
Proceedings of the 10th Workshop on the Representation and Processing of Sign Languages (sign-lang@LREC 2022), pages 16–23
Language Resources and Evaluation Conference (LREC 2022), Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC 4.0

16

Introducing the signglossR Package

Carl Börstell
University of Bergen

Sydnesplassen 7, 5007, Bergen, Norway
carl.borstell@uib.no

Abstract
The signglossR package is a library written in the programming language R, intended as an easy-to-use resource for those
who work with signed language data and are familiar with R. The package contains a variety of functions designed specifically
towards signed language research, facilitating a single-pipeline workflow with R when accessing public language resources
remotely (online) or a user’s own files and data. The package specifically targets processing of image and video files, but also
features some interaction with software commonly used by researchers working on signed language and gesture, such as ELAN
and OpenPose. The signglossR package combines features and functionality from many other libraries and tools in order
to simplify and collect existing resources in one place, as well as adding some new functionality, and adapt everything to the
needs of researchers working with visual language data. In this paper, the main features of this package are introduced.

Keywords: sign language, signed language, multimedia, annotation, R, software

1. Introduction

Signed languages are (unless tactile) primarily visual
languages. This differentiates them from spoken lan-
guages, which although also multimodal at their core
(by virtue of being interactive, contextualized and si-
multaneously vocal and gestural) have established con-
ventions for representing linguistic form in writing, ei-
ther as (adapted) orthographic writing – e.g. conven-
tionalized spelling or Jefferson transcription (Jefferson,
2004) – or phonetic transcription – e.g. the Interna-
tional Phonetic Alphabet. Although transcription even
for spoken languages is only a partial representation
of the multidimensional and highly variable proper-
ties of actual speech, the situation for signed languages
is arguably much worse. Standard practice for rep-
resenting signs in writing – since the earliest days of
signed language research – has been based on so-called
sign glosses (Miller, 2006; van der Hulst and Chan-
non, 2010; Frishberg et al., 2012; Crasborn, 2015),
representing signs with approximate written language
translations rendered in small caps – e.g. TOMATO
for the American Sign Language (ASL) sign meaning
‘tomato’, or even by combining the historical parts of
the sign as a compound: RED+SLICE. While some no-
tation systems have been developed to render a visu-
ally recognizable form of a sign, most notably Sign-
Writing (Sutton, 1996) – shown to be useful for lin-
guists and non-linguist signers alike in representing and
recreating sign forms through transcription (Pizzuto et
al., 2008) – others have sought to represent sign forms
through combinations of symbols each representing a
form segment of a sign, most notably the phonemic
notation system introduced by Stokoe (1960) or later
the phonetic machine-readable strings of HamNoSys
(Prillwitz et al., 1989; Hanke, 2004). Nonetheless,
the dominant convention has arguably been the use of
sign glosses, which has continued to be used in cor-
pus annotation work for signed languages (Johnston,

2010; Johnston, 2014; Schembri and Crasborn, 2010).
However, sign glossing has been criticized for its com-
plete disregard from representing signed languages in
their true modality, with scholars arguing for a practice
in which signed language examples are always repre-
sented in a visual form – preferably video, but possi-
bly still images (Hochgesang, 2022) or a visually mo-
tivated transcription (Pizzuto et al., 2008).
Stepping away from the practice of only using written
glosses for signed language examples has been lobbied
for by Julie Hochgesang, sometimes under the Twit-
ter hashtag #TyrannyOfGlossing. Later, an attempt to
phrase this concretely, the Twitter hashtag #GlossGe-
sang was defined as “Always present sign language
data in a visual format (videos/images) without relying
solely on glossing”. As such, even if sign glosses are
used, for reasons of keeping unique, machine-readable
labels in a database, they should always be accompa-
nied by a visual representation – e.g. Figure 1.1

Figure 1: The ASL sign TOMATOix from ASL Sign-
bank (Hochgesang et al., 2022, 1253).

