerning continuous fingerspelling, it is natural that
performance suffers at the WAcc level, since letter
recognition errors (including insertions and deletions)
accumulate at the word level, especially for longer let-
ter sequences. This effect is exacerbated due the lack of
a language model in the recognizer, as well as the sig-
nificantly smaller amount of collected data and number
of signers compared to the isolated tasks. As expected,
LAcc results are higher, but clearly further improve-
ment is needed.

5. User Evaluation of SL-ReDu Platform
We have also conducted a user evaluation of the SL-
ReDu platform, producing both objective results (fo-
cusing on GSL recognition performance), as well as
a subjective assessment based on user responses to a
questionnaire.

5.1. Volunteer Users
Two groups of students (with the Department of Spe-
cial Education at University of Thessaly) and two pro-
fessional volunteers participated in the preliminary SL-

GSL recog. task Metric MS SI Eval.

iso. numerals WAcc 97.78 94.48 98.61
iso. non-numerals WAcc 99.44 96.20 97.22

cont. fingerspelling
WAcc 75.22 65.30 90.28
LAcc 86.12 77.66 91.03

Table 1: GSL recognition performance for the various
tasks considered here under MS and SI training/testing
on the GSL corpus of Section 4.1. Also shown, at the
right-most column, is the recognition performance dur-
ing user evaluation of the SL-ReDu platform (Section
5.2). Results are reported in word accuracy (WAcc, %)
or letter accuracy (LAcc, %).
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the platform subjective user assessment along eight as-
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ReDu evaluation. The first group (10 students) in-
volved true beginners, i.e. university students who had
had some contact with GSL for less than five months,
the second group (11 students) was made up of stu-
dents who had recently achieved the target A0-A1 level
and had more than five months of experience, and the
third group (2 experts) consisted of GSL experts who
served as teachers to the student volunteer groups. The
demographic characteristics of the student users were
consistent with the demographics of the overall student
population at the particular department, with ages be-
tween 19 and 22 years old and females outnumbering
males.

5.2. Objective Evaluation of GSL Recognizer
This evaluation was carried out via “active”-type ex-
ercises that require SL production by the learner, cap-
tured by a camera and fed to the SL recognition mod-
ule to provide learner binary feedback. For the isolated
GSL recognition of numerals, we incorporated 3 as-
signments to the platform, each consisting of six GSL
production questions of a numeral. For non-numerals
we included 6 corresponding six-question production
assignments. Finally, for continuous fingerspelling we
used 6 six-question assignments that include letters as
well as words that do not appear in the training set.
As already mentioned, the system also provides feed-
back to the user for correct positioning with respect
to the camera. Note that participants are allowed to
try twice each exercise in case of incorrect position-
ing feedback. Additionally, “active”-type exams de-
signed by the instructor are automatically graded by
the system, while limiting user interaction within pre-
specified time constraints.
For “active” GSL production and recognition evalu-
ation, a subset of volunteers participated, namely 12
users, including 7 A0 level students, 4 A1 level stu-
dents, and 1 expert, each performing 3 six-question as-
signments (one per task, totaling 18 questions).
The objective evaluation results in terms of WAcc (as
well as LAcc for fingerspelling) are reported at the
right-most column of Table 1. We observe that the
results achieved are better than SI recognition perfor-
mance of the isolated tasks on the collected GSL cor-

pus of Section 4.1. This fact is probably due to the
very careful signing and possible over-articulation by
the volunteers. The difference is even larger in fin-
gerspelling, due to the additional fact that the cor-
responding questions involved production of shorter
words than those of the GSL corpus.

5.3. Subjective Assessment of the Platform
After signing the relevant consent forms and complet-
ing both self-monitoring and GSL production sessions
of the SL-ReDu platform, participants were handed
an anonymous subjective experience questionnaire that
measures eight aspects concerning ease of use, use-
fulness, design, and user trust on the one-to-five Lik-
ert scale. The analysis of the filled subjective expe-
rience questionnaires provided valuable input, both in
the form of numerical trends and via textual comments.
In half (four out of eight) questions of the subjective
evaluation the majority of the users provided the high-
est assessment (“very much”). More specifically, most
of the users were completely satisfied with platform de-
sign, considered it to be a user-fiendly platform, felt
that the level of difficulty meets their needs, and that
signing educationally supports them (see also Figure 4
for the mean scores returned).

6. Conclusion
In this paper, we present a GSL recognizer capable of
recognizing a medium-size vocabulary of isolated signs
and continuously fingerspelled letter sequences, that
is integrated in the SL-ReDu learning platform. The
recognition module incorporates state-of-the-art deep-
learning based visual detection, feature extraction, and
classification, and is capable of operating in a signer-
independent fashion in non-ideal visual environments.
The designed module performs very well, as evidenced
by recognition experiments on a suitable dataset col-
lected for this purpose. Further, it yields very satis-
factory objective and subjective user evaluation assess-
ment of the SL-ReDu platform.
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Abstract 

With improved and more easily accessible technology, immersive virtual reality (VR) head-mounted devices have become more ubiq-
uitous. As signing avatar technology improves, virtual reality presents a new and relatively unexplored application for signing avatars. 
This paper discusses two primary ways that signed language can be represented in immersive virtual spaces: 1) Third-person, in which 
the VR user sees a character who communicates in signed language; and 2) First-person, in which the VR user produces signed content 
themselves, tracked by the head-mounted device and visible to the user herself (and/or to other users) in the virtual environment. We 
will discuss the unique affordances granted by virtual reality and how signing avatars might bring accessibility and new opportunities 
to virtual spaces. We will then discuss the limitations of signed content in virtual reality concerning virtual signers shown from both 
third- and first-person perspectives. 

 

Keywords: signing avatars, virtual reality, motion capture 

1. Introduction 
Immersive virtual reality (VR) continues to become more 
popular, with almost 10 million VR devices shipped in 
2021 alone (Alsop, 2022). Along with this proliferation of 
new technology comes the possibility of new ways of com-
municating, socializing, or learning in virtual spaces. Like-
wise, interest in technology-supported sign language in-
struction is growing. Unlike spoken language, which can 
be taught and evaluated using smartphones or computers, 
the three-dimensional nature of signed languages and facial 
expression's impact on meaning has created a severe barrier 
to technology-based sign language instruction. In-person 
classes are expensive and difficult to access in many areas. 
The other available options include books, videos, or 
smartphone apps that cannot fully demonstrate the highly 
spatial nature of signed language or provide real-time feed-
back. Emerging technologies like mixed and virtual reality 
allow the development of three-dimensional interactions in 
immersive environments. By taking advantage of the three-
dimensional (3D) nature of immersive VR, it may be pos-
sible to create immersive learning experiences to engage 
learners’ bodies and minds more effectively and enhance 
learning. In this paper, we will discuss the possibility of 
signing avatars in a VR environment, considering both the 
opportunities afforded by the current technology and the 
limitations.  

Our work focuses on American Sign Language (ASL), but 
these considerations may also apply to other signed lan-
guages. We direct our attention primarily toward using VR 
for supporting sign language learning (Quandt et al., 2020). 
However, sign language in VR is also relevant for enter-
tainment, gaming, and socialization in virtual spaces. 

While developers are designing many different types of 
learning experiences in VR, the applications of VR for 
learning signed languages are particularly encouraging. A 
fundamental theory in learning science, called embodied 
learning, posits that greater involvement of conceptually-
aligned movement and action during learning can lead to 

better understanding and higher recall (Kontra et al., 2012; 
Kontra et al., 2015; Lindgren & Johnson-Glenberg, 2013; 
Weisberg & Newcombe, 2017). The immersive and spa-
tially rich nature of VR allows for the possibility of embod-
ied learning. Learning signed languages in VR may repre-
sent a step toward the potential far-reaching application of 
embodied learning through signed languages.  

Many new ASL learners use online two-dimensional vid-
eos to learn introductory signs, but these pre-recorded vid-
eos have no interactive features and may not engage all 
learners (Shao et al., 2020). By contrast, immersive VR 
creates a powerful experience wherein people feel as if they 
are physically present in a 3D virtual space (Bailenson, 
2018; Lindgren & Johnson-Glenberg, 2013). This immer-
sive, spatially rich environment is particularly well-suited 
to the highly spatial nature of ASL, in which space is used 
as a core feature of the language. In one study, interaction 
with a signing avatar in augmented reality (e.g., the avatar 
is overlaid upon the real-world view) led to improved ASL 
learning outcomes compared to learning by video or book 
(Shao et al., 2020). Throughout our work on signing ava-
tars, a critical guiding goal has been to ensure that the 
movements of the animated signing are as natural (i.e., hu-
man-like) as possible. It is crucial to ensure that animated 
sign language accurately delivers the nuances and inflec-
tions of the original linguistic content, rather than relying 
on automated animations which do not include smooth 
transitions or natural movements (Quandt et al., 2022). 
Even a slight error in the synchronization of the animation 
can affect the interpretation of a signed production. Motion 
capture enables the highest quality animation (Joerg, Hodg-
ins, & O’Sullivan, 2010), although it does come at a high 
processing cost. 

Our group has established the feasibility of an immersive 
VR ASL learning environment populated with high-quality 
signing avatars. In this work, we created a prototype for 
teaching ASL in immersive VR (Quandt et al., 2020), in 
which both a virtual Teacher avatar and the VR user are 
present in the virtual environment (Fig. 1). This scenario 
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Figure 1: Two types of signing present in an immersive vir-
tual reality environment. 

encapsulates the two types of signing which may present in 
the virtual space: 1) Third-person Perspective, wherein one 
or more signing avatars are present in front of the VR user 
in space; and 2) First-person perspective, wherein the VR 
user’s own hands can be seen in the virtual space and can 
potentially be animated with real-time signing based on 
hand-tracking the user’s actual signing (Fig. 1). These two 
signers in virtual space bring about different challenges and 
opportunities, which we will discuss in this paper. 

2. The State of Signing Avatars in VR 
Signing avatars are not commonly seen in virtual spaces 
yet, but as VR becomes more affordable, and research de-
velopment continues in this area, we are becoming more 
familiar with what is possible regarding signing in VR. The 
newest publicly available models of VR head-mounted de-
vices have better-performing hardware and software, 
which makes the representation of ASL in VR more feasi-
ble. For example, newer VR headsets are wireless, which 
allows for better head and body mobility. They also include 
better video resolution and built-in cameras to aid in hand-
tracking. Recent software updates have further improved 
the hand tracking capabilities of some devices (Henry, 
2022). We expect this trajectory to continue as VR be-
comes more mainstream. Particularly relevant to signing in 
virtual spaces, the Oculus Quest 2 contains built-in hand-
tracking cameras. Currently, some publicly available soft-
ware (e.g., Waltz of the Wizard; Hand Physics Lab) use 
hand-tracking to control user interfaces or as an integral 
part of the gameplay, while many programs still rely on 
controller-based commands. We use the built-in hand 
tracking of the head-mounted Oculus Quest 2 device in our 
current work, but other options may be commercially avail-
able, and developers regularly release new hardware with 
updated capabilities. Some external hardware could en-
hance hand-tracking capabilities (e.g., Kinect, depth sen-
sors), however, users much prefer a fully wireless experi-
ence, especially if they are moving their hands around to 
learn and produce signs (Quandt et al., 2020). Keeping the 
equipment manageable and avoiding physically burden-
some add-ons is an intentional design choice.  

Socialization and community-building are growing activi-
ties within VR, allowing users to connect with others in a 
natural, immersive environment (Li, Vinayagamoorthy, 
Williamson, Shama, & Cesar, 2021). Virtual avatars have 
already been hacked to communicate in sign languages for 
casual conversation and social interaction. VRChat is a 
community accessible to any VR user wherein people can 

virtually navigate a built environment, inhabiting a charac-
ter that they customize. Users can chat and form online 
communities with other users. An emergent sign-language 
using community has emerged in VRChat, including drop-
in sign language chats and informal sign language lessons 
in several different signed languages (Davis, 2019). Since 
not all users have devices that can track hand movements, 
VRChat users cannot sign naturally with their hands. In-
stead, they use controllers to produce signs. Some control-
lers give the user the ability to make certain handshapes, 
with the thumb and the index and middle fingers, and the 
ability to open and close your fist. Within those limitations, 
a user can sign in a modified way, involving a limited num-
ber of moveable fingers and opening and closing their fists. 
The hands can move freely in the space around the user, 
allowing for sign location to be represented reasonably 
well. This emerging signing community in VRChat 
demonstrates interest in the casual use of signed languages 
for socialization and learning in VR and highlights the ad-
aptations that communities come up with to work around 
technological limitations.  

One significant limitation of signed communication in VR 
is the difficulty animating natural facial expressions, espe-
cially for real-time communication as in VRChat described 
above. In ASL, and all signed languages, facial expres-
sions, including the mouth, eye, cheek, and eyebrow move-
ments, are intricate and nuanced, adding and changing the 
meaning and structure of signs produced by the hands. To 
successfully capture facial expressions in VR, the capture 
technology must pick up on the slightest differences and 
changes in the face that accompany the hand movements of 
ASL. The two distinct types of signers in VR each present 
different opportunities and challenges, which we will dis-
cuss below. 

3. Third-person perspective signing 
3.1 Opportunities 
Third-person perspective signing—in which the user views 
a signing avatar in front of them (Fig. 1) is the more 
straightforward representation of sign language in VR. 
This scenario is similar to animating a signing avatar out-
side of VR. Developers create the avatar using develop-
ment pipelines the same way they do for non-VR use. The 
3D avatar file is then placed in the VR environment. The 
3D nature of the virtual environment means that a user can 
see the avatar’s movements with rich spatial detail. For in-
stance, in VR, a signing avatar can be seen from all angles 
in ways that accurately represent signing movements in 
space.  

3.2 Challenges 
With the third-person signing avatar, the primary challenge 
is creating avatars that are not too resource-heavy, since 
typical animations are made up of too many polygons and 
become a burden on the VR platform. Polygon count is a 
critical consideration when developing and populating vir-
tual environments. Essentially, the more polygons, the 
more computing power is needed. There is a tradeoff be-
tween quality and the ability of the VR platform to handle 
the torrent of data efficiently. To ensure real-time interac-
tivity, we ensure that the system maintains stability by 
keeping the avatar’s animation within reasonable limits for 
polygon count. 
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Figure 2. The built-in hand-tracking cameras on a VR de-
vice (located at the blue dots) can capture movements in 
certain locations well, as shown in the green areas. How-
ever, areas on the user’s head and body are not easily cap-
tured by the cameras, as shown in red. This schematic is 
generic and not specific to any specific device. 

In the past, our team used motion capture markers on the 
face. However, the markers only captured a subset of facial 
movements, overlooking other possible facial expressions, 
and could not track eye movements. The Faceware system 
(Faceware Tech, Austin, TX, USA) has proved to be effec-
tive in capturing a broader range of a signer’s facial expres-
sions and eye movements, resulting in an avatar that por-
trays ASL facial expressions accurately. Our project re-
quires the use of a customized Faceware helmet camera 
which allows for natural movements of the hands near the 
signer’s face (Quandt et al., 2020). One remaining issue is 
that whenever the hands cover the signer’s face during re-
cording, there are gaps in the facial data, which must be 
hand-animated in later in the development pipeline. 

4. First-person perspective signing 
4.1 Opportunities 
When hand-tracking in enabled on a VR device, the user 
can see his or her own hands moving in the virtual world. 
Seeing one’s own hands moving in VR provides a strong 
sense of embodiment—especially if the virtual hands cor-
rectly represent the users' real-life movements. If and when 
hand-tracking technology develops sufficiently to accu-
rately track signed language handshapes and movements, 
users will be able to sign while wearing VR devices and 
will be able to see their signs in the virtual space. The user’s 
signing will also be visible to other online users, as in the 
example of VRChat in Section 2. Popular VR devices have 
recently improved their hand-tracking capabilities (Henry, 
2022), deploying updates remotely to all users. These up-
dates have mitigated some of the major limitations of hand-
tracking, but some issues still remain (see Section 4.2).  

In our ongoing research (Quandt et al., 2020), we have 
evaluated which ASL signs are best captured by existing 
hand-tracking technology. Most of our team members are 
deaf, which affords us the unique opportunity to self-eval-
uate the representation of signs in VR. For example, we 
evaluated a list of potential signs and decided whether dif-
ferent signs would work well with the Oculus Quest 2 and  

Figure 3. ASL signs as captured by Oculus Quest 2 (v38). 
A) the sign BREAD is represented well, with no occlusion 
or disfigurements. B) the sign WOOD resulting in unnatu-
ral overlap of the hands. C) the sign EGGS resulting in 
overlap and inaccurate handshape.  

modified the signs as needed. Because there are often dif-
ferent signs for the same word, we track what variations of 
a sign are most compatible with the device’s current hand 
tracking capabilities. With a Deaf-centric team, the ability 
to make quick informed decisions to make the whole sys-
tem work well is an advantage. 

4.2 Challenges 
Animating hands in real-time as a camera tracks a signer’s 
hands is a significant challenge. Our team has identified 
several specific issues remaining before real-time ASL can 
be well represented in VR. All currently available VR 
headsets protrude several inches away from the bridge of 
the nose and eyes. Headsets with built-in hand-tracking ca-
pabilities have cameras embedded that look outward, and 
each camera has a cone of view that expands as the distance 
from the camera increases (Fig. 2). Close to the cameras, 
there are significant blind spots. Additionally, as the user 
moves their head to look around in space, the field of view 
which the cameras can see changes. Thus, the space in 
which the device can sense signs is inherently limited and 
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changes depending on where the user is looking. Signs lo-
cated outside the space in front of the signer are poorly cap-
tured by the cameras. This limited field of view causes 
technological limitations in recognizing three key 
visuospatial parameters of ASL: 1) handshapes, 2) physical 
location, and 3) facial expressions. These parameters are 
necessary to convey communication accurately and effec-
tively in ASL and other signed languages (Friedman, 
1976).  

A crucial parameter of ASL is the physical location in 
which signed words are produced. In ASL, location in sign-
ing space is inherent to each sign’s meaning. However, the 
many signs which are located near the body present a chal-
lenge for representation in VR. For example, the common 
sign for PARENT uses the “5” hand shape with all five fin-
gers extended, touching the lower cheek, then touching the 
upper cheek. Because this sign includes touching the face 
near where the device rests, the normal production of the 
sign is prohibited, and the cameras cannot capture the sign.  

Another challenge is the representation of ASL handshapes 
in VR headsets. While some current VR devices allow for 
improved hand-tracking, the technology still has limita-
tions with recognizing certain handshapes, especially hand-
shapes that require fingers crossing one another. For in-
stance, the ASL handshape R involves the middle finger 
crossing over the index finger and is often not well tracked 
by current devices. Occlusions can also happen with two-
handed signs if the hands or fingers cross one another, as 
with the word EGG (Fig. 3). In ASL, EGG is signed as the 
index and middle finger on both hands together, each hand 
forming the “H” handshape and tapping once, then moving 
downwards slightly away from each other. These shapes 
and movement tend to produce a great deal of occlusion 
when tracked by VR headset cameras.  