1https://aslsignbank.haskins.yale.edu/
dictionary/gloss/1253.html

https://orcid.org/0000-0001-7549-4648
https://twitter.com/hashtag/TyrannyOfGlossing
https://twitter.com/hashtag/glossgesang
https://twitter.com/hashtag/glossgesang
https://twitter.com/c_borstell/status/1177498599992610823
https://twitter.com/c_borstell/status/1177498599992610823
https://twitter.com/c_borstell/status/1177498599992610823
https://aslsignbank.haskins.yale.edu/dictionary/gloss/1253.html
https://aslsignbank.haskins.yale.edu/dictionary/gloss/1253.html

17

The R package signglossR was directly inspired by
the work of Julie Hochgesang and was originally in-
tended to help researchers work towards visual repre-
sentation of signed language data by facilitating the ac-
cess to tools for collecting and modifying image and
video data. In the following sections, I will present the
main functionalities of the signglossR package and
how it can be used to work with signed language data.

2. The signglossR package
The signglossR package is a library written in the
programming language R, intended as an easy-to-use
resource for those who work with signed language data
and are familiar with R. The package contains a variety
of functions designed specifically towards signed lan-
guage research, facilitating a single-pipeline workflow
with R when accessing public language resources re-
motely (online) or modifying and combining a user’s
own files and data, such as files locally on your own
computer. The signglossR package combines fea-
tures and functionality from several other libraries and
tools, either implementations in the R language or ex-
ternal software and tools that need to be installed sep-
arately. The goal here has been to simplify and collect
existing resources in one place, such that a variety of
functions and tools useful for signed language research
are all available in a single package for easier work-
flow without the need to switch between programming
languages and without the need for command-line pro-
gramming. The package specifically targets process-
ing of image and video files (§2.2–2.4), but also fea-
tures some interaction with software commonly used
by researchers working on signed language and ges-
ture, such as ELAN (§2.5.1) and OpenPose (§2.5.2).

2.1. Installation and Dependencies
2.1.1. Installing signglossR
Since the signglossR package is not hosted on
CRAN2, it needs to be installed directly from the
GitHub repository.3 In order to do this, users will
need to have the devtools (Wickham et al., 2021)
or remotes package (Csárdi et al., 2021) installed,
then install the signglossR package from the re-
mote GitHub repository:

install.packages("devtools")
library(devtools)
or ...
install.packages("remotes")
library(remotes)

install_github(
"borstell/signglossR")

When the package has been (successfully) installed, it
can be accessed in the R environment by loading it in
the R session: library(signglossR)

2https://cran.r-project.org
3https://github.com/borstell/

signglossR

2.1.2. Installing Dependencies
The signglossR package is built on top of – and
combining functions from – several other R packages,
which are included as dependencies. However, some
of the video and image processing functions depend
on additional software external to R. In such cases, the
signglossR functions will run commands on the lo-
cal system externally in the background, which requires
an external (prior) install of these tools: for video
processing functions, this concerns FFmpeg (FFm-
peg Team, 2022); for image processing, this concerns
ImageMagick (ImageMagick Development Team,
2021), when possible in its R implementation using
the magick package (Ooms, 2021). Running certain
video or image processing functions in signglossR
would therefore result in errors if these dependencies
are not installed on the computer executing the code:
follow instructions on their respective websites regard-
ing installation!
These tools/packages are very powerful on their
own and the main benefit of running them through
signglossR is to facilitate the work for users famil-
iar with R, but inexperienced or uncomfortable with
working directly in the command line. Furthermore,
the signglossR package was written to align with
the tidy-style workflow using the magrittr (Bache
and Wickham, 2022) piping function %>%, such that
the output of one function can be used as input for an-
other, creating a sequence of multiple operations.

2.2. Accessing Online Resources
As of the current version of signglossR (v2.2.2),
the package has functions to access data from three
signed language resources: the Swedish Sign Language
dictionary Svenskt teckenspråkslexikon (Svenskt teck-
enspråkslexikon, 2022) (§2.2.1); the ASL dictionary
ASL Signbank (Hochgesang et al., 2022) (§2.2.2); and
the Swedish Sign Language (STS) Corpus Svensk teck-
enspråkskorpus (Öqvist et al., 2020) (§2.2.3). These
are resources freely available online and whose main-
tainers have been informed about the access and pro-
cessing functions of signglossR: users are advised
to acknowledge these sources accordingly – try the
cite source() function! – and follow their respec-
tive terms of use. Using material from other sources
should be done according to their terms and license.

2.2.1. The Swedish Sign Language Dictionary
Svenskt teckenspråkslexikon4 (Svenskt tecken-
språkslexikon, 2022) is an online dictionary of
Swedish Sign Language (svenskt teckenspråk, STS).
The dictionary contains some 17 000 sign entries,
many with form variants, along with example videos
of signs used in sentences, still images of the sign,
phonemic transcription, a unique ID number and sign
glosses used for the corpus and dictionary projects
(Mesch et al., 2012).

4https://teckensprakslexikon.su.se

https://cran.r-project.org
https://github.com/borstell/signglossR
https://github.com/borstell/signglossR
https://teckensprakslexikon.su.se

18

With signglossR, you can convert ID numbers to
sign glosses – and vice versa – using the id2gloss()
and gloss2id functions. For example:

> id2gloss(123)
[1] "VEM"
> gloss2id("VEM")
[1] "00123"

These functions work better from ID to gloss than the
reverse: the IDs are always unique, whereas the glosses
are simply searched for in the database and can result
in multiple (or no) string matches.
The function get image() downloads a video based
on the unique ID, saves the file to your local computer
(destination path can be specified) and outputs the file-
name to the console. It is also possible to combine with
the previous function, to go from sign gloss to ID and
fetch that sign image.

> get_image(1241)
>
> get_image(gloss2id("VEM"))

Figure 2: The sign SVERIGE (‘Sweden’) (Svenskt teck-
enspråkslexikon, 2022, 1241).

As can be seen from Figure 2, the sign SWEDEN
contains multiple still images in the dictionary, and
thus they are combined automatically through the
signglossR function into a side-by-side image as
a single file. However, it is also possible to generate
an overlay image. Here, the function runs an external
ImageMagick command that takes the first image at
25% opacity and overlays it onto the second image, cre-
ating a “ghost” outline of the earlier part of the sign and
a clear image of the later part – see Figure 3.

2
1

Figure 3: Producing an overlay image from two images
with a 25% opacity “ghost” outline for the first image.

This can be achieved directly when downloading a file
from the dictionary using the following function call:

> get_image(1241,
overlay = TRUE)

This creates the following output, which can be useful
as it takes up less horizontal space and illustrates the
dynamic movement in a single frame – see Figure 4.

Figure 4: The sign SVERIGE (‘Sweden’) (Svenskt teck-
enspråkslexikon, 2022, 1241) with overlay.

Additionally, the functions get video() and
get gif() can download a sign as video (.mp4) or
GIF (.gif) directly:

> get_video(1241)
>
> get_gif(1241)

2.2.2. ASL Signbank
The second dictionary that can be accessed directly
through signglossR is ASL Signbank (Hochgesang
et al., 2022). The dictionary has videos and still images
of signs, and both of these can be accessed directly.
Converting between sign glosses and ID numbers is
also possible. Note that the default language selection
in signglossR is STS, so using general functions to
access ASL resources requires specifying the language
using acronym = "ASL":

> id2gloss(1253,
acronym = "ASL")

[1] "TOMATOix"
> gloss2id("TOMATOix",

acronym = "ASL")
[1] "1253"

For the ASL Signbank images, we can directly specify
that we want the sign gloss to be added to our down-
loaded image using glosstext = TRUE, and mod-
ify details about the fontsize and location of the la-
bel ("southwest"means bottom left) – the resulting
image of the following code was seen in Figure 1:

> get_image(1253,
acronym = "ASL",

19

glosstext = TRUE,
fontsize = 30,
gravity = "southwest")

As with the STS dictionary, ASL Signbank sign videos
can be downloaded directly using the get video()
function, again specifying acronym = "ASL".