To address the challenges related to sign location and oc-
clusion, our current work focuses on signs that the hard-
ware cameras can most accurately capture. When hands or 
fingers are placed on top of each other, it is difficult for the 
built-in cameras to see the hidden hand or fingers. The soft-
ware interpolates the missing information, and often the re-
sulting visualization is distorted (Fig. 3). Signs that avoid 
those handshapes and movement patterns are better repre-
sented in current VR devices.   

Lastly, current hardware cannot capture a user’s facial ex-
pressions. While it appears that developers are testing var-
ious approaches to capturing users’ facial and eye move-
ments while wearing a VR device (Wen et al., 2022), no 
options are commercially available at the time of writing. 
Naturally, given the importance of facial expression to 
signed languages, this still constitutes a major challenge for 
the progress of ASL in VR.  

5. Conclusion  
There is much room for improvement and undoubtedly, de-
velopers are racing to produce sophisticated hardware with 
better hand tracking, resolution, and capture for signing in 
virtual spaces. However, VR devices continue to be an ob-
stacle given that in natural signed communication, many 
signs touch the face and body. We expect that advances in 
artificial intelligence will help solve some of the computer-
vision related problems in this area. Signing in VR remains 

novel but brings much potential for learning, teaching, and 
interacting in virtual environments. Our research group is 
pursuing signing in VR in both the first- and third-person 
perspectives, and while the representation of signed lan-
guages improve in those two dimensions, we continue to 
identify remaining problems. Fluency and clarity of sign-
ing are essential and cannot be compromised without harm-
ing communication. Without the accurate representation of 
sign language, researchers risk compromising the represen-
tation of deaf people in virtual spaces.  
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Abstract 

Many avatars focus on the hands and how they express sign language. However, sign language also uses mouth and face gestures to 
modify verbs, adjectives, or adverbs; these are known as non-manual components of the sign. To have a translation system that the 
Deaf community will accept, we need to include these non-manual signs. Just as machine learning is being used on generating hand 
signs, the work we are focusing on will be doing the same, but with mouthing and mouth gestures. We will be using data from The 
National Center for Sign Language and Gesture Resources. The data from the center are videos of native signers focusing on different 
areas of signer movement, gesturing, and mouthing, and are annotated specifically for mouthing studies. With this data, we will run a 
pre-trained Neural Network application called OpenPose. After running through OpenPose, further analysis of the data is conducted 
using a Random Forest Classifier. This research looks at how well an algorithm can be trained to spot certain mouthing points and 
output the mouth annotations with a high degree of accuracy. With this, the appropriate mouthing for animated signs can be easily 
applied to avatar technologies. 

 
Keywords: Avatar technology, American Sign Language, OpenPose, Nonmanual signs, Mouthing, Mouth gestures 

 

1. Introduction 
Many Deaf people have American Sign Language (ASL) 
as their native language; their native tongue is usually 
secondary. Most people have limited reading and writing 
skills in said spoken language, leading to disadvantages in 
everyday situations such as health, education, and work. 
Communication barriers can occur especially in emergencies 
or government spaces. For example, if an emergency 
announcement is made on a train, there will be a delay in 
communication for a Deaf individual. An automatic 
translation system, such as an avatar, can provide 
rudimentary communication, in ASL on a public address 
system. These non-invasive technologies have been 
explored for the last 20 years to present sign languages. 
Many prototypes have been explored to accelerate Deaf- 
accessible systems, such as weather reports, airport security 
personnel, and government offices (Wolfe et. al, 2021). 
Studies using a signing avatar combined with automatic 
translation systems, have focused on the hands more so 
than any other part of the avatar. Even though, it is well 
known that non-manual components of a sign, such as 
mouthing and mouth gestures, are used to discern signs that 
are closely related semantically as they may share the same 
movements or handshapes (Koller et. al, 2015). Mouthing 
itself is from spoken language in which you partially or 
fully mouth a word (Bickford and Fraychineaud, 2006). 
While mouth gestures come from the Deaf community, 
with no clear origin, such as mouthing “CHA” after signing 
the word “big” (Bickford and Fraychineaud, 2006). Just 
like in spoken language, the mood is conveyed with facial 
expressions and how words are said (mouthed). Having no 
facial expressions or mouthing/mouth gestures in sign 
language, according to Baldassarri et al., “is like speaking 
in a monotonic voice: more boring, less expressive and, in 
some cases, ambiguous” (2009). 
Through the years as technology has advanced, so has 
avatar technology. However, there are still many inquiries 
regarding how to display information linguistically and 
pragmatically on the avatar’s face (Wolfe et. al, 2021). 
Currently, work done with the face and mouth with present-
day technologies available have long rendering times and 
can be incompatible with interactive graphic applications 
(Wolfe et. al, 2021). 

 
Just like the work being done on algorithms for animating 
hand signs, this research aims to train how to spot mouthing 
points with exactitude to automate and apply it in avatar 
technologies for appropriate mouthing/mouth gestures for 
animated signs. 
 

2. Related Work 
The earliest research about mouthing, was in 1968 by 
Fisher (Koller et. al, 2015) distinguishing between a viseme 
and phonemes. Phonemes are the smallest units that 
compromise spoken language.  While a viseme is made up 
of several speech sounds (phonemes). A viseme is “a set of 
phonemes which have an identical appearance on the lips” 
as they are the visual twin of phonemes (Bear and Harvey, 
2017). As more research was being done in understanding 
how to visualize mouth movement to create speech, the 
audio-visual speech recognition field was born. This, in 
turn, led to the studying of the correlation of facial 
expression recognition with mouth shape creation via 
algorithms. 

 
Usually mouthing and mouth gestures regarding sign 
language detection are overlooked (Koller et. al, 2015), but 
interest has been developing in this field (Antonakos et. al, 
2015). Automatic Sign Language Recognition (ASLR) 
systems have been looking into the shape and motion of the 
mouth to determine critical cues versus ones done 
carelessly. For example, in ASL the tongue going through 
the front teeth is something done carelessly, therefore not a 
cue (Antonakos et. al, 2015). However, a critical cue is 
when one can recognize the state of the mouth. Such as 
open, closed, or very closed mouth during facial 
recognition (Koller et. al, 2015). Other related work has 
looked at using sequential pattern trees (Koller et. al, 2015) 
for general facial tracking or weak supervision models for 
facial features (Koller et. al, 2015). Overall, many models 
and analyses have been done on the face and head 
movements, which have partially included mouthing and/or 
mouth gestures.  
 
On the other side, we must consider the progress in 
Computer Generated Imagery (CGI) and how it has 
advanced facial and mouthing in various spaces.
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One of the first computer-animated faces called Tony from 
1985, took 3 years to create a 7.5-minute film. Although it 
won many prizes for its innovation, this character today 
suffers from the phenomenon called uncanny valley (Wolfe 
et. al, 2021); which gives the viewer a feeling of uneasiness 
or repulsion of seeing the humanoid figure. To avoid this, 
many animations use cartoon or alien humanoids, because 
since they are less human-like, they are more accepting of 
their emotions and expressions (Wolfe et. al, 2021). The 
best effects for facial and mouthing imagery in more 
complex visuals, still take hours to render a frame even 
though we have faster computers. There is also the 
painstaking task of doing some work manually, especially 
for frame transitions (Wolfe et. al, 2021). 

 
With many advancements done in computational imagery 
and graphics, as well as in modeling, it takes time to fully 
capture the facial expressions. As well as creating reliable 
and most of all, believable mouthing, and mouth gestures. 
Just as many efforts are put into automating hand signs for 
signed languages, one must put in work on non-manual 
signs to have an avatar-based translation system be 
accepted in the Deaf community. The work proposed in this 
paper is attempting to bridge the gap in its usage of 
modeling and analyzing visual data to attempt to output 
mouthing points that can be used in automation for avatar 
usage. 

of the signer’s mouthing and mouth gestures. The ELAN 
formatted file offered many mouthing annotations, but we 
focused on 9 annotations with a minimum of 35 examples 
as a requirement. 
 
The 9 annotations we focused on were: 

• Open and corners down 
• Intense 
• Raised upper lip 
• Lips spread and corners down 
• Lips pursed: mm 
• Open (as in mouth open) 
• Onset (mouth movement start) 
• Offset (mouth movement end) 

 
3.2  OpenPose Dataset 
Although OpenPose has 70 face keypoint estimations that 
we can use on the video dataset, we will be focusing on 
points 48, 54, and 60-67 which pertain to the mouth. 

 

3. Data Analysis 
Motion capture is one way of data collecting to analyze sign 
languages. Much of this data is, again, primarily focused on 
the hands and how they move. Another way of studying sign 
languages is by using images or videos of native signers that 
are already available. OpenPose is a pre-trained Neural 
Network that analyzes video and images for a “real-time 
multi-person system to jointly detect human body, hand, 
facial, and foot keypoints.” (Cao et. al, 2021). With 135 
keypoints overall and 70 face keypoints, we will be 
analyzing videos of native signers which are publicly 
available. 
3.1 Video Dataset 
The dataset that is used was specifically captured to study 
ASL, which demonstrates the necessary parts of Sign 
Language accurately. The National Center for Sign 
Language and Gesture Resources (B.U., 1999), has a 
significant corpus of ASL videos of native signers. It 
contains multiple synchronized video files showing views 
from different angles and close-ups of the face. The corpus 
is a collection of 2,617 videos in MP4 format that has been 
compressed from 60 frames per second to 30 frames per 
second. 

 

Figure 1: Example frames of video dataset 
 

To coincide with each video, DePaul University has created 
an ELAN (also known as EUDICO annotation format) 
formatted file that groups different areas 

 
 

Figure 2: Facial keypoints in OpenPose 
 

When we run the dataset through OpenPose the output 
visually shows the facial keypoints being mapped to the 
video. 

 
Figure 3: OpenPose keypoints on Video Dataset 

 
4. Modeling 

OpenPose is a powerful tool that was used to build highly 
confident mappings of the mouth. It works such that it uses 
two parallel divisions of convolutional network layers (Cao 
et. al, 2021); the first predicting 18 confidence maps, while 
the other predicts 38-part affinity fields. The confidence 
maps denote the specific part of the human pose skeleton, 
and the affinity fields denote the level of association 
between the parts (Cao et. al, 2021). In the last stages of the 
OpenPose algorithm, it cleans up its predictions made by the 
branches, weaker links are pruned via the PAF values, and 
the keypoints are then estimated and allocated on the video 
itself. Before OpenPose, some libraries were using different 
models such as Alpha-Pose and Mask R-CNN. 
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Comparing the runtime analysis of all 3, OpenPoses’ 
runtime is constant, while Alpha-Pose and Mask R-CNN 
grow linearly with more people in the video. Although we 
are only focusing on one person in our video datasets, 
future work with multiple signers would be easier to 
evaluate using this software, especially with its constant 
runtime analysis. 

 

After running OpenPose on 2,617 videos, we join the 
video JSON output with its respective ELAN annotation 
file by converting both into data frames and joining them 
via timestamp keyframe. This allowed us to analyze what 
annotations we wanted to focus on and at the same time 
have more than 35 videos available with said annotations. 
We were left with about 1,800 videos and used a 
matplotlib animator to manually look over the keyframes 
for occlusion and obstruction of the face by the hands. 
The filtering of the videos was only for extreme 
distortions and others were left to train the model 
effectively in the next phase. 
 

 

Figure 3: Animator used for looking over distortions 
 
 

Combing through the data were left with 2,217 videos 
that had one or many of the annotations that we were 
interested in further analyzing using other modeling 
techniques. The next modeling technique we used, was a 
Random Forest Classifier (RFC) Model, an ensemble 
method, that has been utilized before to study Sign 
Languages (Su et. al, 2016). Going through the output of 
the OpenPose datasets, there was one sample size that 
had most of the data. To take advantage of this classifier, 
we used an oversampling method, called SMOTE 
(Synthetic Minority Oversampling Technique) (Chawla 
et. al, 2002), to improve the random oversampling. For 
comparison's sake, we ran the RFC without resampling 
and with resampling. A Grid Search was used to find the 
best hyperparameters for both the resampled and the non- 
resampled data, coming up with the same 
hyperparameters. 

 
 

5. Results 
Overall, the dataset showed a higher accuracy with the 
resampled data as opposed to the non-resampled data in the 
test balanced accuracy of the model and the validation 
accuracy of the annotations on the facial points themselves. 

 

Table 1: General Results of RFC 

The classification reports also show that the recall is 
higher when there is more data to analyze for each facial 
keypoint and their respective annotation. 

 

Figure 4: RFC without resampling of the 
dataset 

 

Figure 5: RFC with resampling of the dataset 
 

6. Conclusion 
A CNN with an RFC can prove to give a high accuracy in 
knowing which annotation is which on the facial 
keypoints. However, to have more balance in the tree, we 
need more data to work with from credible resources. 
Many institutions are sharing their corpus with other 
universities and agencies. Then we can add known 
annotations, like ELAN to the corpora that can assist in 
researching further the automation of mouthing and 
mouth gestures. Although the dataset used was small, we 
can see that a model can be trained to be effective in 
figuring out what mouth gestures are being used on 
specific facial points. For avatar translation systems, 
automation of the correct hand and mouthing/mouth 
gestures will be highly beneficial in getting us towards a 
system that will be acceptable to the Deaf community. As 
well as bridging the gap between the Hearing and Deaf 
communities.

Dataset Validation 
Accuracy 

Test Balance 
Accuracy 

With 
Resampling 

0.96 (+/- 0.01) 0.6664373289281572 

Without 
Resampling 

0.43 (+- 0/03) 0.4392537365588655 
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Abstract
Recent approaches to Sign Language Production (SLP) have adopted spoken language Neural Machine Translation (NMT)
architectures, applied without sign-specific modifications. In addition, these works represent sign language as a sequence of
skeleton pose vectors, projected to an abstract representation with no inherent skeletal structure.
In this paper, we represent sign language sequences as a skeletal graph structure, with joints as nodes and both spatial and
temporal connections as edges. To operate on this graphical structure, we propose Skeletal Graph Self-Attention (SGSA),
a novel graphical attention layer that embeds a skeleton inductive bias into the SLP model. Retaining the skeletal feature
representation throughout, we directly apply a spatio-temporal adjacency matrix into the self-attention formulation. This
provides structure and context to each skeletal joint that is not possible when using a non-graphical abstract representation,
enabling fluid and expressive sign language production. We evaluate our Skeletal Graph Self-Attention architecture on the
challenging RWTH-PHOENIX-Weather-2014T (PHOENIX14T) dataset, achieving state-of-the-art back translation performance
with an 8% and 7% improvement over competing methods for the dev and test sets.

Keywords: Sign Language Production (SLP), Graph Neural Network (GNN), Computational Sign Language

1. Introduction
Sign languages are rich visual languages, the native
languages of the Deaf communities. Comprised of
both manual (hands) and non-manual (face and body)
features, sign languages can be visualised as spatio-
temporal motion of the hands and body (Sutton-Spence
and Woll, 1999). When signing, the local context of
motions is particularly important, such as the connec-
tions between fingers in a sign, or the lip patterns when
mouthing (Pfau et al., 2010). Although commonly repre-
sented via a graphical avatar, more recent deep learning
approaches to Sign Language Production (SLP) have
represented sign as a continuous sequence of skeleton
poses (Saunders et al., 2021a; Stoll et al., 2018; Zelinka
and Kanis, 2020).
Due to the recent success of Neural Machine Transla-
tion (NMT), computational sign language research of-
ten naively applies spoken language architectures with-
out sign-specific modifications. However, the domains
of sign and spoken language are drastically different
(Stokoe, 1980), with the continuous nature and inher-
ent spatial structure of sign requiring sign-dependent
architectures. Saunders et al (Saunders et al., 2020c) in-
troduced Progressive Transformers, an SLP architecture
specific to a continuous skeletal representation. How-
ever, this still projects the skeletal input to an abstract
feature representation, losing the skeletal inductive bias
inherent to the body, where each joint upholds its own
spatial representation. Even if spatio-temporal skele-
tal relationships can be maintained in an latent repre-
sentation, a trained model may not correctly learn this
complex structure.
Graphical structures can be used to represent pairwise re-
lationships between objects in an ordered space. GNNs

are neural models used to capture graphical relation-
ships, and predominantly operate on a high-level graph-
ical structure (Bruna et al., 2014), with each node con-
taining an abstract feature representation and relation-
ships occurring at the meta level. Conversely, skele-
ton pose sequences can be defined as spatio-temporal
graphical representations, with both intra-frame spa-
tial adjacency between limbs and inter-frame temporal
adjacency between frames. In this work, we employ at-
tention mechanisms as global graphical structures, with
each node attending to all others. Even though there
have been attempts to combine graphical representations
and attention (Yun et al., 2019; Dwivedi and Bresson,
2020; Veličković et al., 2017), there has been no work
on graphical self-attention specific to a spatio-temporal
skeletal structure.

In this paper, we represent sign language sequences as
spatio-temporal skeletal graphs, the first SLP model to
operate with a graphical structure. As seen in the centre
of Figure 1, we encode skeletal joints as nodes, J (blue
dots), and natural limb connections as edges, E , with
both spatial (blue lines) and temporal (green lines) rela-
tionships. Operating on a graphical structure explicitly
upholds the skeletal representation throughout, learn-
ing deeper and more informative features than using an
abstract representation.

Additionally, we propose Skeletal Graph Self-Attention
(SGSA), a novel spatio-temporal graphical attention
layer that embeds a hierarchical body inductive bias
into the self-attention mechanism. We directly mask
the self-attention by applying a sparse adjacency ma-
trix to the weights of the value computation, ensuring
a spatial information propagation. To the best of our
knowledge, ours is the first work to embed a graphical

95



Spoken Language
Encoder

am tag morgen
Graphical Sign Language Decoder

VIEL SONNEMORGEN

Figure 1: An overview of our proposed SLP network, showing an initial translation from a spoken language sentence
using a text encoder, with gloss supervision. A subsequent skeletal graphical structure is formed, with multiple
proposed Skeletal Graph Self-Attention layers applied to embed a skeleton inductive bias and produce expressive
sign language sequences.

structure directly into the self-attention mechanism. In
addition, we expand our model to the spatio-temporal
domain by modelling the temporal adjacency only on
N neighbouring frames.
Our full SLP model can be seen in Figure 1, initially
translating from spoken language using a spoken lan-
guage encoder with gloss supervision. The intermediary
graphical structure is then processed by a graphical sign
language decoder containing our proposed SGSA lay-
ers, with a final output of sign language sequences. We
evaluate on the challenging RWTH-PHOENIX-Weather-
2014T (PHOENIX14T) dataset, performing spatial and
temporal ablation studies of the proposed SGSA archi-
tecture. Furthermore, we achieve state-of-the-art back
translation results for the text to pose task, with an 8%
and 7% performance increase over competing methods
for the development and test sets respectively.
The contributions of this paper can be summarised as:

• The first SLP system to model sign language as a
spatio-temporal graphical structure, applying both
spatial and temporal adjacency.

• A novel Skeletal Graph Self-Attention (SGSA)
layer, that embeds a skeleton inductive bias into
the model.

• State-of-the-art Text-to-Pose SLP results on the
PHOENIX14T dataset.

2. Related Work
Sign Language Production The past 30 years has
seen extensive research into computational sign lan-
guage (Wilson and Anspach, 1993). Early work focused
on isolated Sign Language Recognition (SLR) (Grobel
and Assan, 1997), with a subsequent move to contin-
uous SLR (Camgoz et al., 2017). The task of Sign
Language Translation (SLT) was introduced by Cam-
goz et al (Camgoz et al., 2018) and has since become
a prominent research area (Yin, 2020; Camgoz et al.,
2020a). Sign Language Production (SLP), the auto-
matic translation from spoken language sentences to
sign language sequences, was initially tackled using
avatar-based technologies (Elliott et al., 2008). The rule-
based Statistical Machine Translation (SMT) achieved

partial success (Kouremenos et al., 2018), albeit with
costly, labour-intensive pre-processing.
Recently, there have been many deep learning ap-
proaches to SLP proposed (Zelinka and Kanis, 2020;
Stoll et al., 2018; Saunders et al., 2020b), with Saun-
ders et al achieving state-of-the-art results with gloss
supervision (Saunders et al., 2021b). These works pre-
dominantly represent sign languages as sequences of
skeletal frames, with each frame encoded as a vector
of joint coordinates (Saunders et al., 2021a) that disre-
gards any spatio-temporal structure available within a
skeletal representation. In addition, these models apply
standard spoken language architectures (Vaswani et al.,
2017), disregarding the structural format of the skele-
tal data. Conversely, in this work we propose a novel
spatio-temporal graphical attention layer that injects an
inductive skeletal bias into SLP.

Graph Neural Networks A graph is a data structure
consisting of nodes, J , and edges, E , where E defines
the relationships between J . Graph Neural Networks
(GNNs) (Bruna et al., 2014) apply neural layers on these
graphical structures to learn representations (Zhou et
al., 2020), classify nodes (Yan et al., 2018; Yao et al.,
2019) or generate new data (Li et al., 2018). A skeleton
pose representation can be structured as a graph, with
joints as J and natural limb connections as E (Straka et
al., 2011; Shi et al., 2019). GNNs have been proposed
for operating on such dynamic skeletal graphs, in the
context of action recognition (Yan et al., 2018; Shi et al.,
2019) and human pose estimation (Straka et al., 2011).
Attention networks can be formalised as a fully con-
nected GNN, where the adjacency between each word,
E , is a weighting learnt using self-attention. Expanding
this, Graph Attention Networks (GATs) (Veličković et
al., 2017) define explicit weighted adjacency between
nodes, achieving state-of-the-art results across multiple
domains (Kosaraju et al., 2019). Recently, there have
been multiple graphical transformer architectures pro-
posed (Yun et al., 2019; Dwivedi and Bresson, 2020),
which have been extended to the spatio-temporal do-
main for applications such as multiple object tracking
(Chu et al., 2021) and pedestrian tracking (Yu et al.,
2020).
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Figure 2: Weighted calculation of Queries, Q, Keys, K and Values, V , for global self-attention.

However, there has been no work on graphical attention
mechanisms where the features of each time step holds a
relevant graphical structure. We build a spatio-temporal
graphical architecture that operates on a skeletal repre-
sentation per frame, explicitly injecting a skeletal induc-
tive bias into the model. There have been some appli-
cations of GNNs in computational sign language in the
context of SLR (de Amorim et al., 2019; Flasiński and
Myśliński, 2010). We extend these works to the SLP do-
main with our proposed Skeletal Graph Self-Attention
architecture.

Local Attention Attention mechanisms have demon-
strated strong Natural Language Processing (NLP) per-
formance (Bahdanau et al., 2015), particularly with the
introduction of transformers (Vaswani et al., 2017). Al-
though proposed with global context (Bahdanau et al.,
2015), more recent works have selectively restricted at-
tention to a local context (Yang et al., 2018) or the top-k
tokens(Zhao et al., 2019), often due to computational is-
sues or to enable long-range dependencies. In this paper,
we propose using local attention to represent temporal
adjacency within our graphical skeletal structure.

3. Background
In this section, we provide a brief background on self-
attention. Attention mechanisms were initially pro-
posed to overcome the information bottleneck found in
encoder-decoder architectures (Bahdanau et al., 2015).
Transformers (Vaswani et al., 2017) apply multiple
scaled self-attention layers in both encoder and decoder
modules, where the input is a set of queries, Q ∈ Rdk ,
and keys, K ∈ Rdk , and values, V ∈ Rdv . Self-
attention aims to learn a context value for each time-step
as a weighted sum of all values, where the weight is de-
termined by the relationship of the query with each cor-
responding key. An associated weight vector, WQ/K/V ,
is first applied to each input, as shown in Figure 2, as:

QW = Q ·WQ, KW = K ·WK , V W = V ·WV

(1)
where WQ ∈ Rdmodel×dk , WK ∈ Rdmodel×dk and
WV ∈ Rdmodel×dv are weights related to each input
variable and dmodel is the dimensionality of the self-
attention layer. Formally, scaled self-attention (SA)
outputs a weighted vector combination of values, V W ,
by the relevant queries, QW , keys, KW , and dimension-
ality, dk, as:

SA(Q,K, V ) = softmax(
QW (KW )T√

dk
)V W (2)

Multi-Headed Attention (MHA) applies h parallel at-
tention mechanisms to the same input queries, keys and
values, each with different learnt parameters. In the
initial architecture (Vaswani et al., 2017), the dimen-
sionality of each head is proportionally smaller than the
full model, dh = dmodel/h. The output of each head is
then concatenated and projected forward, as:

MHA(Q,K,V ) = [head1, ..., headh] ·WO,

where headi = SA(QW ,KW , V W ) (3)

where WO ∈ Rdmodel×dmodel . In this paper, we intro-
duce Skeletal Graph Self-Attention layers that inject
a skeletal inductive bias into the self-attention mecha-
nism.

4. Methodology
The ultimate goal of SLP is to automatically
translate from a source spoken language sentence,
X = (x1, ..., xT ) with T words, to a target sign lan-
guage sequence, G = (g1, ..., gU ) of U time steps. Addi-
tionally, an intermediary gloss1 sequence representation
can be used, Z = (z1, ..., zP ) with P glosses. Current
approaches (Saunders et al., 2021a; Stoll et al., 2018;
Zelinka and Kanis, 2020) predominantly represent sign
language as a sequence of skeletal frames, with each
frame containing a vector of body joint coordinates.
In addition, they project this skeletal structure to an
abstract representation before being processed by the
model (Saunders et al., 2020c). However, this approach
removes all spatial information contained within the
skeletal data, restricting the model to only learning the
internal relationships within a latent representation.
Contrary to previous work, in this paper we represent
sign language sequences as spatio-temporal skeletal
graphs, G, as in the centre of Figure 1. As per graph the-
ory (Bollobás, 2013), G can be formulated as a function
of nodes, J and edges, E . We define J as the skeleton
pose sequence of temporal length U and spatial width
S, with each node representing a single skeletal joint
coordinate from a single frame (blue dots in Fig. 1). S
is therefore the dimensionality of the skeleton represen-
tation of each frame. E can be represented as a spatial
adjacency matrix, A, defined as the natural limb con-
nections between skeleton joints both of its own frame
(blue lines) and of neighbouring frames (green lines).

1Glosses are a written representation of sign, defined as
minimal lexical items.
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Figure 3: Overview of the proposed model architecture, detailing the Spoken Language Encoder (Sec. 4.1) and the
Graphical Sign Language Decoder (Sec. 4.2). We propose novel Skeletal Graph Self-Attention layers to operate on
the sign language skeletal graphs, G.

As outlined in Sec. 3, classical self-attention operates
with global context over all time-steps. However, a
skeletal inductive bias can be embedded into a model
by restricting attention to only the natural limb connec-
tions within the skeleton. To embed a skeleton inductive
bias into self-attention, we propose a novel Skeletal
Graph Self-Attention (SGSA) layer that operates with
sparse attention. Modeled within a transformer decoder,
SGSA retains the original skeletal structure through-
out multiple deep layers, ensuring the processing of
spatio-temporal information contained in skeletal pose
sequences. In-built adjacency matrices of both intra-
and inter-frame relationships provide structure and con-
text directly to each skeletal joint that is not possible
when using a non-graphical abstract representation.
In this section, we outline the full SLP model, contain-
ing a spoken language encoder and a graphical sign
language decoder, with an overview shown in Figure 3.

4.1. Spoken Language Encoder
As shown on the left of Figure 3, we first translate from
a spoken language sentence, X , of dimension E × T ,
where E is the encoder embedding size, to a sign lan-
guage representation, R = (r1, ..., rU ) (Fig. 1 Left).
We build a classical transformer encoder (Vaswani et al.,
2017) that applies self-attention using the global context
of a spoken language sequence. R is represented with
a spatio-temporal structure, containing identical tempo-
ral length, U , and spatial shape, S, as the final skeletal
graph, G. This structure enables a graphical processing
by the proposed sign language decoder. Additionally, as
proposed in (Saunders et al., 2021b), we employ a gloss
supervision to the intermediate sign language represen-
tation. This prompts the model to learn a meaningful
latent sign representation for the ultimate goal of sign
language production.

4.2. Graphical Sign Language Decoder
Given the intermediary sign language representation,
R ∈, we build an auto-regressive transformer decoder
containing our novel Skeletal Graph Self-Attention
(SGSA) layers (Figure 3 middle). This produces a graph-
ical sign language sequence, Ĝ, of spatial shape, S , and
temporal length, U .

Spatial Adjacency We define a spatial adjacency ma-
trix, A ∈ RS×S , expressed as a sparse attention map,
as seen in Figure 4. A contains a spatial skeleton adja-
cency structure, modelled as the natural skeletal limb
connections within a frame (blue lines in Fig. 1). A can
be formalised as:

Ai,j =

{
1, if Con(i, j)
0, otherwise

(4)

where Con(i, j) = True if joints i and j are connected.
For example, the skeletal elbow joint is connected to
the skeletal wrist joint. We use an undirected graph
representation, defining E as bidirectional edges.

Temporal Adjacency We expand the spatial adja-
cency matrix to the spatio-temporal domain by mod-
elling the inter-frame edges of the skeletal graph struc-
ture (green lines in Fig. 1). The updated spatial-
temporal adjacency matrix can be formalised as A ∈
RS×S×U . We set N as the temporal distance that de-
fines ‘adjacent’, where edges are established as both
same joint connections and natural limb connections
between the N adjacent frames. In the standard atten-
tion shown in Sec. 3, each time-step can globally attend
to all others, which can be modelled as N = ∞. We
formalise our spatio-temporal adjacency matrix, as:

Ai,j,t =

{
1, if Con(i, j) and t ≤ N
0, otherwise

(5)

where t is the temporal distance from the reference
frame, t = u − uref.

Self-loops and Normalisation To account for infor-
mation loops back to the same joint (Bollobás, 2013),
we add self-loops to A using the identity matrix, I ∈
RS×S . In practice, due to our multi-dimensional skele-
tal representation, we add self-loops from each coordi-
nate of the joint both to itself and all other coordinates
of the same joint, which we define as I∗ ∈ RS×S .
Furthermore, to prevent numerical instabilities and ex-
ploding gradients (Bollobás, 2013), we normalise the
adjacency matrix by inversely applying the degree ma-
trix, D ∈ RS . D is defined as the numbers of edges a
node is connected to. Normalisation is formulated as:

A∗ = D−1(A+ I∗) (6)
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Figure 4: Skeletal Graph Self-Attention: Weighted calculation of Values, V , masked with a spatio-temporal
adjacency matrix A∗ to embed a skeleton inductive bias.

where A∗ is the normalised adjacency matrix.

Skeletal Graph Self-Attention We apply A∗ as a
sparsely weighted mask over the weighted value calcu-
lation, V W = V · WV , (Eq. 1), ensuring that values
used in the weighted context for each node are only
impacted by the adjacent nodes of the previous layer:

V A = V · A∗ ·WV (7)

where Figure 4 shows a visual representation of the
sparse adjacent matrix A∗ containing spatio-temporal
connections, applied as a mask to the weighted calcula-
tion. With a value matrix containing a skeletal structure,
V ∈ RS , A∗ restricts the information propagation of
self-attention layers only through the spatial and tem-
poral skeletal edges, E , and thus embeds a skeleton
inductive bias into the attention mechanism.
We formally define a Skeletal Graph Self-Attention
(SGSA) layer by plugging both the weighted variable
computation of Eq. 1 and the adjacent weighted compu-
tation of Eq. 7 into the self-attention Eq. 2, as:

SGSA(Q,K, V,A) =

softmax(
Q ·WQ(K ·WK)T√

dk
)V · A∗ ·WV (8)

where dmodel = S. This explicitly retains the spatial
skeletal shape, S , throughout the sign language decoder,
enabling a spatial structure to be extracted.
To extend this to a multi-headed transformer decoder,
we replace self-attention in Eq. 3 with our proposed
SGSA layers. To retain the spatial skeletal representa-
tion within each head, the dimensionality of each head
is kept as the full model dimension, dh = dmodel = S,
with the final projection layer enlarged to h× S .
We build our auto-regressive decoder with L multi-
headed SGSA sub-layers, interleaved with fully-
connected layers and a final feed-forward layer, each
with a consistent spatial dimension of S . A residual con-
nection and subsequent layer norm is employed around
each of the sub-layers, to aid training. As shown on the
right of Figure 3, the final output of our sign language
decoder module is a graphical skeletal sequence, Ĝ, that
contains U frames of skeleton pose, each with a spatial
shape of S.
We train our sign language decoder using the Mean
Squared Error (MSE) loss between the predicted se-
quence, Ĝ, and the ground truth sequence, G∗. This

is formalised as LMSE = 1
U

∑u
i=1 ĝ1:U − g∗1:U )

2,
where ĝ and g∗ represent the frames of the produced
and ground truth sign language sequences, respectively.
We train our full SLP model end-to-end with a weighted
combination of the encoder gloss supervision (Saunders
et al., 2021b) and decoder skeleton pose losses.

4.3. Sign Language Output
Generating a sign language video from the produced
graphical skeletal sequence, Ĝ, is then a trivial task, ani-
mating each frame in temporal order. Frame animation
is done by connecting the nodes, J , using the natural
limb connections defined by E , as seen in Fig. 1.

5. Experiments
Dataset We evaluate our approach on the
PHOENIX14T dataset introduced by Camgoz et
al. (Camgoz et al., 2018), containing parallel sequences
of 8257 German sentences, sign gloss translations and
sign language videos. Other available sign datasets are
either simple sentence repetition tasks of non-natural
signing not appropriate for translation (Zhang et al.,
2016; Efthimiou and Fotinea, 2007), or contain larger
domains of discourse that currently prove difficult for
the SLP field (Camgoz et al., 2021). We extract 3D
skeletal joint positions from the sign language videos
to represent our spatio-temporal graphical skeletal
structure. Manual and non-manual features of each
video are first extracted in 2D using OpenPose (Cao
et al., 2017), with the manuals lifted to 3D using the
skeletal model estimation model proposed in (Zelinka
and Kanis, 2020). We normalise the skeleton pose
and set the spatial skeleton shape, S, as 291, with 290
joint coordinates and 1 counter decoding value (as in
(Saunders et al., 2020c)). Adjacency information, A,
is defined as the natural limb connections of 3D body,
hand and face joints, as in (Zelinka and Kanis, 2020),
where each coordinate of a joint is adjacent to both the
coordinates of its own joint and all connected joints.
We define the counter value as global adjacency, with
connections to all joints.

Implementation Details We setup our SLP model
with a spoken language encoder of 2 layers, 4 heads
and an embedding size, E , of 256, and a graphical sign
language decoder of 5 layers, 4 heads and an embed-
ding size of S. Our best performing model contains
9M trainable parameters. As proposed by Saunders et
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Skeletal Graph DEV SET TEST SET
Layers, L: BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

0 (4 SA) 14.25 17.73 23.47 34.79 37.65 13.64 17.03 23.09 35.03 36.59
1 14.37 17.67 23.13 33.95 36.98 13.63 17.08 23.17 35.39 37.05
2 14.50 18.14 24.10 35.96 38.09 13.85 17.23 23.14 34.93 37.33
3 14.53 18.02 24.00 35.71 37.62 13.72 17.23 23.10 34.45 36.99
4 14.68 18.30 24.31 36.16 38.51 14.05 17.59 23.73 35.63 37.47
5 14.72 18.39 24.29 35.79 38.72 14.27 17.79 23.79 35.72 37.79

Table 1: Impact of Skeletal Graph Self-Attention layers, L, on model performance.

al (Saunders et al., 2020c), we apply Gaussian noise
augmentation with a noise rate of 5. We train all parts
of our network with Xavier initialisation, Adam opti-
mization with default parameters and a learning rate
of 10−3. Our code is based on Kreutzer et al.’s NMT
toolkit, JoeyNMT, and implemented using PyTorch.

Evaluation We use the back translation metric (Saun-
ders et al., 2020c) for evaluation, which employs a
pre-trained SLT model (Camgoz et al., 2020b) to trans-
late the produced sign pose sequences back to spoken
language. We compute BLEU and ROUGE scores
against the original input, with BLEU n-grams from
1 to 4 provided. The SLP evaluation protocols on the
PHOENIX14T dataset have been set by (Saunders et
al., 2020c). We share results on the Text to Pose (T2P)
task which constitutes the production of sign language
sequences directly from spoken language sentences, the
ultimate goal of an SLP system. We omit Gloss to Pose
evaluation to focus on the more important spoken lan-
guage translation task.

Skeletal Graph Self-Attention Layers We start our
experiments on the proposed Skeletal Graph Self-
Attention layers, evaluating the effect of stacking multi-
ple SGSA layers, L, each with a multi-head size, h, of
4. We first ablate the effect of using no SGSA layers,
and replacing them with 4 standard self-attention layers,
as described in Section 3. We then build our graphi-
cal sign language decoder with 1 to 5 SGSA layers,
with each model retaining a constant spoken language
encoder size and a global temporal adjacency.
Table 1 shows that using standard self-attention lay-
ers achieves the worst performance of 14.25 BLEU-4,
showing the benefit of our proposed SGSA layers. In-
creasing the number of SGSA layers, as expected, in-
creases model performance to a peak of 14.72 BLEU-4.
A larger number of layers enables a deeper representa-
tion of the skeletal graph and thus provides a stronger
skeleton inductive bias to the model. In lieu of this, for
the rest of our experiments we build our sign language
decoder with five SGSA layers.