2.2.3. The Swedish Sign Language Corpus
The Swedish Sign Language (STS) Corpus (Mesch et
al., 2012; Mesch et al., 2014) and specifically its online
interface (Öqvist et al., 2020)5 can be accessed using
the function search corpus(), for which a sign
gloss is the input, and running the command opens a
browser tab with the search hits for that sign gloss.

> search_corpus(id2gloss(1241))

2.3. Image Processing
Besides accessing image files directly from language
resources online, signglossR also contains func-
tions to process such files, either as part of the pipeline
of accessing them from those resources, or applied to
any image file locally.

2.3.1. Crop and Annotate
Trimming images can be done directly with the
get image() function, using the trim argument
(trim = .6means 40% of the total width is cropped,
equally on both sides with the image centered at the
middle). This can be particularly useful when signs
have many still images and you want side-by-side out-
puts but with efficient use of horizontal space – this is
illustrated in Figure 5 in which the sign KÖPENHAMN
(‘Copenhagen’) has four images representing the sign
and each image is cropped to 60% of the original width:

> get_image(9979, trim = .6)

Figure 5: The sign KÖPENHAMN (‘Copenhagen’)
(Svenskt teckenspråkslexikon, 2022, 9979).

Trimming and annotating can also be done on any im-
age file using the make image ex() function and
specifying a region to crop and a text annotation:

> make_image_ex("path/to/image",
crop = TRUE,
region = "400x300",
text = "GLOSS")

5https://teckensprakslexikon.su.se/

2.3.2. Combine Images
Combining and overlaying images can also be done
with local files. For example, if we try to directly create
an overlay of the KÖPENHAMN sign from Figure 5, the
result is what we find in Figure 6.

Figure 6: The sign KÖPENHAMN (‘Copenhagen’)
(Svenskt teckenspråkslexikon, 2022, 9979) with over-
lay.

Because the ghost overlay is performed recursively,
earlier frames are too weak to come through in the fi-
nal output. Instead, we could process each individual
image and combine them in stages, as in Figure 7:

> combine_images(
c("image1", "image2"),
overlay = TRUE,
trim = .6)

> combine_images(
c("image3", "image4"),
overlay = TRUE,
trim = .6)

> combine_images(
c("image1-2", "image3-4"))

Figure 7: The sign KÖPENHAMN (‘Copenhagen’)
(Svenskt teckenspråkslexikon, 2022, 9979) with seg-
mented overlay.

Alternatively, images can also be combined vertically,
allowing for a vertical stack to save horizontal space:

> combine_images(
c("image1", "image2"),

https://teckensprakslexikon.su.se/

20

trim = .6)
> combine_images(

c("image3", "image4"),
trim = .6)

> combine_images(
c("image1-2", "image3-4"),
stack = TRUE)

Figure 8: The sign KÖPENHAMN (‘Copenhagen’)
(Svenskt teckenspråkslexikon, 2022, 9979) with seg-
ments stacked.

2.3.3. Censor Images
Sometimes we need to anonymize our data, for in-
stance by blurring the face of the signer in an image.
With signglossR, this can be achieved by using the
censor image() function, either by manually spec-
ifying the region to be censored (by an opaque square
or by blurring), or by using an automated method from
the opencv package (Ooms and Wijffels, 2021). As
long as the face is not obstructed (e.g. by the signer’s
own hands), the automatic method works quite well, as
illustrated in Figure 9. This function works with any
local file, including one just piped as it was accessed
from an online resource:

> get_image(1241,
overlay = TRUE) %>%

censor_image()

2.4. Video Processing
Besides the get video() function described in §2.2,
there are several functions to modify video files in dif-
ferent ways, described below.