Temporal Adjacency In our next experiments, we
examine the impact of the temporal adjacency distance,
N , (Sec. 4.2). We set N by analysing the trained tem-
poral attention matrix of the best performing decoder
evaluated above. We notice that the attention predomi-
nantly falls on the last 3 frames, as the model learns to
attend to the local temporal context of skeletal motion.
Manually restricting the temporal attention provides this
information as an inductive bias into the model, rather
than relying on this being learnt.
Table 2 shows results of our temporal adjacency evalua-
tion, ranging from an infinite adjacency (no constraint)
to N ∈ [1, 5]. A temporal adjacency distance of one
achieves the best BLEU-4 performance. Note: Although
we report BLEU of n-grams 1-4 for completeness, we
use BLEU-4 as our final evaluation metric to enable a
clear result. Although counter-intuitive to the global
self-attention utilised by a transformer decoder, we be-
lieve this is modelling the Markov property, where fu-
ture frames only depend on the current state. Due to the
intermediary gloss supervision (Saunders et al., 2021b),
the defined sign language representation, R, should
contain all frame-level information relevant to a sign
language translation. The sign language decoder then
has the sole task of accurately animating each skeletal
frame. Therefore, a single temporal adjacency in the
graphical decoder makes sense, as no new information
is required to be learnt from temporally distant frames.

Baseline Comparisons We compare the performance
of the proposed Skeletal Graph Self-Attention archi-
tecture against 4 baseline SLP models: 1) Progressive
transformers (Saunders et al., 2020c), which applied
the classical transformer architecture to sign language
production. 2) Adversarial training (Saunders et al.,
2020a), which utilised an adversarial discriminator to
prompt more expressive productions, 3) Mixture Den-
sity Networks (MDNs) (Saunders et al., 2021a), which
modelled the variation found in sign language using
multiple distributions to parameterise the entire predic-
tion subspace, and 4) Mixture of Motion Primitives

Temporal DEV SET TEST SET
Adjacency, N : BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

∞ 14.72 18.39 24.29 35.79 38.72 14.27 17.79 23.79 35.72 37.79
1 15.15 18.67 24.47 35.88 38.44 14.33 17.77 23.72 35.26 37.96
2 15.09 18.51 24.43 36.17 38.04 14.07 17.62 23.91 36.28 37.82
3 15.08 18.84 24.89 36.66 38.95 14.32 17.95 24.04 36.10 38.38
5 14.90 18.81 25.30 37.31 39.55 14.21 17.79 23.98 35.88 38.44

Table 2: Impact of Temporal Adjacency, N , on SGSA model performance
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DEV SET TEST SET
Approach: BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

Progressive Transformers 11.82 14.80 19.97 31.41 33.18 10.51 13.54 19.04 31.36 32.46
Adversarial Training 12.65 15.61 20.58 31.84 33.68 10.81 13.72 18.99 30.93 32.74

Mixture Density Networks 11.54 14.48 19.63 30.94 33.40 11.68 14.55 19.70 31.56 33.19
Mixture of Motion Primitives 14.03 17.50 23.49 35.23 37.76 13.30 16.86 23.27 35.89 36.77

Skeletal Graph Self-Attention 15.15 18.67 24.47 35.88 38.44 14.33 17.77 23.72 35.26 37.96

Table 3: Baseline comparisons on the PHOENIX14T dataset for the Text to Pose task.

(MOMP) (Saunders et al., 2021b), which split the SLP
task into two distinct jointly-trained sub-tasks and learnt
a set of motion primitives for animation.
Table 3 presents Text to Pose results, showing that
SGSA achieves 15.15/14.33 BLEU-4 for the develop-
ment and test sets respectively, an 8/7% improvement
over the state-of-the-art. These results highlight the
significant success of our proposed SGSA layers. We
have shown that representing sign pose skeletons in a
graphical skeletal structure and embedding a skeletal
inductive bias into the self-attention mechanism enables
a fluid and expressive sign language production.

6. Conclusion
In this paper, we proposed a skeletal graph structure for
SLP, with joints as nodes and both spatial and temporal
connections as edges. We proposed a novel graphical
attention layer, Skeletal Graph Self-Attention, to oper-
ate on the graphical skeletal structure. Retaining the
skeletal feature representation throughout, we directly
applied a spatio-temporal adjacency matrix into the self-
attention formulation, embedding a skeleton inductive
bias for expressive sign language production. We evalu-
ated SGSA on the challenging PHOENIX14T dataset,
achieving state-of-the-art back translation performance
with an 8% and 7% improvement over competing meth-
ods for the dev and test set. For future work, we aim
to apply SGSA layers to the wider computational sign
language tasks of SLR and SLT.

7. Acknowledgements
This work received funding from the SNSF Sin-
ergia project ‘SMILE’ (CRSII2 160811), the Eu-
ropean Union’s Horizon2020 research and innova-
tion programme under grant agreement no. 762021
‘Content4All’ and the EPSRC project ‘ExTOL’
(EP/R03298X/1). This work reflects only the authors
view and the Commission is not responsible for any use
that may be made of the information it contains.

8. Bibliographical References
Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural

Machine Translation by Jointly Learning to Align and
Translate. Proceedings of the International Confer-
ence on Learning Representations (ICLR).

Bollobás, B. (2013). Modern graph theory. Springer
Science & Business Media.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y.
(2014). Spectral Networks and Locally Connected

Networks on Graphs. In Proceedings of the Inter-
national Conference on Learning Representations
(ICLR).

Camgoz, N. C., Hadfield, S., Koller, O., and Bowden, R.
(2017). SubUNets: End-to-end Hand Shape and Con-
tinuous Sign Language Recognition. In Proceedings
of the IEEE International Conference on Computer
Vision (ICCV).

Camgoz, N. C., Hadfield, S., Koller, O., Ney, H., and
Bowden, R. (2018). Neural Sign Language Trans-
lation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Camgoz, N. C., Koller, O., Hadfield, S., and Bowden,
R. (2020a). Multi-channel Transformers for Multi-
articulatory Sign Language Translation. In Assistive
Computer Vision and Robotics Workshop (ACVR).

Camgoz, N. C., Koller, O., Hadfield, S., and Bowden,
R. (2020b). Sign Language Transformers: Joint End-
to-end Sign Language Recognition and Translation.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., and Sheikh,
Y. (2017). OpenPose: Realtime Multi-Person 2D
Pose Estimation using Part Affinity Fields. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Chu, P., Wang, J., You, Q., Ling, H., and Liu, Z.
(2021). TransMOT: Spatial-Temporal Graph Trans-
former for Multiple Object Tracking. arXiv preprint
arXiv:2104.00194.
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Abstract
We present an algorithm to improve the pre-existing bottom-up animation system for AZee descriptions to synthesize sign language
utterances. Our algorithm allows us to synthesize AZee descriptions by preserving the dynamics of underlying blocks. This bottom-up
approach aims to deliver procedurally generated animations capable of generating any sign language utterance if an equivalent AZee
description exists. The proposed algorithm is built upon the modules of an open-source animation toolkit and takes advantage of the
integrated inverse kinematics solver and a non-linear editor.

Keywords: AZee, sign language, avatar

1. Introduction
Sign language synthesis is a technique for converting a sign
language utterance description into an avatar animation.
Such avatars are commonly referred to as signing avatars.
Automating this process can provide a flexible way to gen-
erate sign language content while preserving the signer’s
anonymity. This also provides means to customize the
sign language content more conveniently than fixed video
recordings of signers.
Various systems for sign language synthesis have been de-
veloped over the years. Most of them relied on descrip-
tions that modeled sign language utterances as sequences
of glosses. This approach has several limitations rang-
ing from synchronisation to contextual variations of signs.
Hence, various utterance representations have been devel-
oped over these years to address one or more of these prob-
lems. EMBRScript (Kipp et al., 2011) added timing in-
formation to these sequences of glosses. The P/C model
(Huenerfauth, 2006) solves the problem of synchronisa-
tion and concurrency of signs by allowing for partitions
in utterance descriptions. The ATLAS project (Lombardo
et al., 2010; Bertoldi et al., 2010) addresses the issue of
sign variations using modifiers. Finally, the HLSML model
(López-Colino and Pasamontes, 2011; López-Colino and
Pasamontes, 2012) addresses the issue of timing informa-
tion and sign variations.
Unlike those mentioned above, the AZee model (Filhol et
al., 2014) allows us to write parameterised signed forms for
semantic functions. A sign language utterance is encoded
in the form of a hierarchy of applied production rules in-
stead of a sequence. Given a description, it produces a
timeline specifying all parts of the utterance to render with
the avatar, thereby addressing the issues of non-manual fea-
tures synchronisation, sign concurrency, and timing. Fur-
thermore, AZee’s timeline specifications also carry inter-
polation information and are essential for synthesising the
utterance.
These features of AZee are essential for our work since
modern animation systems use a multi-track timeline and
allow for non-linear editing of animation blocks. This pa-
per aims at synthesising AZee input with such type of soft-
ware, namely Blender in our case.
We first present two prior approaches complementing each
other that worked on animating from AZee, and explain a

fundamental limitation found in one of them. We then pro-
pose a novel algorithm to animate AZee descriptions that
allow for better synthesis. Lastly, we present our imple-
mentation in Blender and snapshots of output results we
were able to generate.

2. State of the Art
To animate AZee, Filhol et al. (2017) follow a fundamen-
tal guiding principle, according to which the coarser the
basic animation blocks, the more natural the final anima-
tion. To apply this principle, we should try to work from
coarse AZee blocks as much as possible and fall back on
synthesising from lower levels of AZee specification only
if necessary. If this top-down search in the hierarchy of the
AZee expression is not attempted, or indeed if it reaches
the bottom of the hierarchy, the animation needs to be built
from the bottom-up, i.e., work from the minimal articu-
latory constraints provided by AZee in its block specifica-
tions. In this section, we first review the Paula system, the
only one attempting a top-down search for synthesis from
an AZee description. Then we look into a Blender imple-
mentation, the only one proposed for a bottom-up synthesis
of AZee.

2.1. Top-Down Approach
The Paula sign synthesis system provides a multi-track an-
imation system close to how AZee describes sign language
utterances. The system uses multiple animation techniques,
capitalising on their strengths. Currently, it principally re-
lies on pre-animated clips made by artists whose work is
made simpler by using procedural techniques such as spine-
assisted computation (Mcdonald et al., 2015); hence they
do not have to be an expert in keyframe animation or arma-
tures. These clips, representing coarse animation blocks,
are essential in encapsulating the natural motions (McDon-
ald et al., 2016) which are vital to improving sign language
generation. Furthermore, the system has been extended
to enable natural proform synthesis (Filhol and Mcdonald,
2018). Various extensions have been made for better facial
model synthesis (Wolfe et al., 2021). Overall, this gives
a more natural animation since it encapsulates movements
that would be natural to a human signer. All of this is done
on a multi-track animation timeline.
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Using coarse blocks improves natural synthesis. However,
it relies on a large set of shortcut clips, and does not address
solving minimal constraints in the case none exists for a
given segment.

2.2. Bottom-Up Synthesis: Building from
Minimal Constraints

In contrast, a bottom-up approach proposes working from
small articulation constraints and then combining and eval-
uating them to generate an animated utterance on a time-
line. Thus, while it generates motion that looks more
robotic, it can generate any sign language utterance descrip-
tion, and therefore give complete coverage of the AZee lan-
guage description. This method of synthesis from AZee
was most recently attempted by (Nunnari et al., 2018).
To understand it better, let’s consider the AZee expres-
sion nicht-sondern(arbre, armoire) from their work, which
means ”not a tree but a wardrobe.” Evaluating this expres-
sion with the AZee interpreter yields a set of time-bounded
intervals arranged on a timeline. These intervals can be
represented as blocks on a horizontal axis such as those
shown in Figure 1. This arrangement is called an AZee
score. Each of these intervals contains articulatory con-
straints such as, placements (e.g. place fingertip at fore-
head), orientations (e.g. orient forearm along upward vec-
tor), transpaths (e.g. fingertip must transition on a circular
path) and holds (e.g. hold block UNIT0 for a duration).
In such a score, we notice that these constraints can apply
simultaneously Figure 2. For example, PALMS DOWN,
which refers to the orientation of palms downwards, while
HANDS CONTACT, which refers to the contact of palms.
Since both these blocks affect common bones of a bone
chain, animating them separately is a problem.
To avoid this problem, Nunnari et al. chose to flatten the
AZee score to create a linear sequence of keyframes com-
prising of,

• the constraints corresponding to the boundaries of the
original blocks (example k1, k2 in Figure 1)

• additional keyframes to control interpolations as spec-
ified by transpaths (example k12, k13, ... k18 in Fig-
ure 1)

Each of the former kinds contains all of the articula-
tory constraints applied at that time, collecting from any
block starting, ending, or crossing over that keyframe. A
keyframe of the latter kind contains the same, plus the ad-
ditional place constraints generated by the transpaths.
When flattening, all the underlying constraints within the
blocks are projected on a single timeline. For example, in
Figure 1, the constraints in PALMS DOWN and HANDS
CONTACT are combined to make one single set of con-
straints for the keyframe k9.
This flattened score is then used to animate the posture.
This is done by resolving the sets of constraints associated
with each keyframe in chronological order on the timeline.
The constraints are then eventually resolved into the rota-
tion of bone joints. Thus, a posture with n bones can be
represented as the following:

X(i) = {bone rot1(i), bone rot2(i), ..., bone rotn(i)}

where X is the state of the posture for the i-th frame.
A problem with this approach is that, even though the sys-
tem fixes the issue of concurrent constraints depending on
each other, it loses the information brought by the paral-
lelism of the blocks while flattening. This means that the
only information we have for interpolation are the con-
straints present on k1, k2, ..., and so on. Moreover, every
interpolation between each pair of successive keyframes
will be distributed on all the bones, including those that
should not be affected. Thus, we lose the dynamics of the
present blocks, and there is no information on how the sys-
tem should interpolate amongst these flattened constraints.
Also, even if the concurrent blocks comprised of constraints
not affecting the same bone chains, there was never a need
to flatten in the first place.
In the following section, we propose to fix this using an
algorithm that does not flatten by presenting a multi-track
bottom-up synthesis of an AZee description.

3. Algorithm for Multi-Track Synthesis
We aim to build a multi-track system without flattening the
AZee score. Our work focuses on synthesising the non-
flattened AZee score in Figure 1. Since the score is con-
structed based on linguistic descriptions which can be non-
linear, we need to impose a certain set of rules while con-
structing the multi-track timeline, which were previously
resolved by flattening the score. Similar to the previous
work, we focus on placements and orientation constraints.
However, since we are not flattening, the transpath and hold
constraints will not be resolved, and we have to deal with
them separately.

3.1. Resolving Conflicting Cases
We chose to resolve the conflicting cases by applying the
following rules.

3.1.1. Rule 1: Timely Evaluation

Figure 3: Timely evaluation

Problem: Time overlapping blocks containing constraints
that act on the same bone chain but do not start at the same
time. For example, in Figure 3, HANDS APART shouldn’t
be evaluated before PALMS DOWN.
Response: In this scenario(Figure 3), the evaluation of
HANDS APART has to account for the fact that the palms
are already facing downwards since both blocks act on the
same kinematic chain. Thus, to fix this, time overlapping
blocks acting on the same bone chains have to be evaluated
chronologically.
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Figure 1: Arrangement of blocks in an AZee score(top) and the equivalent flattened score(bottom)

Figure 2: HANDS CONTACT and PALMS DOWN in :ar-
moire (Moody, 1997)

3.1.2. Rule 2: Constraint Precedence

Figure 4: Constraint Precedence

Problem: Time overlapping blocks containing constraints
that act on the same bone chain but start at the exact same
time. For example, in Figure 4, HANDS CONTACT con-
tains placements while PALMS DOWN contains orienta-
tions.
Response: In this scenario(Figure 4), the evaluation of
PALMS DOWN has to account for the fact that the hands
are already in contact. Thus, to fix this, precedence has to

be given to the block containing placement constraints over
those with orientation constraints.

3.1.3. Rule 3: Second Pass for Transpaths
Problem: A block contains a transpath constraint.
Response: The transpaths represent transitioning of the
posture along some path for an effector of the body. It de-
pends on the evaluation of surrounding blocks and all sub-
sequent interpolations. The solution is, therefore, to evalu-
ate blocks containing transpaths in a Second Pass(Figure 5)
after all other blocks have been animated.

3.1.4. Rule 4: Second Pass for Holds
Problem: A block contains a hold constraint.
Response: A block containing the hold constraint specifies
that constraints of some other block have to be held for a
duration. It, therefore, depends on the animation of that
reference block. Hence, blocks containing holds have to be
evaluated in a Second Pass (Figure 5) as well.

3.2. Non-Conflicting Cases
Any case not mentioned above will be clear of conflicts and
can be evaluated independently. These include:

• all blocks not overlapping each other on the timeline;

• overlapping blocks that act on different bone chains;

• other constraints such as morph and look act indepen-
dently from the others.

4. Implementation and Experimental
Results

The above system has been implemented as an add-on in
Blender(v3.1). The interface (Figure 6) shows the Blender
interface configured for AZee synthesis. Its main compo-
nents include:

AZee editor (a) An editor to evaluate AZee expressions. It
also includes settings for armature configuration, tog-
gling constraints, and managing body sites.
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Figure 5: Second Pass to resolve transpaths and holds for :nicht-sondern(:arbre, :armoire)

Viewport (b) Shows the 3D scene with the avatar

Non-linear Editor (c) To place all the baked AZee blocks
after evaluation.

Properties (d) Modify inverse kinematics (IK) settings,
access pose library, and animation layers.

To implement IK solving, we chose to use the iTaSc IK
solver (Smits et al., 2008). The reason for that choice is its
popularity and that it is already integrated into Blender.
Our implementation is still under development, but the cur-
rent state of progress already allows to visualise timelines
and extract renders, as shown in Figure 7. Here, we present
various synthesised AZee descriptions such as :bien, :ar-
moire, :arbre, :bonjour.
The current implementation produces satisfactory utter-
ances of simple descriptions but needs more testing and de-
bugging for complex utterances. These occur mainly when
there joint orientations get close to the rotation limits. This
can be observed in :armoire in Figure 7 where the hand
rotation limits are reached to satisfy the orientations and
placements. But we see that the linguistic constraints on
the forearm, hand, and finger orientations, for example, are
well satisfied.
As a result of not flattening the score, we preserve
the dynamics of individual blocks. This can be seen
in armoire comparison.mp4 available at https://doi.

org/10.5281/zenodo.6563373 where (A) shows
an :armoire synthesised using a flattened score while (B)
shows the one synthesised using our approach. For (A) we
observe that the interpolations are distributed on all bones
while for (B) they distribute only over the relevant bones of
the blocks shown in the Non-linear Editor.

5. Conclusion and Future Prospects
In this work, we proposed an algorithm that allows for de-
veloping the first multi-track animation system for AZee
bottom-up synthesis. This proposed algorithm is a step for-
ward in sign language synthesis, allowing for individual
AZee blocks to be synthesised independently and ensuring
that the dynamics of these blocks are preserved by not flat-
tening. We also integrate our algorithm as an add-on in the
open-source Blender software.
Eventually, we want to integrate our work with a top-
down technique to have a complete hybrid approach to ani-
mate AZee descriptions. The implementation should allow
shortcuts using pre-animated clips, MoCap data, or pro-
cesses that animate these blocks. This would create a sys-
tem leveraging the advantages of both techniques, as pro-
posed in the AZee–Paula effort.
The current system doesn’t resolve AZee morph con-
straints. More research is needed to handle the bottom-up
synthesis of morph constraints and integrate it with our cur-
rent work. Furthermore, the AZee constraint dependencies
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Figure 6: Main Blender interface. (a) AZee editor. (b) 3D Viewport. (c) Non-linear Editor. (d) Properties panel.

(a) :arbre (b) :armoire (c) :bien (d) :bonjour

Figure 7: Results

can eventually be mapped as a dependency graph (Zhang
et al., 2021; Watt et al., 2012) which can be solved using a
multi-pass system.
Lastly, this work can be extended to make the bottom-
up synthesis less robotic using ambient noise analysis and
style transfer techniques (Holden et al., 2017).
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Abstract
This paper presents first steps towards a sign language avatar for communicating railway travel announcements in Dutch Sign
Language. Taking an interdisciplinary approach, it demonstrates effective ways to employ co-design and focus group methods
in the context of developing sign language technology, and presents several concrete findings and results obtained through
co-design and focus group sessions which have not only led to improvements of our own prototype but may also inform the
development of signing avatars for other languages and in other application domains.
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1. Introduction
This paper presents initial results of a project which
aims to develop a sign language avatar for communicat-
ing railway travel announcements in Dutch Sign Lan-
guage (Nederlandse Gebarentaal, NGT), in collabora-
tion with the Dutch national railway company (NS).
For developing responsible and ethical signed language
technologies that are adopted by deaf end users, inter-
disciplinary collaboration between specialists in Deaf
Studies, Sign Linguistics, Computer Science, Artifi-
cial Intelligence, Human Computer Interaction, Lan-
guage Policy, and Sign Language Interpreting Studies
is essential (Bragg and others, 2019; Bragg and oth-
ers, 2021; Yin et al., 2021). Such collaboration in-
creases the quality of the developed technologies, en-
sures that they incorporate deaf communities’ demands
and values, and guarantees that there is consideration
for design and appropriate user interfaces (De Meulder,
2021).
The present project is an example of such interdis-
ciplinary collaboration. Our team consists of three
deaf researchers with a background in Applied Sign
Linguistics (Cokart, de Meulder) and Deaf Studies
(de Meulder, Sijm) and three hearing researchers with
a background in AI and Linguistics (Esselink, van
Gemert, Roelofsen). Esselink and van Gemert have
elementary proficiency in NGT, Roelofsen intermedi-
ate. Cokart and Sijm use NGT as their primary sign
language and use it in different domains, De Meulder
uses NGT primarily in professional contexts. Cokart,
De Meulder and Sijm all have knowledge of various
other sign languages and are involved in various deaf
networks and communities.
The paper makes two contributions. The first is
methodological: it exemplifies how co-design and fo-

cus group methods can be used effectively in the con-
text of developing sign language technology, and offers
some recommendations as to how these methods may
be adapted to this specific purpose. The second is tech-
nological: it discusses several concrete findings and re-
sults obtained through co-design and focus group ses-
sions which have not only led to improvements of our
own prototype but may also inform the development of
signing avatars for other languages and in other appli-
cation domains.

2. Brief Background on Sign Languages
Evidently, we cannot provide a comprehensive
overview here of the (socio)linguistic properties of sign
languages in general (Baker et al., 2016), nor of NGT in
particular (Klomp, 2021). We will, however, highlight
some important features which any text-to-sign trans-
lation system needs to take into account.
First of all, sign languages have naturally evolved in
deaf communities around the world (Kusters and Lu-
cas, 2022). This means that, contrary to a rather com-
mon misconception, there is not a single, universal sign
language used by all deaf people worldwide, but many
different sign languages used on different scales by dif-
ferent deaf and hearing signers (Hou and de Vos, 2022).
Second, although sign languages exist in language
ecologies in close contact with spoken languages, there
is generally no direct correspondence between the sign
language used in a given country and the spoken lan-
guage used in that same country. For instance, while
English is the mainstream spoken language both in the
US and in the UK, American Sign Language (ASL) and
British Sign Language (BSL) differ considerably from
each other, as well as from spoken English. Such dif-
ferences do not only pertain to the lexicon, but also to
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grammatical features such as word order. This means
in particular that, to translate a sentence from English
to ASL or BSL it does not suffice to translate every
word in the sentence into the corresponding sign in
ASL/BSL and then put these signs together in the same
order as the words in the English sentence.
Third, making travel information available in the form
of written text does not necessarily make it equally
comprehensible for all deaf passengers. Depending on
the complexity and time-sensitiveness of the message,
textual information may be difficult to process, which
may lead to misinterpretation. At the same time, the
time-sensitive character of travel information entails
specific demands concerning the comprehensibility of
avatars.
Fourth, signs are generally not just articulated with the
hands, but often also involve facial expressions and/or
movements of the head, mouth, shoulders, or upper
body. These are referred to as the non-manual com-
ponents of a sign. A text-to-sign translation system
has to take both manual and non-manual components
of signs into account. These movement qualities (fluid
movement) seem to be a crucial aspect for the rating of
avatars by deaf end users (e.g. Quandt et al. (2021)).
Fifth, related to the previous point, non-manual ele-
ments are not only part of the lexical make-up of many
signs, but are also often used to convey certain gram-
matical information (comparable to intonation in spo-
ken languages). For instance, raised eyebrows may in-
dicate that a given sentence is a question rather than a
statement, and a head shake often expresses negation.
Such non-manual grammatical markers are typically
‘supra-segmental’, meaning that they do not co-occur
with a single lexical sign but rather span across a se-
quence of signs in a sentence. Sign language linguists
use so-called glosses to represent sign language utter-
ances. For instance, the gloss in (1) represents the NGT
translation of the question Have you already eaten?.

(1)
brow raise

YOU EAT ALREADY

Lexical signs are written in small-caps. They always
involve a manual component and often non-manual
components as well. The upper tier shows non-manual
grammatical markers, and the horizontal line indicates
the duration of these non-manual markers. In this case,
‘brow raise’ is used to indicate that the utterance is a
question. A text-to-sign translation system should thus
be able to integrate non-manual elements that convey
grammatical information with manual and non-manual
elements that belong to the lexical specification of the
signs in a given sentence (Wolfe et al., 2011). This
means that a system which translates sentences word
by word, even if it re-orders the corresponding signs
in accordance with the word order rules of the target
sign language, will not be fully satisfactory. More flex-
ibility is needed: word by word translation can be a first
step, but the corresponding signs as specified in the lex-

icon, must generally be adapted when forming part of
a sentence to incorporate non-manual markers carrying
grammatical information.
Sixth, in the context of machine learning, just like
some smaller spoken languages, (most) sign languages
belong to the category of ‘low-resourced languages’,
which refers to a lack of available training data and the
fragmentation of efforts in resource development (Say-
ers et al., 2021). For sign languages there is the ad-
ditional issue of a different language modality, which
makes data collection and machine training much more
challenging than for most spoken languages.

3. Related Work
We cannot provide a comprehensive overview of all
work related to the present project. We restrict our-
selves to highlighting some relevant work on (i) sign-
ing avatars for NGT, (ii) signing avatars in the railway
domain, (iii) co-design and focus group methodologies,
and (iv) user feedback on existing avatars.

Signing avatars for NGT Previous research on sign
language technology for NGT is rather limited. Prins
and Janssen (2014) developed a first prototype sign-
ing avatar for NGT to translate an episode of a Dutch
TV program for children. Roelofsen et al. (2021)
developed an avatar to address concerns in the Dutch
deaf community during the COVID pandemic about
the difficulty of communicating with healthcare pro-
fessionals in case sign language interpreters would not
be permitted into the hospital (Smeijers and Roelofsen,
2021). This avatar supports basic one-way communi-
cation from healthcare professionals to patients, e.g. to
inform a patient about the results of their COVID test.

Signing avatars in the railway domain There has
been discussion in the literature and the user com-
munities about possible application domains of sign-
ing avatars. In general, announcements in public
transportation are seen as a ‘safe’ application domain
(Krausneker and Schügerl, 2021; WFD and WASLI,
2018) because their grammar is highly constrained and
predictable, and the information that is shared is imper-
sonal. This is different for application domains where
the stakes are higher and miscommunication can poten-
tially lead to life-threatening situations.
Prototype avatars for railway travel announcements
have been developed for several sign languages, in-
cluding Italian Sign Language (Battaglino et al., 2015),
Swiss German Sign Language (Ebling and Glauert,
2016), and Sign Language of French-speaking Belgium
David and Bouillon (2018).
The basic aim of Battaglino et al. (2015) was similar
to ours, but the approach quite different. Their project
involved a technical development phase and a quantita-
tive assessment of the translation accuracy of the sys-
tem. Our approach instead involves co-design and fo-
cus group methods so as to improve the system through
various iterations. The findings we report are qualita-
tive in nature rather than quantitative.
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Closer to our project is the work of Ebling and Glauert
(2016) and David and Bouillon (2018). These projects
involved an initial development phase, a focus group
session to collect suggestions for improvements, and
a second development phase to implement these sug-
gestions. These projects were similar to ours in that
they used a qualitative method for evaluation, and in-
volved multiple (in their case two) development itera-
tions. One difference is that our project did not only in-
clude a focus group session, but also several co-design
sessions, interleaved with multiple development itera-
tions. Moreover, there is a difference in focus group
methodology. These previous projects presented focus
group members with a number of sentences signed by
an avatar and elicited general feedback on the basis of
these sentences. We instead discussed eight specific
topics with our focus group members which had arisen
during the co-design sessions. In each case we pre-
sented three different avatar animations for compari-
son, in order to make the discussion more targeted and
to elicit more specific recommendations.

Co-design and focus group methodologies Co-
design of sign language technologies with deaf end
users improves the quality of the developed technolo-
gies, ensures appropriateness for the intended purpose,
and stimulates acceptance. Conversely, lack of co-
design may not only lead to sub-optimal technologies
but also ones that could negatively impact deaf com-
munities (Bragg and others, 2021).
Community-based co-design has been performed for
several sign languages, including South African sign
language (Blake et al., 2014). For example, for the de-
sign of a Deaf culture website, combining iterative co-
design and focus group methods yielded insights in the
native point of view and actionable insights on cultur-
ally rooted conventions for user experience (Pylvänen
et al., 2013). Moreover, it can uncover hidden cul-
tural norms, values, beliefs and attitudes (Chininthorn,
2021). Focus groups are used to elicit perceptions and
opinions in early development stages. Young and Hunt
(2011) emphasise the importance of avoiding visual
distractions in focus group sessions: no busy walls or
clothing, and a setting that ensures a good view for all
participants.

User feedback User feedback has been collected for
several existing signing avatars. We will highlight only
some of the most recent studies, which involves state-
of-the-art avatars. Krausneker and Schügerl (2021)
compared perceptions of avatars vs. human interpreters
through focus groups. Deaf participants criticized
avatars for “lacking facial expressions, imprecise co-
ordination of manual and non-manual components of
a sign, missing phrase melody, jerky, hard, mechani-
cal, wooden, robotic, somnolent, unnatural, incomplete
signs and missing transitions between signs.” They also
mentioned “lack of mobility of upper body, shoulders,
cheeks, unclear mouthing, comic face, artificial figure.”
Younger participants were often more familiar with the

uncanny valley effect. Older participants sometimes
felt that it was inappropriate that they were informed
by a playful cartoon character, because they felt it exac-
erbated the infantilisation of sign languages — and by
extension, deaf people (see also Wolfe et al. (2021)).
Participants further reported that “maximal cognitive
attention” was needed to understand the avatar.
Quandt et al. (2021) found that deaf respondents rated
an avatar based on motion capture significantly more
positively than an avatar based on (scripted) keyframe
animation, but still not as positively as a human signer.
Participants who had learned ASL later in life were
more open to signing avatars in general, but also gave
more negative ratings to the avatar based on keyframe
animation. Participants who learned ASL earlier in life
were more sensitive to movement quality issues in the
keyframe animation avatar.

4. Design Process

4.1. Phase 1: Initial Design

First, we obtained a list of railway announcement tem-
plates from NS (e.g. ‘The intercity train to destination
X departs at time Y from platform Z’). The Dutch Sign
Language Centre (Nederlands Gebarencentrum, NGc)
provided NGT translations of these templates (for ran-
domly picked X’s, Y’s, and Z’s).
We created an initial basic system based on these trans-
lations. The signing avatar mimicked the video trans-
lations as closely as possible, and had the ability to
sign several variations of the announcement templates
(with different X’s, Y’s, and Z’s). We made use of
the JASigning avatar engine for implementation of the
avatar (e.g. Ebling and Glauert (2016)). This engine
takes phonetic representations of signs as input (speci-
fied in the Sign Gesture Markup Language, SiGML for
short) and yields an avatar animation as output. This
approach allowed us to efficiently create a large num-
ber of variations of the given set of templates, without
expensive equipment (e.g. motion capture).
In addition, we developed an online user interface to
facilitate further development of the basic initial system
in subsequent phases of the project.
A general strategy for inclusive collaboration meth-
ods was defined through a brainstorm session involv-
ing two deaf and two hearing researchers. We opted
for a combination of multiple co-design sessions and a
focus group. The former allows for iterative develop-
ment with a relatively small, highly engaged and fully
dedicated team. The latter ensures input from a larger
and more diverse group of potential end users. We en-
visioned that a combination of the two methods would
work particularly well because the co-design sessions
could result in specific topics to be discussed in the fo-
cus group. Indeed, we feel that this has made the focus
group particularly fruitful (see below).
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4.2. Phase 2: Iterative Co-design
4.2.1. Method
We held three co-design sessions (2x2 hours on cam-
pus with two deaf researchers, two hearing, and two
interpreters; 1x1 hour online with one deaf researcher,
two hearing, and one interpreter). These sessions fo-
cused on improving various aspects of the avatar’s
signing (e.g., manual movements, facial expressions,
mouthing, grammar, transitions between signs) as well
as non-linguistic aspects of the animations (e.g., cam-
era angle, speed). Following each session, all sugges-
tions made by the deaf researchers were implemented
by the developers, often in several variations, so that
they could be reconsidered and possibly further refined
during the next session. In some cases, suggested im-
provements were implemented on the fly and evaluated
immediately.

4.2.2. Results
The co-design sessions led to major adjustments of the
avatar, pertaining to both linguistic and non-linguistic
aspects. Below we discuss a selection of these adjust-
ments.

Greeting All NS announcements start with a greet-
ing, BESTE REIZIGERS (DEAR PASSENGERS). This
is not a natural greeting in NGT. At first, we removed
the greeting entirely. However, it also functions as a
way of getting people’s attention and provides a ‘time
buffer’, so that passengers don’t miss the first part of
the actual announcement. As an alternative, we opted
for the greeting HALLO (HELLO), which is com-
monly used in NGT, both in formal and in informal
settings. The avatar initially signed HALLO with a
5-handshape, with all selected fingers stretched. This
looked unnatural. We adapted the sign, opting for a
handshape that lies between the 5-handshape and the
B1-handshape. A subtle difference, but the resulting
sign looks substantially more natural.

(a) HALLO - Version 1 (b) HALLO - Version 2

Fig. 1: HALLO - Multiple versions

Mouthings The JAsigning avatar engine offers lim-
ited possibilities to produce natural-looking mouthings.
The engine requires a specification of the mouthing in
SAMPA notation. But SAMPA is a notation system
for phonemes, and there is no one-to-one mapping be-
tween phonemes and mouth movements. For instance,

the ‘s’ in ‘sun’ and the ‘s’ in ‘silver’ involve different
mouth shapes. This makes it difficult to generate cor-
rect mouthings for NGT in JAsigning, and in several
cases we did not succeed in doing so. For instance, the
mouthing for VIJFENVIJFTIG (fiftyfive) was initially
coded in SAMPA as ‘vE ifv@nvE iftIx’. After multi-
ple adjustments we ended up with ‘vE ifE iftI’. While
this improved the animation, the last part ‘tig’ is still
unsatisfactory.

Formal vs informal registers The distinction be-
tween formal and informal registers proved to be highly
relevant for the perception of the avatar. Clear signing
is not sufficient; the avatar’s signing style and choice of
vocabulary also need to fit the particular context of use.
For instance, the sign WEGGAAN (LEAVE) which is
frequently used in casual interactions (e.g., in ‘the train
already left’) was deemed too informal for official an-
nouncements and was replaced by the more formal sign
VERTREKKEN (DEPART).

(a) WEGGAAN (b) VERTREKKEN

Fig. 2: WEGGAAN and VERTREKKEN

Intensity Preferences regarding the intensity of body
movements and facial expressions varied. On the
one hand, for station names such as ENSCHEDE and
UTRECHT CENTRAAL, the manual movements and
facial expressions of the avatar were considered too ex-
aggerated, even aggressive, and had to be ‘toned down’.
On the other hand, for certain other signs (e.g. BIJNA
(ALMOST)) they were considered too subtle and had to
be intensified.

Transitions In phrases of the form NAAR X (TO X),
where X is the name of some destination, the transition
between the two signs was sometimes unnatural. For
instance, as can be seen in Figure 3(a), the path move-
ment of the sign NAAR ends by default in the upper
right corner of the signing space (from the perspective
of the signer), but if the initial position of the subse-
quent sign, e.g. ALMELO in Figure 3(c), is in the up-
per left corner of the signing space, there is an unnatu-
ral prolonged transition between the two signs. This
issue was also observed for other destinations, such
as MAASTRICHT and AMSTERDAM. This was re-
solved by manually adapting the sign NAAR whenever
needed. Ideally, however, future iterations of the sys-
tem would be able to automatically adjust the direction
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of signs like NAAR, depending on the next sign.