2.4.1. Playback Speed and Repetition
The make video ex() function can be used to mod-
ify video files. For example, piping our SVERIGE sign

Figure 9: The sign SVERIGE (‘Sweden’) (Svenskt teck-
enspråkslexikon, 2022, 1241) with overlay and face
censoring.

video, the first of the following commands would result
in the video file being slowed down to 40% speed, and
the second would result in a video file played once at
original speed, then repeated at 30% speed:

> get_video(1241) %>%
make_video_ex(speed = .4)

> get_video(1241) %>%
make_video_ex(speed = .3,

rep = TRUE)

2.4.2. Making GIFs
The make gif() function can be used to convert a
video file to a GIF.

> get_video(1253,
acronym = "ASL") %>%

make_gif()

2.4.3. From ELAN to Multimedia Examples
Arguably the most advanced functions in the
signglossR package are make elan image()
and make elan video(), both of which input an
ELAN file in order to generate image and video files,
respectively, for use as linguistic examples (e.g. for
a paper or presentation). How they work is that they
input an ELAN file with specifications of a segmenta-
tion tier and a gloss tier, and then goes through these to
create image or video outputs. Figure 10 shows a mock
example, using data from the STS Corpus (Öqvist et
al., 2020) with English glosses for illustration. Here,
there are two tiers visible: segment and gloss.
What the ELAN segmentation function in
signglossR does is that it groups annotation
cells (annotations on the gloss tier) according to
the segmentations made on the segmentation tier
(annotations on the segment tier) – see Figure 11.
Using make elan video() with our mock exam-
ple, the output would be a shorter video file span-
ning only the segment duration (if several segments are
found, each can output a separate video) and annotating

21

Figure 10: ELAN annotation view using a file from
the STS Corpus (Öqvist et al., 2020) with glosses
re-annotated in English. Original video sequence:
SSLC01 021 00:04:08.

31 2

Segmentation cell

Annotation cells

Figure 11: Schematic representation of annotation cells
within the same segment.

the video with the sign glosses – thus, it can be used as
a basic subtitling tool when illustrating examples.

> make_elan_video("file.eaf",
segmentation_tier = "segment",
gloss_tier1 = "gloss")

The function make elan video() retrieves the
video path from within the ELAN file, but in case the
video file is located elsewhere or there are multiple as-
sociated video files, users are advised to specify the
video path explicitly as an argument to the function.
With make elan image(), the output will be an im-
age sequence with each sign (what is segmented on the
gloss tier) represented by an image. Here, there is an
additional option of also creating overlaps for individ-
ual images. In this case, it selects the first and last
frames of each gloss duration (the 1st and nth frames of
a sign of length n; see Figure 12) and creates an over-
lay for each, after which each sign image is combined
into a horizontal sequence, as illustrated in Figure 13.
If overlay is not selected (combine = FALSE), only
the first frame of each sign is selected.

> make_elan_image("file.eaf",

segmentation_tier = "segment",
gloss_tier = "gloss")

The function make elan image() calls
make image ex() internally and can therefore
include a step of, for example, cropping each frame
before combining. Furthermore, the output of these –
and any image-generating – function can be piped to,
e.g., censor image() for an additional processing
step censoring the face(s) in the image.

n1 2 3 …

Segmentation cell

Annotation cells

Figure 12: Schematic representation of video frames
within the same annotation duration.

2.5. Processing Other File Types
In addition to image and video processing, there are a
few functions in the signglossR package that aim
to facilitate direct processing of file formats commonly
found in signed language linguistics, namely ELAN
files (§2.5.1) and OpenPose files (§2.5.2).

2.5.1. ELAN
ELAN (Brugman and Russel, 2004; Wittenburg et al.,
2006; Crasborn and Sloetjes, 2008; ELAN (Version
6.3) [Computer software], 2022) is an annotation tool
used by many researchers working on multimodal data,
from signed languages to gesture and behavioral psy-
chology. ELAN annotation files (.eaf) are underly-
ingly XML (.xml) files and can be processed as such.
The signglossR function read elan() inputs a
path to a directory, parses all ELAN files in that direc-
tory and outputs a data frame (or, tibble) with the data
in a typical long format of rows and columns, which
lets the researcher get direct access to ELAN files from
R without any intermediate export.