Eye gaze In several phrases, the avatar’s eye gaze
was too static. For instance, when a destination is
signed (e.g., Amsterdam), it is natural for the eyes to
be directed at the location of the sign in the signing
space and to follow the path movement of the sign.

(a) NAAR (b) Transition (c) First pose
of ALMELO

Fig. 3: Transition between NAAR and ALMELO

Camera angle Initially, the camera angle was front-
view, the default in JAsigning. This, however, resulted
in poor visibility for some signs, e.g., VIJFTIEN (FIF-
TEEN). By changing the camera angle 13◦ to the left,
and adjusting the head position and eye gaze of the
avatar in such a way that she still faced the addressee
by default, visibility was significantly improved.

Sentence structure Due to grammatical differences
between NGT and Dutch, the signed sentence struc-
ture sometimes had to be adjusted. For example, in
NGT, certainties should be positioned at the start of the
sentence and uncertainties at the end (e.g. ‘over een
nog onbekende tijd’ (in a yet unknown time) should
be positioned at the end). The structure of sentences
containing a final destination and several intermediate
destinations was adapted as well: the preference was
to mention the final destination before the intermediate
destinations. In both cases, the preferred structure in
NGT differs from the structure of the original NS an-
nouncements in Dutch.

Lists In phrases like the train to Almelo, Hengelo and
Enschede, the avatar initially used a ‘count hand’ to list
the three destinations, a grammatical construction that
is commonly used in NGT for conjunctions and lists.
In the present context, however, this gave the wrong
impression that the announcement concerned multiple
trains. Therefore, all count hand signs were removed.

Indexing There was much discussion about the ap-
propriate use of INDEX signs. For instance, the video
translations that served as our point of reference ren-
dered the phrase The intercity to. . . as INDEX INTER-
CITY NAAR, where the function of the INDEX sign
was to place the intercity in the signing space for fu-
ture anaphoric reference. While grammatically correct,
this usage of the INDEX sign seemed superfluous if the
announcement did not involve any anaphoric reference
to the intercity (which was the case in most announce-
ments). A similar issue arose for phrases like from
platform two, which were translated as VAN INDEX

SPOOR TWEE. No consensus on this issue was es-
tablished during the co-design process. Moreover, it
was suggested that some INDEX signs, if present at
all, should be shorter (less prominent) than others. We
decided to create several variants for a number of sen-
tences, with index signs present or absent in several po-
sitions, and with shorter or longer movements, to be
further discussed in the focus group session.

Visual elements If an announcement is a repetition
of a previously made announcements, its spoken ver-
sion always starts with Herhaling (Repetition). In the
signed version, however, starting with the sign HER-
HALING would not be effective for passengers who
miss the beginning of the announcement. We therefore
removed the sign and instead added a red bar under the
animation displaying the text Herhaling to indicate the
repetition.

Appearance The avatar’s fingers were perceived as
being unnaturally long. This affected the appearance
of some hand shapes, e.g. in SPOOR (PLATFORM).
When properly signed, SPOOR involves a baby-C
handshape with extended fingers. Due to the the long
fingers of the avatar, this baby-C handshape had an un-
natural curved shape.
The deaf researchers in the team also commented on
the general appearance of the avatar. It was perceived
as somewhat grumpy, not friendly. We added a smile
right at the beginning of each announcement, before
and during the greeting HALLO. This was an improve-
ment, but a more friendly-looking avatar should be de-
veloped/adopted in future work (the JAsigning engine
is limited in this regard – it includes some avatars other
than the one we used, but not ones that are more suit-
able for our present purposes). Users should preferably
also be able to adapt the clothing of the avatar, and to
choose a male, female or androgyn-looking avatar.

Semantic refinement In some cases, a Dutch phrase
cannot be univocally translated to NGT without mak-
ing more specific what its intended semantic interpre-
tation is. For instance, the proper translation of De trein
naar . . . rijdt niet (The train to . . . is cancelled) depends
on whether it’s just a single train that is cancelled or
the problem is structural. In the first case, the phrase
RIJDEN NIET (DEPART NOT) is used, where NIET is
signed with a 1-handshape moving from a central posi-
tion in the signing space towards the upper right corner
accompanied by a headshake, while in the second case
the sign ANNULEREN (CANCEL) is more appropriate
(drawing a cross in the signing space).

Times and numbers In phrases like INTERCITY
NAAR AMSTERDAM TIJD TIEN TWINTIG (IN-
TERCITY TO AMSTERDAM TIME TEN TWENTY),
it is clear that the numeral phrase TIEN TWINTIG
refers to the departure time. The sign TIJD was felt
to be redundant and was therefore removed. Instead
the preposition VAN (OF) was inserted, corresponding
to the preposition that is used in Dutch, e.g., De trein
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van 10:20 (‘The train of 10:20’). No consensus was
reached on whether to include a sign for the ‘:’ symbol
in times like 10:20, and if so, which sign. We created
several variations to be discussed further during the fo-
cus group session.

Topics for focus group As already alluded to in sev-
eral places above, we identified a number of specific
topics during the co-design sessions that required fur-
ther discussion in a larger and more diverse group of
deaf people (e.g. indexing, time punctuation). For this
purpose, multiple variations were created to facilitate
comparison and stimulate targeted discussion.

4.3. Phase 3: Focus Group
4.3.1. Method
A 3-hour focus group session with six participants
was held. Participants were selected by the deaf team
members from their personal and professional network.
They represented different regions, age groups and
school backgrounds (see Table 1). In advance, partic-
ipants received a link to an online demo of the avatar.
Specific topics for discussion were not sent in advance.

Age Home, work and school region
D1 31-40 Noord-Holland, Utrecht, Groningen
D2 41-50 Noord-Holland, Utrecht, Noord-Brabant
D3 18-30 Utrecht, Gelderland, Groningen
D4 51-60 Utrecht, Groningen
D5 18-30 Noord-Holland, Groningen
D6 41-50 Flevoland, Amsterdam

Table 1: Focus Group Participants

The session was held at the University of Amsterdam
in a room with a big screen. One team member acted
as host and moderator (hearing, intermediate signer),
one team member controlled the screen and took de-
tailed minutes (hearing, minimal knowledge of NGT,
developer), and two team members took part in the dis-
cussion (both deaf). One NGT-English interpreter was
present. Having a signing moderator who is familiar
with the research terms and project itself is an advan-
tage over solely communicating through the interpreter
(less engaging, time lag between communication types)
(Orfanidou et al., 2014; Harris et al., 2009).
The discussion concentrated on eight topics determined
by the team in advance, including time punctuation,
subtitles, animation speed, mouthing, indexing, pauses
and choice of vocabulary. In each case, three variants
of a sign or a phrase were presented for comparison and
participants discussed their perspectives and opinions.
At the end of the focus group, participants were asked
how and where they would like to see the avatar put to
use.

4.3.2. Results
We provide an overview of our main findings.

Subtitles We asked participants whether subtitles
might be helpful, and if so, which format would be pre-
ferred (per sign vs per sentence). Participants indicated
that subtitles could indeed be useful, and had a clear
preference for subtitles for entire sentences rather than
for individual signs. If the text in the subtitles is used as
an information source, displaying the entire sentence at
once makes it easier to obtain complete information at
once.

Animation speed The JASigning avatar engine of-
fers speed adjustments ranging from 0.00 to +3.00.
Participants of the focus group considered an anima-
tion speed of +0.40 optimal for comprehension. Lower
speed was perceived as too slow. For most partici-
pants, a higher speed (e.g. +0.60) was comprehensible
as well, but required more cognitive effort.

Indexing We asked participants for their preference
concerning the use of INDEX signs (see Section 4.2).
They indicated a preference for the use of INDEX sign
even if they were strictly speaking redundant, but also
indicated that INDEX signs should by default be sub-
tle and not too prominent, often involving just a change
of handshape and/or a subtle movement of the wrist,
otherwise keeping the body and arms roughly in the
same position as where the previous sign ended. For
instance, the preferred translation of The intercity to
Almelo departs from platform five was: INDEX1 (sub-
tle) INTERCITY NAAR ALMELO INDEX1 (subtle)
VERTREKKEN SPOOR 5 INDEX2 (subtle).

Time punctuation No consensus was reached for
time punctuation, i.e., the sign for the ‘:’ in times like
‘15:31’. In fact, among our six participants, three dif-
ferent signs were used, and preferences seemed to de-
pend on age group.

Personal pronouns In some sentences the avatar
used a first person pronoun IK/WIJ (I/WE). The orig-
inal Dutch announcements of NS involve impersonal
pronouns instead, but these do not have a direct trans-
lation in NGT. However, our focus group participants
indicated that the use of first person pronouns was not
suitable, as this suggested that the avatar herself was
the source of the information, rather than NS.

Pauses In general, animations without any pauses be-
tween signs were preferred, or with very short pauses
based on the syntactic structure of the sentence (i.e.,
somewhat longer pauses between conjoined sentences
and shorter ones between noun phrases).

User interface Participants made some specific user
interface suggestions. They indicated that it would
be useful for the avatar to be displayed on screens at
train stations and in trains, as well as in the mobile
NS app. Drawing passengers’ attention before an an-
nouncement starts is essential – otherwise, passengers
might miss part of the announcement. At train stations
and in trains, flickering lights on the ground could serve
this purpose. In the mobile app, a vibrate alert would
be a natural choice, and passengers should be enabled
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to replay the announcement if they want to. It would
be good if deaf users of the mobile app could choose to
receive automatic alerts for announcements related to
their personal itinerary.

5. Discussion and Conclusion
The combined expertise from various disciplines in the
co-design process and the input from a diverse focus
group led to significant improvements of our prototype
(manual movements, facial expressions, mouthing,
grammar, transitions between signs, camera angle,
speed), many of which may well be transferable to
other languages and application domains.
It is evident, however, that the development of a fully
satisfactory signing avatar for railway announcements
in NGT requires much further work. Below we high-
light some specific limitations of the methodological
choices we made and the results obtained so far, as well
as some natural avenues for further research.

5.1. Initial design
Reference material As an initial point of reference
for our avatar translations, we obtained video record-
ings of the Dutch Sign Language Centre. However,
sign languages are 3D, and videos 2D. In several cases,
the video translations, filmed with a front-view camera
angle, were not quite sufficient as reference material,
since signs could not be viewed from multiple direc-
tions. Additional video’s with different camera angles
could possibly resolve this issue.

Avatar engine The JAsigning avatar engine which
we used to generate avatar animations currently has
a number of limitations. In particular, important fea-
tures of the overall appearance of the avatar cannot be
adjusted (e.g. excessively long fingers, somewhat un-
friendly look) and control over mouth movements and
facial expressions is too restricted. Such limitations
form a real bottleneck for the development of a truly
satisfactory signing avatar. Overcoming them would
require substantial further development of the engine,
or alternatively, adopting an altogether different ap-
proach to generating animations based on motion cap-
ture. We aim to explore both routes in future work.

5.2. Co-design
Iterative nature The iterative nature of our co-
design process resulted in a thorough analysis of sev-
eral aspects and considerable changes in the design of
the avatar. Nevertheless, many other aspects had to be
left for future iterations (e.g. eye gaze direction, facial
expressions, topic-marking).

Live vs online sessions Three co-design sessions
took place, of which two live and one online. We feel
that the live sessions were much more effective, be-
cause they ensured a good view of the participants’
signing, including their facial expressions and body
language. Moreover, they provided the possibility to

point out some details on a big screen, write on a chalk-
board and point at the screen or at the board while sign-
ing the same time. The duration of the live sessions (2
hours) was quite demanding. In the future, more and
shorter sessions would be preferable.

Interpreters During the sessions, interpreter(s) were
present and some of the communication happened in-
directly. Signers sometimes had to wait for interpreters
to catch up, become familiar with research terms, or
repeat signs so that the person taking notes could see
the intended movements. Working with the same inter-
preters during all sessions is beneficial for familiarity
with the relevant terms. However, it should always be
kept in mind that if there is no shared language among
all researchers and therefore some of the communica-
tion has to be mediated by an interpreter, there is al-
ways a higher chance of miscommunication. Iterative
co-designs overcomes this issue to some extent: pos-
sible misunderstandings are often identified when sug-
gestions are implemented and re-evaluated.

5.3. Focus Group
Recording vs minutes Detailed minutes were taken
during the focus group. However, these minutes only
provide a textual transcription, mediated by an inter-
preter, of what was actually signed during the session.
This loss of information could be overcome by captur-
ing the discussion on video, with multiple cameras to
ensure a good view of all participants. This would also
prevent overlooking information when multiple partici-
pants are signing at the same time – in many such cases,
interpreter-mediated transcriptions will only capture
what one of the participants signed. We should note
that in order to make such video data searchable and us-
able for analysis it would have to be annotated in quite
some detail, which would be a labor intensive process.
But the information retained in this way could be very
beneficial.

Developer presence The presence of the developers
during our focus group may well have affected the dis-
cussion, as participants may have felt less comfortable
criticizing the system. On the other hand, not having
developers present during a focus group sessions would
result in less direct input and would take away the pos-
sibility of directly implementing and evaluating certain
suggestions.

Generalising results Our focus group was quite di-
verse in terms of age group and region. However, for
further development it is necessary to organise more fo-
cus groups with more diversity in terms of age group,
region, educational level, and reading level, among
other things. For example, seniors and people from
the southern part of the Netherlands were not repre-
sented in our focus group. Moreover, use of the avatar
in a real-life setting is under-researched. This may
affect our current results, especially given the time-
sensitiveness of the context in which the avatar needs
to provide information.
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Krausneker, V. and Schügerl, S. (2021). Best practices
protocol on the use of sign language avatars.

Kusters, A. and Lucas, C. (2022). Emergence and evo-
lutions: Introducing sign language sociolinguistics.
Journal of Sociolinguistics, 26(1):84–98.

Orfanidou, E., Woll, B., and Morgan, G. (2014). Re-
search methods in sign language studies: A practical
guide. John Wiley & Sons.

Prins, M. and Janssen, J. B. (2014). Automated sign
language. TNO technical report.

Pylvänen, S., Raike, A., Rainò, P., et al. (2013). Co-
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Abstract
Neural Sign Language Production (SLP) aims to automatically translate from spoken language sentences to sign language
videos. Historically the SLP task has been broken into two steps; Firstly, translating from a spoken language sentence to a gloss
sequence and secondly, producing a sign language video given a sequence of glosses. In this paper we apply Natural Language
Processing techniques to the first step of the SLP pipeline. We use language models such as BERT and Word2Vec to create
better sentence level embeddings, and apply several tokenization techniques, demonstrating how these improve performance on
the low resource translation task of Text to Gloss. We introduce Text to HamNoSys (T2H) translation, and show the advantages
of using a phonetic representation for sign language translation rather than a sign level gloss representation. Furthermore, we use
HamNoSys to extract the hand shape of a sign and use this as additional supervision during training, further increasing the
performance on T2H. Assembling best practise, we achieve a BLEU-4 score of 26.99 on the MineDGS dataset and 25.09 on
PHOENIX14T, two new state-of-the-art baselines.

Keywords: Sign Language Translation (SLT), Natural Language Processing (NLP), Sign Language, Phonetic Repre-
sentation

1. Introduction
Sign languages are the dominant form of communi-
cation for Deaf communities, with 430 million users
worldwide (WHO, 2021). Sign languages are complex
multichannel languages with their own grammatical
structure and vocabulary (Stokoe, 1980). For many
people, sign language is their primary language, and
written forms of spoken language are their secondary
languages.

Sign Language Production (SLP) aims to bridge the
gap between hearing and Deaf communities, by trans-
lating from spoken language sentences to sign language
sequences. This problem has historically been broken
into two steps; 1) translation from spoken language to
gloss1 and 2) subsequent production of sign language
sequences from a sequence of glosses, commonly using
a graphical avatar (Elliott et al., 2008; Efthimiou et al.,
2010; Efthimiou et al., 2009) or more recently, a photo-
realistic signer (Saunders et al., 2021a; Saunders et al.,
2021b). In this paper, we improve the SLP pipeline by
focusing on the Text to Gloss (T2G) translation task of
step 1.

Modern deep learning is heavily dependent upon
data. However, the creation of sign language datasets
is both time consuming and costly, restricting their size
to orders of magnitude smaller than their spoken lan-
guage counterparts. State-of-the-art datasets such as
RWTH-PHOENIX-Weather-2014T (PHOENIX14T),
and the newer MineDGS (mDGS), contain only 8,257
and 63,912 examples respectively (Koller et al., 2015;
Hanke et al., 2020), compared to over 15 million exam-

1Gloss is the written word associated with a sign

ples for common spoken language datasets (Vrandečić
and Krötzsch, 2014). Hence, sign languages can be
considered as low resource languages.

In this work, we take inspiration from NLP tech-
niques to boost translation performance. We explore
how language can be modeled using different tokeniz-
ers, more specifically Byte Pair Encoding (BPE), Word-
Piece, word and character level tokenizers. We show
that finding the correct tokenizer for the task helps sim-
plify the translation problem.

Furthermore, to help tackle our low resource language
task, we explore using pre-trained language models such
as BERT (Devlin et al., 2018) and Word2Vec (Mikolov
et al., 2013b) to create improved sentence level em-
beddings. We also fuse contextual information from
the embedding to increase the amount of information
available to the network. We show that using models
trained on large corpuses of data improves translation
performance.

Previously the first step of the SLP pipeline used T2G
translation. We explore using a phonetic representation
based on the Hamburg Notation System (HamNoSys)
which we define as Text to HamNoSys (T2H). Ham-
NoSys encodes signs using a set of symbols and can be
viewed as a phonetic representation of sign language
(Hanke, 2004). There are three main components when
representing a sign in HamNoSys; a) its initial configu-
ration b) it’s hand shape and c) it’s action. An example
of HamNoSys can be seen in Fig. 1 along with its gloss
and text counterparts.

We evaluate our SLP models on both the mDGS and
PHOENIX14T datasets, showing state-of-the-art per-
formance on T2G (mDGS & PHX) and T2H (mDGS)
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Figure 1: A graph to show the word “running” which
would be ‘glossed’ as RUN and the associated sequence
of HamNoSys, Top: Text, Middle: Gloss, Bottom: Ham-
NoSys. HamNoSys is split into: a) it’s initial configura-
tion b) it’s hand shape 3) it’s action

tasks. We achieve a BLEU-4 score of 26.99 on mDGS,
a significant increase compared to the state-of-the-art
score of 3.17 (Saunders et al., 2022).

The rest of this paper is structured as follows; In sec-
tion 2 we review the related work in the field. Section 3
presents our methodology. Section 4 shows quantitative
and qualitative results. Finally, we draw conclusions in
section 5 and suggest future work.

2. Related Work
Sign Language Recognition & Translation: Com-
putational sign language research has been studied for
over 30 years (Tamura and Kawasaki, 1988). Research
started with isolated Sign Language Recognition (SLR)
where individual signs were classified using CNNs (Le-
cun et al., 1998). Recently, the field has moved to
the more challenging problem of Continuous Sign Lan-
guage Recognition (CSLR), where a continuous sign
language video needs to be segmented and then clas-
sified (Koller et al., 2015). Most modern approaches
to SLR and CSLR rely on deep learning, but such ap-
proaches are data hungry and therefore are limited by
the size of publicly available datasets.

The distinction between CSLR and Sign Language
Translation (SLT) was stressed by Camgoz et al. (2018).
SLT aims to translate a continuous sequence of signs to
spoken language sentences (Sign to Text (S2T)) or vice
versa (Text to Sign (T2S)), a challenging problem due
to the changes in grammar and sequence ordering.
Sign Language Production (SLP): focusses on T2S,
the production of a continuous sign language sequence
given a spoken language input sentence. Current state-
of-the-art approaches to SLP use transformer based ar-
chitectures with attention (Stoll et al., 2018; Saunders
et al., 2020). In this paper, we tackle the SLP task of
neural sign language translation, defined as T2G or T2H
translation.

HamNoSys has been used before for statistical SLP,
with some success (Kaur and Kumar, 2014; Kaur and
Kumar, 2016). However, the produced motion becomes
robotic and is not practical for real world applications.

Note that these approaches first convert the HamNoSys
to SiGML, an XML format of HamNoSys (Kaur and
Kumar, 2016).

Neural Machine Translation (NMT): NMT aims to
generate a target sequence given a source sequence us-
ing neural networks (Bahdanau et al., 2014) and is com-
monly used for spoken language translations. Initial
approaches used recurrence to map a hidden state to
an output sequence (Kalchbrenner and Blunsom, 2013),
with limited performance. Encoder-decoder structures
were later introduced, that map an input sequence to an
embedding space (Wu et al., 2016). To address the bot-
tleneck problem, attention was introduced to measure
the affinity between sections of the input and embed-
ding space and allow the model to focus on specific
context (Bahdanau et al., 2014). This was improved fur-
ther with the introduction of the transformer (Vaswani
et al., 2017) that used Multi-Headed Attention (MHA)
to allow multiple projections of the learned attention.
More recently, model sizes have grown with architec-
tures introduced such as GPT-2 (Radford et al., 2019)
and BERT (Devlin et al., 2018).

Different encoding/decoding schemes have been ex-
plored. BPE was first introduced in Sennrich et al.
(2015), to create a set of tokens given a set vocabulary
size. This is achieved by merging the most commonly
occurring sequential characters. WordPiece, a similar
tokenizer to BPE, was first introduced in Schuster and
Nakajima (2012) and is commonly used when training
language models such as BERT, DistilBERT and Elec-
tra. Finally, word and character level tokenizers break
up a sentence based on white space and unique symbols
respectively.

Natural Language Processing: NLP has many applica-
tions, for example Text Simplification, Text Classifica-
tion, and Speech Recognition. Recently, deep learning
approaches have outperformed older statistical meth-
ods (Vaswani et al., 2017). A successful NLP model
must understand the structure and context of language,
learned via supervised or unsupervised methods. Pre-
trained language models have been used to boost perfor-
mance in other NLP tasks (Clinchant et al., 2019; Zhu et
al., 2020), such as BERT (Devlin et al., 2018) achieving
state-of-the-art performance. Zhu et al., 2020 tried to
fuse the embedding of BERT into a traditional trans-
former architecture using attention, increasing the trans-
lation performance by approximately 2 BLEU score.

Other methods have used Word2Vec to model lan-
guage, this has been applied to many NLP tasks
(Mikolov et al., 2013b). Word2Vec is designed to give
meaning to a numerical representation of words. The
central idea being that words with similar meaning
should have a small euclidean distance between the
vector representation.

In this paper, we take inspiration from these tech-
niques to boost performance of the low resource task of
T2G and T2H sign language production.
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3. Methodology
The task of neural sign language production aims to
map a source sequence of spoken language sentences,
x = (x1, x2, ..., xW ) with W words, to a sequence
of glosses, y = (y1, y2, ..., yG) with G glosses (Text
to Gloss (T2G)), or a sequence of HamNoSys, z =
(z1, z2, ..., zH) with H symbols (Text to HamNoSys
(T2H)). T2G and T2H tasks thus learn the conditional
probabilities p(y|x) and p(z|x) respectively. Sign lan-
guage translation is not a one to one mapping as sev-
eral words can be mapped to a single gloss (W > G),
(W > H). This increases the complexity of the prob-
lem as the model must learn to attend to multiple words
in the input sequence.

Fig. 2 shows the general architecture of our
model used to translate from spoken language to
gloss/HamNoSys. For means of comparison, our base-
line model is an encoder-decoder transformer with
MHA. The input and output sequence are tokenized
using a word level tokenizer and the embedding for a
given sequence is created using a single linear layer. We
later build on this base model using different tokenizers,
embedding and supervision techniques. We train our
model using a cross-entropy loss between the predicted
target sequence, x̂ and the ground truth sequence, x∗,
defined as LT .

Figure 2: An overview of the different configuration of
our architecture for SLT

In this section, we follow the structure of Fig. 2 from top
to bottom. We start by describing the different tokeniz-
ers used to split the source text and produce tokens (Sec.
3.1). Next, we explain the different embedding tech-
niques used to create a vector from the input tokens (Sec.
3.2). Finally, we talk about the advantages of using ex-
tra supervision and explain how this is implemented in
conjunction with the translation loss.

3.1. Tokenizers
Several tokenizer schemes can be used on both the input
and output such as BPE, Word, character and Word-
Piece. BPE (Sennrich et al., 2015), character and Word-
Piece (Schuster and Nakajima, 2012) all change the
vocabulary size of the model by breaking sentences
into sub-units. This reduces the number of singletons

and reduces lexical inflections in the input and output
sequences (Wolf et al., 2019).

Word A word level tokenizer segments the input sen-
tence based on white space. Therefore, a normal sen-
tence is split into whole words.

Character A character level tokenizer segments the
text based on the individual symbols, reducing the vo-
cabulary to simply the alphabet plus punctuation.

BPE BPE creates a base vocabulary containing all
the unique symbols in the data, from which it learns a
number of merge rules based on the most commonly oc-
curring sequential symbols. An example of the BPE al-
gorithm being applied to HamNoSys is shown in Fig. 3,
with the coloured boxes indicating what merges are
made at each step. Merging continues until a specific
vocabulary size is reached. This helps reduce word in-
flections e.g. the words low, lowest and lower can be
segmented to low, est and er. Over the whole corpus
the suffix’s (est and er) can be reused, collapsing the
vocabulary in this example from 3 to 1.

Figure 3: An example of how BPE can be applied to
HamNoSys.

WordPiece We only apply a WordPiece tokenizer
when embedding with BERT, as this is what the BERT
model was trained with. WordPiece is another sub-unit
tokenization algorithm similar to BPE that evaluates the
lost benefit before merging two symbols, ensuring that
all mergers are beneficial.

3.2. Embedding
After tokenization, the input sequence x is then em-
bedded by projecting the sequence into a continuous
space (Mikolov et al., 2013a). The goal of embedding
is to minimise the Euclidean distance between words
with similar meanings. The most common embedding
is a single linear layer, which takes an input sequence
x = (x1, x2, ..., xW ) with W words and turns it into
a matrix of [W × E] where E is the models embed-
ding width. In models such as BERT and Word2Vec,
embeddings are learnt via training on a large corpus of
spoken language data. To maximise the benefit from
using BERT we fine tune the pre-trained model on the
mineDGS dataset using masked-language modeling.

When using a BERT model, we define the transfor-
mation as follows. Given an input sequence x we first
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apply WordPiece tokenization.

XWP = WordPiece(x) (1)

Then apply the BERT embeddings as:

XBERT = BERT (XWP ) (2)

Note that we take the embedding from the last layer of
BERT. We define the Word2Vec transformation as:

XW2V = Word2V ec(x) (3)

Additionally, we experiment with concatenating or
fusing contextual information into the input x. We de-
fine the contextual information as xave and the scaling
factor as S, used to place additional emphasis on the con-
textual information. In the case of Word2Vec we take a
mean average of each word’s embedding in the sentence
and treat this as a vector that contains information about
the whole sentence. For BERT we use the embedding
of the classification token ([CLS]), which contains con-
textual information about the sentence (Devlin et al.,
2019). We either concatenate the information to the
beginning of a sequence x = (xave ∗ S, x1, x2, ..., xW )
(CON), or we fuse it into each step of the sequence x =
((xave ∗S)+x1, (xave ∗S)+x2, ..., (xave ∗S)+xW )
(ADD).

3.3. Supervision
In sign language, there exists a strong correlation be-
tween hand shape and meaning (Stokoe, 1980). There-
fore, we investigate forcing the transformer to predict
the hand shape alongside the gloss or HamNoSys se-
quences, to enrich the learnt representation. We scale
the loss from the hand shape prediction LH by factor F .
We combine both losses from the translation LT and
hand shape prediction LH to create Ltotal as:

Ltotal = LT + (LH ∗ F ) (4)

In this setup, the model learns the joint conditional
probability of

p(y|x) ∗ p(H|x) (5)

where H is the sequence of hand shape symbols:

H = (h1, h2, ..., hG) (6)

and G is the number of glosses in the sequence. Overall
this forces that model to focus on hand shape during
training. We show that by forcing the model to predict
hand shape we improve the performance on T2H.

4. Experiments
In this section we test the translation performance of
our models in both the T2G and T2H setups. We first
explain the experimental setup of our models. Next,
we compare quantitative results against previous state-
of-the-art and our own baselines. Finally we provide
qualitative results.

4.1. Experimental Setup
When training our T2G model, we experiment with dif-
ferent embedding sizes, number of layers and heads. We
observe a large change in performance based on these
three parameters, and search for the best configurations
for further tests. Our transformer uses a xavier initial-
izer (Glorot and Bengio, 2010) with zero bias and Adam
optimization (Kingma and Ba, 2014) with a learning
rate of 10−4. We also employ dropout connections with
a probability of 0.2 (Srivastava et al., 2014). When
decoding, we use a beam search with a search size of 5.

Our code base comes from Kreutzer et al. (2019)
NMT toolkit, JoeyNMT (Kreutzer et al., 2019) and is
implemented using Pytorch. While our BPE and word
piece tokenizers come from Huggingface’s python li-
brary transformers (Wolf et al., 2019). When embed-
ding with BERT, we use an open source pre-trained
model from Deepset (Chan et al., 2020). Finally we
used fasttext’s implementation of Word2Vec for word
level embedding (Mikolov et al., 2013b).

The publicly available mDGS dataset contains
aligned spoken German sentences and their gloss
counter parts, from unconstrained dialogue between
two native deaf signers (Kaur and Kumar, 2014). The
providers of this dataset also have a dictionary for all
glosses in the corpus, of which some contain HamNoSys
descriptions. Following the translation protocols set in
Saunders et al. (2022), we created a subset of the mDGS
dataset with aligned sentences, glosses and HamNoSys.
mDGS is a larger dataset compared to PHOENIX14T
(7.5 times more parallel examples, with a source vocab-
ulary of 18,457) with 330 deaf participants performing
free form signing. The size of mDGS overcomes some
of the limitation of PHOENIX2014T. Note we remove
the gloss variant numbers to reduce singletons.

We use the PHOENIX14T (Camgoz et al., 2018)
dataset to compare our best model to previous NMT
baseline results (Saunders et al., 2020; Stoll et al., 2018;
Moryossef et al., 2021; Li et al., 2021). PHOENIX14T
contains parallel monolingual German data, with ap-
proximately 7000 examples of aligned gloss and text.

4.2. Quantitative Evaluation
In this section, we evaluate our models on both mDGS
and PHOENIX14T using BLEU (BLEU-1,2,3 and 4)
and Rouge (F1-score) scores for both dev and test sets.
We group our experiments in five sections:

1. Baseline T2G, T2H and Text to Gloss to Ham-
NoSys (T2G2H) with a standard transformer.

2. T2G and T2H with different embedding layers and
sentence averaging.

3. T2G and T2H with different tokenizers (BPE,
Word, and Character).

4. T2G and T2H with additional supervision.

5. Comparison of our approach on PHOENIX14T
and mDGS.
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DEV SET TEST SET
Approach: BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

Linear Layer 16.26 24.14 32.83 43.05 42.02 16.47 24.51 33.27 43.58 41.53
BERT 14.69 21.51 29.39 38.66 30.87 14.2 21.19 29.09 38.33 30.31

BERT SA ADD 13.23 19.41 26.43 34.75 32.38 13.43 19.47 26.31 34.3 32.34
BERT SA CON 14.89 21.45 28.73 36.85 34.73 15.14 21.57 28.79 36.91 34.44

Word2Vec 11.47 17.59 24.68 34.21 29.45 11.73 17.83 25.14 34.90 30.22
Word2Vec SA ADD 13.8 21.07 29.72 42.29 30.65 13.31 20.56 29.31 42.13 30.67
Word2Vec SA CON 0.03 0.05 0.06 0.04 9.44 0.03 0.06 0.06 0.04 9.32

(a) MineDGS (mDGS) on Text to Gloss to HamNoSys (T2G2H)

DEV SET TEST SET
Approach: BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

Linear Layer 14.46 23.27 32.62 47.44 50.85 14.80 23.54 32.89 47.36 50.87
BERT 20.26 29.14 38.01 48.92 53.67 21.03 29.87 38.79 49.77 53.93

BERT SA ADD 14.64 22.33 30.91 43.99 50.30 15.16 22.92 31.41 44.21 50.33
BERT SA CON 11.82 19.2 27.39 40.58 53.36 12.21 19.39 27.44 40.48 53.67

Word2Vec 16.43 24.77 33.71 46.62 51.14 17.09 25.23 34.22 47.31 51.52
Word2Vec SA ADD 16.72 25.14 34.39 48.00 51.28 16.98 25.31 34.59 48.08 51.12
Word2Vec SA CON 14.98 22.49 30.65 42.42 51.11 15.18 22.65 30.80 42.75 50.10

(b) MineDGS (mDGS) on Text to HamNoSys (T2H)

Table 1: Embedding transformer results for Text to Gloss (T2G) and Text to HamNoSys (T2H) translation.

Tokenizer DEV SET TEST SET
Input Output BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

Word Word 16.47 24.35 33.06 43.41 36.32 16.55 24.45 33.14 43.54 36.34
Word BPE 22.06 28.53 36.32 47.55 36.20 21.87 28.31 36.02 47.08 35.74
Word Char 16.47 24.35 33.06 43.41 36.32 16.55 24.45 33.14 43.54 36.34
BPE Word 20.84 26.77 34.02 44.77 35.31 20.84 26.80 34.12 44.97 35.35
BPE BPE 21.39 27.28 34.31 43.86 36.61 21.28 27.25 34.34 43.86 36.86
BPE Char 1.99 5.5 10.35 30.01 2.61 1.46 5.18 10.0 29.77 2.61

(a) MineDGS (mDGS) on Text to Gloss to HamNoSys (T2G2H)

Tokenizer DEV SET TEST SET
Input Output BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

Word Word 21.81 31.86 42.05 54.88 55.39 21.89 31.92 42.16 55.04 55.23
Word BPE 25.41 29.28 34.11 41.25 48.03 25.54 29.39 34.25 41.35 48.09
Word Char 21.63 31.76 41.99 54.94 55.3 21.59 31.79 42.09 55.01 55.14
BPE Word 20.98 30.29 39.38 50.04 55.24 21.18 30.37 39.4 49.84 55.04
BPE BPE 26.14 30.83 36.47 44.35 49.95 26.21 30.84 36.43 44.14 50.05
BPE Char 1.91 6.01 11.72 37.56 37.22 1.92 5.88 11.59 37.63 37.31

(b) MineDGS (mDGS) on Text to HamNoSys (T2H)

Table 2: Tokenizer transformer results for Text to Gloss (T2G) and Text to HamNoSys (T2H) translation.

Note we expect the performance to be lower than 100
BLEU. As this is a translation problem there are several
valid answers for a given input, thus human evaluation
is still necessary. We are also unable to provide T2H re-
sults on PHOENIX14T, as HamNoSys is not available
for some words in its vocabulary.

4.2.1. Baseline Results
Our baseline models achieved a BLEU-4 score of 2.86
(T2G), 16.26 (T2G2H) and 14.46 (T2H) on the mDGS
dev set. Our baseline setup uses a word level tokenizer
on both the input and output, providing a baseline to
ablate our proposed techniques in the next three sec-
tions. We perform a hyper-parameter search and make
modification to the model architecture (number of heads,
layers and embedding size) to find the best performance.

In general, a sequence of HamNoSys is significantly
longer than it’s gloss counter part, (H >> G). As a
result our T2H performance is artificially higher than
our T2G. Therefore, in order to make our T2G and T2H
results comparable, we perform a dictionary lookup to
convert the gloss to HamNoSys (T2G2H) before calcu-

lating the BLEU score. Given these results, we conclude
a transformer architecture is the best baseline approach
and continue with this setup for all future experiments.

4.2.2. Embedding
Next we experiment with using different embedding
techniques for the T2G and T2H tasks. As discussed in
Section 3.1 we use a linear layer, BERT and Word2Vec
in combination with sentence averaging. From the re-
sults in Table 1 we make several observations. Firstly,
using a language model improves the translation perfor-
mance on the T2H task (Tab. 1a). While on the T2G
task, using language models was detrimental to the trans-
lation performance (Tab. 1b). We assume this is due to
the reduced information within the gloss and smaller se-
quence length. Secondly, we observe that applying sen-
tence averaging to the BERT embedding has a negative
effect on the scores, independent of what type of average
was used (adding or concatenating). On the other hand,
adding the sentence averaging to the Word2Vec embed-
ding marginally improved performance compared to the
stand alone Word2Vec embeddings on T2H. But note
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DEV SET TEST SET
Approach: Supervision BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

T2G2H ✗ 22.06 28.53 36.32 47.55 36.20 21.87 28.31 36.02 47.08 35.74
T2G2H ✓ 21.79 27.98 35.45 46.21 35.79 21.49 27.76 35.27 46.11 35.99

T2H ✗ 26.14 30.83 36.47 44.35 49.95 26.21 30.84 36.43 44.14 50.05
T2H ✓ 26.99 31.07 35.99 42.73 48.89 27.37 31.42 36.3 42.92 48.85

Table 3: HamNoSys hand shape supervision results for Text to Gloss to HamNoSys (T2G2H) and Text to HamNoSys
(T2H) translation.

that Word2Vec plus sentence averaging still has lower
performance than just using a linear layer. Overall, we
find the best performing embedding to come from using
BERT, which scored 5.8 BLEU-4 higher than using a
linear layer. This demonstrates that using a pre-trained
language model can enhance translation.