> path <- "path/to/directory"
> data <- read_elan(path)

2.5.2. OpenPose
OpenPose (Cao et al., 2017; Cao et al., 2019) is an
open source tool used to input video (or image) files
in order to estimate the body pose of any humans de-
picted, with keypoints for various anchor points on the
body (e.g. nose, mouth, shoulders, wrists, etc.). This
software has only just started gaining traction within
signed language research, where it can be used to esti-
mate signing activity and the location of hands/arms
in signing space from videos. For each frame in a
video, OpenPose outputs a JSON (.json) file link-
ing each individual in the video to a key–value format

https://teckensprakskorpus.su.se/#/video/sslc01_021.eaf?t=248.200

22

Figure 13: The output of make elan image() on a sequence from the Swedish Sign Language (STS) Corpus
(Öqvist et al., 2020) with glosses re-annotated in English in ELAN, each sign represented by first-and-last frames
overlaid and annotated with respective glosses and concatenated. Original video sequence: SSLC01 021 00:04:08

of keypoints and their respective estimated locations in
the frame. The function read openpose() inputs a
path to a directory, parses all JSON files in that direc-
tory and outputs a data frame with the data either in a
wide format (wide = TRUE is default), where each
row represents a frame and each keypoint has its own
column, or in a long format of rows and columns with
each datapoint on a single row.

> path <- "path/to/directory"
> wide_data <-

read_openpose(path)
> long_data <-

read_openpose(path, wide=F)

3. Final remarks
In this paper, I have given a brief overview to the
signglossR package and its functionality. Origi-
nally created with the intention to facilitate the use of
visual representation of signed language data, it has
grown to encompass other aspects of working with
multimodal data and related software – e.g. ELAN –
specifically in R, a language popular among linguists
but with few packages dedicated to signed language
data. It is then hopefully easier to proceed with work
on such data with other R packages designated for, e.g.,
statistical analyses, although there is also more func-
tionality and improvement in the planning stage by the
author already. Since all the code is open source – just
as most of the packages and software it is built on –
other users are free to use, adapt or expand on the func-
tionality and ideas of signglossR. Furthermore, if
anyone using the package would encounter problems
or wishes to relay feedback on their user experience,
they are more than welcome to contact the author di-
rectly or file an issue in the GitHub repository.

4. Acknowledgments
Thanks to Julie Hochgesang whose presentation on
glossing in Berlin on September 23rd 2019 (and advo-
cacy using the Twitter hashtags #TyrannyOfGlossing
and #GlossGesang) inspired a first (Python) prototype
of an ELAN-to-image example generator. Thanks to
three anonymous reviewers for comments on this paper.

A special thanks to Jon Keane (https://github.
com/jonkeane) for assistance and suggestions after
the very first signglossR package launch in 2020.

5. Bibliographical References
Bache, S. M. and Wickham, H., (2022). magrittr: A

Forward-Pipe Operator for R. R package v. 2.0.2.
Brugman, H. and Russel, A. (2004). Annotating multi-

media/multi-modal resources with ELAN. In Pro-
ceedings of the 4th International Conference on
Language Resources and Evaluation (LREC 2004),
pages 2065–2068.

Cao, Z., Simon, T., Wei, S.-E., and Sheikh, Y. (2017).
Realtime multi-person 2d pose estimation using part
affinity fields. In CVPR.

Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., and
Sheikh, Y. A. (2019). Openpose: Realtime multi-
person 2d pose estimation using part affinity fields.
IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Crasborn, O. and Sloetjes, H. (2008). Enhanced
ELAN functionality for sign language corpora. In
Onno Crasborn, et al., editors, Proceedings of the
LREC2008 3rd Workshop on the Representation and
Processing of Sign Languages: Construction and
Exploitation of Sign Language Corpora, pages 39–
43, Marrakech, June. European Language Resources
Association (ELRA).

Crasborn, O. (2015). Transcription and Notation
Methods. In Eleni Orfanidou, et al., editors, Re-
search Methods in Sign Language Studies, pages 74–
88. John Wiley & Sons, Ltd, Chichester.

Csárdi, G., Hester, J., Wickham, H., Chang, W., Mor-
gan, M., and Tenenbaum, D., (2021). remotes: R
Package Installation from Remote Repositories, In-
cluding ’GitHub’. R package v. 2.4.2.

ELAN (Version 6.3) [Computer software]. (2022).
Max Planck Institute for Psycholinguistics, The Lan-
guage Archive, Nijmegen.

FFmpeg Team. (2022). FFmpeg, v. 5.0.1.
Frishberg, N., Hoiting, N., and Slobin, D. I. (2012).

Transcription. In Roland Pfau, et al., editors, Sign
language: An international handbook, pages 1045–
1075. De Gruyter Mouton, Berlin/Boston, MA.

https://teckensprakskorpus.su.se/#/video/sslc01_021.eaf?t=248.200
https://github.com/borstell/signglossR
https://twitter.com/hashtag/TyrannyOfGlossing
https://twitter.com/hashtag/glossgesang
https://github.com/jonkeane
https://github.com/jonkeane

23

Hanke, T. (2004). HamNoSys – Representing Sign
Language Data in Language Resources and Lan-
guage Processing Contexts. In Oliver Streiter et al.,
editors, Proceedings of the LREC2004 Workshop
on the Representation and Processing of Sign Lan-
guages: From SignWriting to Image Processing.
Information techniques and their implications for
teaching, documentation and communication, pages
1–6, Lisbon, May. European Language Resources
Association (ELRA).

Hochgesang, J. (2022). Managing Sign Language Ac-
quisition Video Data: A Personal Journey in the Or-
ganization and Representation of Signed Data. In
Andrea L. Berez-Kroeker, et al., editors, The Open
Handbook of Linguistic Data Management, pages
367–383. The MIT Press.

ImageMagick Development Team. (2021). Im-
ageMagick, v. 7.0.10.

Jefferson, G. (2004). Glossary of transcript sym-
bols with an introduction. In Gene H. Lerner, edi-
tor, Pragmatics & Beyond New Series, volume 125,
pages 13–31. John Benjamins Publishing Company,
Amsterdam.

Johnston, T. (2010). From archive to corpus: Tran-
scription and annotation in the creation of signed
language corpora. International Journal of Corpus
Linguistics, 15(1):106–131.

Johnston, T. (2014). The reluctant oracle: Adding
value to, and extracting of value from, a signed lan-
guage corpus through strategic annotations. Cor-
pora, 9(2):155–189.

Mesch, J., Wallin, L., and Björkstrand, T. (2012). Sign
language resources in Sweden: Dictionary and cor-
pus. In Onno Crasborn, et al., editors, Proceedings
of the LREC2012 5th Workshop on the Representa-
tion and Processing of Sign Languages: Interactions
between Corpus and Lexicon, pages 127–130, Istan-
bul, May. European Language Resources Associa-
tion (ELRA).

Miller, C. (2006). Sign language: Transcription, no-
tation, and writing. In Keith Brown, editor, Ency-
clopedia of Language & Linguistics, number 1988,
pages 353–354. Elsevier, Oxford.

Ooms, J. and Wijffels, J., (2021). opencv: Bindings to
’OpenCV’ Computer Vision Library. R package v.
0.2.1.

Ooms, J., (2021). magick: Advanced Graphics and
Image-Processing in R. R package v. 2.7.3.

Öqvist, Z., Riemer Kankkonen, N., and Mesch, J.
(2020). STS-korpus: A sign language web corpus
tool for teaching and public use. In Eleni Efthimiou,
et al., editors, Proceedings of the LREC2020 9th
Workshop on the Representation and Processing of
Sign Languages: Sign Language Resources in the
Service of the Language Community, Technologi-
cal Challenges and Application Perspectives, pages
177–180, Marseille, May. European Language Re-
sources Association (ELRA).