4.2.3. Tokenizer
We next experiment with using different tokenizers, as
described in Section 3.2. We performed a parameter
search to find the best vocabulary size for the BPE algo-
rithm, which we find to be 2250 and 7000 on the input
and output respectively. The result of our experiments
are shown in Table 2.

When using a character level tokenizer each input
contains a minimal amount of information (one letter).
As expected this increases the difficulty of the problem,
and reduces performance. When applied to the input
it was extremely detrimental for the performance on
both T2G2H and T2H, independent of which output
tokenizer was used. Therefore to save space, we do
not present the input character level results. Using a
word level tokenizer achieved very reasonable results,
supporting our theory that using larger units of language
that contains more information is beneficial for transla-
tion. But as BPE outperformed the word level tokenizer
on the BLEU-4 score, we assume that by using whole
words we create a harder problem, as the dataset con-
tains several word inflections. We conclude that BPE
is the best algorithm to use when translating from T2H.
This is due to the algorithms ability to reduce inflec-
tions and reduce the vocabulary size which simplifies
the networks task. Our results also show that the biggest
impact comes from having BPE on the output, suggest-
ing that most of the challenge comes from the decoding
section of the network. Similarly, the best T2G result
came from using a word level and BPE tokenizers on
the input and output respectively.

4.2.4. Supervision
Our final ablation study investigates an additional loss
explained in Section 3.3. This had a positive effect
on the translation performance for T2H. As can be
seen from Table 3, the use of supervision increased the
BLEU-4 scores by 0.85. We conclude supervision en-
riches the learnt sign language representation due to
the correlation between hand shape and context. Super-
vision forces the model to focus more on hand shape,
allowing the model to group signs and find better trends
in the data. Although the use of supervision marginally

decreased the T2G2H BLEU score, we suggest this is
due to reduced information in the target gloss.

4.3. State-of-the-art Comparisons
Finally, in Table 4 (PHOENIX14T) and 5 (mDGS) we
compare our best performing models to state-of-the-
art work. Note in Table 4 our baseline is marginally
higher than (Saunders et al., 2020), we assume this
is due to a larger hyper-parameter search. On both
datasets, our best model for T2G and T2G2H uses a
word level and BPE tokenizer on the input and output
respectively. While our best T2H result comes from
adding additional supervision on to this setup. As can
be seen from Table 4 and 5 our models outperformed all
other methods (Moryossef et al., 2021; Li et al., 2021;
Saunders et al., 2020; Saunders et al., 2022; Stoll et al.,
2018), setting a new state-of-the-art on PHOENIX14T
and mDGS. Note we can only compare scores that
are publicly available, therefore ’-’ denotes where the
authors did not provide results.

4.4. Qualitative Evaluation
For qualitative evaluation, we share translation exam-
ples from our best models and our baseline model in
Fig. 4, to allow the reader to better interpret the results.
Note, we add a vertical black line after each word of
HamNoSys to mark the end of a given sign. These
results show how our BPE model has learnt richer trans-
lations than our baseline model.

Figure 4: Translation examples from our baseline and
best model.
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DEV SET TEST SET
Approach: BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

T2G (Stoll et al., 2018) 16.34 22.30 32.47 50.15 48.42 15.26 21.54 32.25 50.67 48.10
T2G (Saunders et al., 2020) 20.23 27.36 38.21 55.65 55.41 19.10 26.24 37.10 55.18 54.55

T2G (Li et al., 2021) 18.89 25.51 - - 49.91 - - - - -
T2G (Moryossef et al., 2021) 23.17 - - - - - - - - -

T2G Baseline (ours) 22.47 30.03 41.54 58.98 57.96 20.95 28.50 39.99 58.32 57.28
T2G Best Model (ours) 25.09 32.18 42.85 60.04 58.82 23.19 30.24 40.86 58.74 56.55

Table 4: Baseline comparison results for Text to Gloss (T2G) translation on PHOENIX14T.

DEV SET TEST SET
Approach: BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

T2G (Saunders et al., 2022) 3.17 - - - 32.93 3.08 - - - 32.52

T2G Our best 10.5 14.35 20.43 33.56 35.79 10.4 14.21 20.2 33.59 35.99
T2G2H Our best 22.06 28.53 36.32 47.55 36.20 21.87 28.31 36.02 47.08 35.74

T2H Our best 26.99 31.07 35.99 42.73 48.89 27.37 31.42 36.3 42.92 48.85

Table 5: Baseline comparison results for Text to Gloss (T2G), Text to Gloss to HamNoSys (T2G2H) and Text to
HamNoSys (T2H) translation on mDGS.

5. Conclusion
In this paper, we employed a transformer to translate
from spoken language sentences to a sequence of gloss
or HamNoSys. We introduced T2H translation, showing
the advantages of translating to HamNoSys instead of
just gloss, and set baseline results for future work on
mDGS. We showed that language models can be used
to improve translation performance, but using more ad-
vanced tokenization algorithms like BPE gives a larger
performance gain. Additionally, we have shown that
translation can be improved by training the model to
jointly predict hand shape and HamNoSys. We achieved
a BLEU-4 score of 26.99 and 25.09, a new state-of-the-
arts for SLT on the mDGS and PHOENIX14T datasets.

As future work, it would be interesting to create a rep-
resentation, gloss++. This could combine the benefits of
gloss and HamNoSys, including non-manual features as
well as hand shape information, as this has been shown
to be useful for translation. Furthermore, this could be
beneficial for down stream tasks in the SLP pipeline.
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Abstract 

A recurring concern, oft repeated, regarding the quality of signing avatars is the lack of proper facial movements, particularly in actions 

that involve mouthing. An analysis uncovered three challenges contributing to the problem. The first is a difficulty in devising an 

algorithmic strategy for generating mouthing due to the rich variety of mouthings in sign language. For example, part or all of a spoken 

word may be mouthed depending on the sign language, the syllabic structure of the mouthed word,  as well as the register of address and 

discourse setting. The second challenge was technological. Previous efforts to create avatar mouthing have failed to model the timing 

present in mouthing or have failed to properly model the mouth’s appearance. The third challenge is one of usability. Previous editing 

systems, when they existed, were time-consuming to use.  This paper describes efforts to improve avatar mouthing by addressing these 

challenges, resulting in a new approach for mouthing animation. The paper concludes by proposing an experiment in corpus building 

using the new approach. 

 

Keywords: sign language avatar, sign language display, computer animation, sign language linguistics, sign language 
translation, mouthing 

1. Introduction 

For nearly 25 years, researchers have been working toward 
the goal of an avatar that can produce grammatically 
correct signing that is easy to read. In the late 1990s Kuroda 
et al. (Kuroda, Sato, & Chihara, 1998) reported on an 
avatar-based system for Japanese Sign Language, and 
shortly thereafter, the ViSiCAST project began in Europe 
(Elliott, Glauert, Kennaway, & Marshall, 2000). A vital 
component of the project was evaluation by user 
communities, and Verlinden (2001) reported on avatar 
signing quality. The conclusion was “The main aspects that 
need further attention are the mouthing and to a lesser 
extent the mimicry.”   

In a subsequent evaluation ten years later, researchers 
organized two focus groups comprised of members from 
deaf communities in Germany to assess the potential use of 
signing avatars. They examined and evaluated videos of 
existing avatars. The researchers reported, “The absence of 
mouth patterns, especially mouthings (i.e., mouth patterns 
derived from the spoken language), seemed to be one of the 
most disturbing factors for the participants since this is an 
important element of DGS [German Sign Language]” 
(Kipp, Nguyen, Heloir, & Matthes, 2011). Even with an 
improved avatar, the same researchers noted, “In many 
cases, the lack of mouthing simply introduces irritation 
(Kipp, Heloir, & Nguyen, 2011) .”   

In 2016 (Ebling & Glauert) and again in 2019 (Brumm, 
Johnson, Hanke, Grigat, & Wolfe) feedback indicated that 
mouthing on signing avatars is an aspect that still requires 
improvement. This paper analyses the causes for this deficit 
and presents an innovative strategy that incorporates  
important, but previously neglected considerations and 
proposes a methodology that capitalizes on these 
considerations to provide an additional tool for corpus 
building. 

2. Related work 

Of the myriad challenges to creating convincing mouthing 
on an avatar, we found three to be quite substantive. The 
first is the linguistic consideration of the diversity of 
mouthing within a sign language, and the second 
consideration entails the exacting requirements of mouth 
animation. The third consideration is a lack of usability in 
the current editing tools. 

2.1 Linguistic considerations 

“Mouthings,” quoting Pfau, (2010) “are silent articulations 
of (a part of) a corresponding spoken word of the 
surrounding language.” The usage of mouthing varies by 
language, ranging from occurring on virtually every sign, 
as in DGS, (Ebbinghaus & Heßmann, 1996) to virtually 
none at all as in Kata Kolok (De Vos & Zeshan, 2012). 
Within a single sign language, mouthing the whole word or 
part of a word also varies. In NGT (Sign Language of the 
Netherlands), signs can be accompanied by full or partial 
mouthing, but in the partial case, it is usually the stressed 
syllable (Bank, Crasborn, & Van Hout, 2011). However, 
the temporal reduction in a mouthed word may be even 
more extreme, up to the ”mere onset consonant of the 
stressed syllable.” Further, for a particular sign within a 
specified language, mouthing variations can occur based on 
register and the discourse setting.  

Such rich diversity is intrinsic to natural language; 
however, from the standpoint of a software developer, this 
diversity renders it difficult to find a reliable pattern to 
automate. Previous efforts to create avatar mouthing have 
either relied on SAMPA or a speech generator to create 
complete mouthings. SAMPA is a set of computer-readable 
characters based on the International Phonetic Alphabet 
and is part of the SiGML standard (Jennings, Elliott, 
Kennaway, & Glauert, 2010). It was used in several 
projects, including ViSiCAST (Zwitserlood, 2005), eSIGN 
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(Hanke, Popescu, & Schmaling, 2003), DICTA-SIGN 
(Efthimiou, et al., 2012) and Trainslate (Ebling, 2013). 
Efforts utilizing speech generators included an extension to 
the EMBR (Kipp, Heloir, & Nguyen, 2011) and Paula 
avatars (Wolfe, et al., 2018). 

2.2 Animation considerations 

By stepping back from the challenge of mouthing in sign 
language to examine the closely related  process of lip sync 
(lip synchronization) in animation (Williams, 2009), we 
(temporarily) remove the issue of choosing partial or full 
mouthing, and we focus on the basic steps: 

1. Generate the phonemes corresponding to a 

spoken word. 

2. Map each phoneme to a viseme, which is the 

visual appearance of the phoneme. There is a 

reasonable amount of consensus for the 

mappings, but the visemes are language 

dependent. 

3. Retrieve the visemes from a library of facial 

poses. 

4. Apply the viseme poses to the avatar as 

animation keys. 

Previous avatars suffered from either a lack of realism in 
their visemes, a lack of realistic timing, or a combination 
of both. They relied on the MPEG4 H-Anim standard 
which did not allow for sufficient precision for naturally 
appearing visemes, but recent developments (Johnson, 
2022), (McDonald, Wolfe, & Johnson, 2022) have created 
more responsive rigs that facilitate better realism.  

In the end, visemes are simply poses. How effective they 
are in conveying mouthing depends on the timing and 
intensity of their appearance. A string of equally spaced 
visemes at equal intensities will not correspond to speech 
production – vowels and consonants have different 
durations, and these vary based on their location within a 
word. Therefore, the use of text-to-speech software is 
preferred to relying solely on SAMPA. Such software will 
produce timing information that an avatar can utilize for 
placing visemes as animation keys. Although the EMBR 
and Paula projects did use text-to-speech software, the 
EMBR project did not make use of any timing information 
for individual visemes, and the Paula project’s visemes 
were not adequate for mouthing beyond American Sign 
Language and exhibited a curious ‘lip snap’, where the 
mouth occasionally moved too abruptly from one viseme 
to the next. 

2.3 Usability considerations in editing 

Several software packages offer tiers for annotation, 
(Neidle, Opoku, Dimitriadis, & Metaxas, 2018), (Max 
Planck Institute for Psycholinguistics, 2022), (Hanke, 
2002) but there are only two systems that offer editing 
capabilities for mouthing, namely iLex/eSIGN (Hanke, 
2014) and Paula. The interface in iLex supports three 
conventions for storing mouthings as text: orthography, 
IPA and SAMPA. The pronunciation data in iLex allows 
for the generation of visemes from orthography (Figure 1). 
iLex does not include functionality for adding timing or 
intensity to individual visemes. 

 

The previous Paula mouthing interface did provide a 
rudimentary interface to edit mouthing. After the system 
generated the visemes via a speech generator, a user could 
edit the results if the animation was not convincing, or it 
contained an error such as a lip snap. However, the editing 
dialog was primitive, consisting of a data grid where each 
row contained a viseme, its start time relative to the 
beginning of the word, and its intensity (Figure 2). The 
editing process was cumbersome, as the user was forced to 
use the mouse to change the input focus to the cell needing 
modification before typing a new value and was required to 
rely on a sequence of numbers rather than a graphical 
interface for timing; a mode of interaction that is not artist 
friendly. This required continual switching from keyboard 
to mouse, when the preference is to use the mouse 
exclusively. Further, if a user wanted to increase the 
duration of a viseme, it was necessary to modify the starting 
times of all subsequent visemes. The editing experience 
proved sufficiently awkward that it was rarely used. 

 

Figure 1: Mouthing dialog from iLex 

 

Figure 2: Mouthing dialog from circa 2019 Paula. 
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3. An improved approach 

We introduce a new approach which consists of an 
improved set of automation heuristics for mouthing 
animation combined with a more artist friendly interface. 
The new approach produces better mouthing without lip 
snap errors through an integrated interface that combines 
better timing strategies informed by linguistics and offers 
an editing dialog that facilitates quicker, easier 
modifications. Additionally, it supports the fine-tuning of 
mouthing on a case-by-case basis depending on the context 
of the utterance being produced. 

Animators can choose one of four automation 
hyperparameters: mouthing an entire word, mouthing the 
first syllable, mouthing the first viseme, or no mouthing, 
and then view the resulting animation. The new automation 
incorporates several strategies from traditional character 
animation, most notably that visemes need to be at least two 
frames long to avoid the dreaded lip snap. This is a duration 
of 0.083 seconds in conventional 24 frames-per-second 
movie technology. When using a frame rate of 30 frames-
per-second, a duration of 0.083 seconds is the equivalent of 
a duration of 2.5 frames. In our experience, using a 
minimum of three frames works well when displaying on 
video playing at 30 fps. 

Although this approach is working well, particularly for 
one- and two-syllable words, there will always be a need 
for possible revisions. The new mouthing dialog (Figure 3) 
offers multiple modification options, some at the word 
level, and some at the viseme level. 

 

Figure 3: An improved editing interface. The animator 

is currently adjusting the duration of the initial viseme. 

Animators can change the overall intensity, duration, and 
the start time relative to the manual channel1. They have 
two ways to change visemes – they can either edit the IPA 
characters in the upper right text box, or they can use the 
viseme editor. The viseme editor is contained in the blue 
rectangle in the lower half of the dialog. Each viseme has 
its own block whose width corresponds to the duration of 
the viseme. An animator can change the duration of the 
viseme by using the mouse to change the width of the 
block. All subsequent blocks are automatically realigned to 
visualize the new timing. Further, animators can add or 
delete visemes, change their individual intensities as well 
as modify the viseme selection through a context menu, as 

 
1 In our Sign Transcriber, a preparatory stroke precedes the sign, and the sign starts at 0.5 seconds. Thus, a start time in the 

mouthing editor of 0.4 seconds means that the mouth will begin moving 0.1 seconds before the start of the manual portion 

of the sign. 

demonstrated in Figure 4. After making changes through 
the interface, an animator can tell Paula to display the 
modified animation through the “Send to Paula” button. 

 

Figure 4:  Context menu for adding, deleting, or 

changing a viseme. 

Although there are still options for text input, our animators 
use mouse gestures exclusively, obviating the need to 
switch from mouse to keyboard. The result is quicker and 
more intuitive editing, particularly for visually oriented 
animation artists. 

Although there are options to create complete or partial 
mouthing at the lexical level in our Sign Transcriber, the 
proclivity is towards recording complete mouthing for 
individual signs, because there are also mouthing options 
available when building complete sentences. 

Our Sentence Generator builds sentences by retrieving 
lexical items from a database and applying modifications 
to them. In a mouthing track (tier) separate from the gloss, 
or lexical item track, an animator has the option to do 
nothing and use the mouthing associated with the basic 
lexical item, or to activate the same mouthing dialog as 
seen in Figure 3. Changes made to the mouthing in a 
sentence do not change the mouthings of a basic lexical 
item but are stored separately.  

4. Results 

The new interface supports multiple languages, including 
LSF, GSL, DGS, DSGS and ASL. For examples 
demonstrating the different styles of mouthing, including 
complete words, partial words and single viseme, please 
refer to Table 1. Although Figure 5 includes several sample 
images from the mouthings, the reader is encouraged to 
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view the full animations via the link 
http://asl.cs.depaul.edu/video/wolfe2022/Mouthing.mp4 .  

5. Conclusions and a proposal for future 
work 

A future avenue to explore is the applicability of the 
methods described here to portray mouth gestures, which 
are commonly found across sign languages. In contrast to 
mouthings, mouth gestures do not arise from the 
surrounding ambient spoken language, and for this reason, 
there will be no need for a speech generator. However, 
effective application would require careful investigation of 
the postures of the lower face that are created when a signer 
produces mouth gestures.  What descriptive/corpus work is 
needed to feed such an extension?  

However, even for the case of mouthing, there are many 
refinements and questions remaining, because there is a 
tradeoff between automated and manual animation. Manual 
animation quality is superior but expensive, whereas 
automated animation is awkward but cheap.  

We propose an experiment in corpus acquisition for 
mouthing. This would involve using the automatic 
generation of full mouthing for all lexical items. Then, to 
create sentences, apply the hyperparameter (full, partial, 
single viseme, none) most appropriate for the sign language 
being produced. Then, in consultation with deaf 
communities, we customize those mouthings that are not 
acceptable via the new editing options and store those 
modifications. We anticipate that this will provide a 
promising resource for future study of mouthing synthesis. 
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EASIER project (name sign) 
 

English full 

Hello, I’m ready to begin. Swiss 
German 

full 

Please wait – response is 
pending 

Greek viseme 

Thank you for using our 
service. Goodbye! 

French partial 

Table 1: Examples of avatar mouthing found in  

http://asl.cs.depaul.edu/video/wolfe2022/Mouthing.mp4 
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 ɪ in German ‘ich’ (ˈɪç) 
 

i in English ‘easier’ (ˈiːziːɚ) 
 

i in French ‘merci’ (mɛʁsi) 
 

Figure 5: Mouthing samples from various languages. 
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