Pizzuto, E. A., Chiari, I., and Rossini, P. (2008). The
representation issue and its multifaceted aspects in
constructing sign language corpora: Questions, an-
swers, further problems. In Onno Crasborn, et al.,
editors, Proceedings of the LREC2008 3rd Workshop
on the Representation and Processing of Sign Lan-
guages: Construction and Exploitation of Sign Lan-
guage Corpora, pages 150–158, Marrakech, June.
European Language Resources Association (ELRA).

Prillwitz, S., Leven, R., Zienert, H., Hanke, T., and
Henning, J. (1989). HamNoSys Version 2.0: Ham-
burg Notation System for sign languages - An intro-
ductory guide. Signum Verlag, Hamburg.

Schembri, A. and Crasborn, O. (2010). Issues in creat-
ing annotation standards for sign language descrip-
tion. In Philippe Dreuw, et al., editors, Proceedings
of the LREC2010 4th Workshop on the Representa-
tion and Processing of Sign Languages: Corpora
and Sign Language Technologies, pages 212–216,
Valletta, May. European Language Resources Asso-
ciation (ELRA).

Stokoe, W. C. (1960). Sign language structure: An
outline of the visual communication system of the
American Deaf. In Studies in linguistics: Occa-
sional papers (No. 8), Buffalo, NY. Dept. of Anthro-
pology and Linguistics, University of Buffalo.

Sutton, V. (1996). SignWriting. https://www.
signwriting.org.

van der Hulst, H. and Channon, R. (2010). Notation
systems. In Diane Brentari, editor, Sign Languages,
pages 151–172. Cambridge University Press.

Wickham, H., Hester, J., Chang, W., and Bryan, J.,
(2021). devtools: Tools to Make Developing R Pack-
ages Easier. R package v. 2.4.3.

Wittenburg, P., Brugman, H., Russel, A., Klassmann,
A., and Sloetjes, H. (2006). ELAN: A profes-
sional framework for multimodality research. In
Proceedings of the 5th International Conference on
Language Resources and Evaluation (LREC 2006),
pages 1556–1559.

6. Language Resource References
Hochgesang, J. A., Crasborn, O., and Lillo-

Martin, D. (2022). ASL Signbank. Haskins
Lab, Yale University, https://aslsignbank.
haskins.yale.edu/.

Mesch, J., Wallin, L., Nilsson, A.-L., and Bergman,
B. (2012). Dataset. Swedish Sign Language Cor-
pus project 2009–2011 (version 1). Department of
Linguistics, Stockholm University.

Mesch, J., Rohdell, M., and Wallin, L. (2014). Anno-
tated files for the Swedish Sign Language Corpus.
Version 2. Department of Linguistics, Stockholm
University.

Svenskt teckenspråkslexikon. (2022). Svenskt
teckenspråkslexikon. Department of Lin-
guistics, Stockholm University, https:
//teckensprakslexikon.ling.su.se/.

https://www.signwriting.org
https://www.signwriting.org
https://aslsignbank.haskins.yale.edu/
https://aslsignbank.haskins.yale.edu/
https://teckensprakslexikon.ling.su.se/
https://teckensprakslexikon.ling.su.se/

	Introduction
	The signglossR package
	Installation and Dependencies
	Installing signglossR
	Installing Dependencies

	Accessing Online Resources
	The Swedish Sign Language Dictionary
	ASL Signbank
	The Swedish Sign Language Corpus

	Image Processing
	Crop and Annotate
	Combine Images
	Censor Images

	Video Processing
	Playback Speed and Repetition
	Making GIFs
	From ELAN to Multimedia Examples

	Processing Other File Types
	ELAN
	OpenPose

	Final remarks
	Acknowledgments
	Bibliographical References
	Language Resource References

