
Proceedings of the ResT-UP2 Proceedings @LREC2022, pages 16–24
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

16

A Comparison of Machine Learning Techniques for Turkish Profanity
Detection

Levent Soykan, Cihan Karsak, İlknur Durgar Elkahlout, Burak Aytan
TURKCELL

İstanbul, Turkey
{levent.soykan, cihan.karsak, ilknur.durgar, burak.aytan}@turkcell.com.tr

Abstract
Profanity detection became an important task with the increase of social media usage. Most of the users prefer a clean
and profanity free environment to communicate with others. In order to provide a such environment for the users, service
providers are using various profanity detection tools. In this paper, we researched on Turkish profanity detection in our search
engine. We collected and labeled a dataset from search engine queries as one of the two classes: profane and not-profane. We
experimented with several classical machine learning and deep learning methods and compared methods in means of speed
and accuracy. We performed our best scores with transformer based Electra model with 0.93 F1 Score. We also compared our
models with the state-of-the-art Turkish profanity detection tool and observed that we outperform it from all aspects.

Keywords: Profanity Detection, Natural Language Processing, Text Classification

1. Introduction
Profane language generally contains words or phrases
that are disrespectful to someone or something. It may
include social, sexual, racial insulting contents. The
profane language includes vulgar and swear words, ob-
scene expressions, and naughty jokes etc. With the in-
crease of social media use from all age groups, profan-
ity detection is very crucial on social media content and
search engines. Most of the service providers and so-
cial media platforms are applying detection and mask-
ing methods by content moderation to discourage this
type of language. The level of profanity detection can
be differ from just censoring succ and f words to a sen-
timent level. Very simply, one can use blacklists con-
sisting of profanity words and search them in the con-
tents. This approach unfortunately does not satisfy the
needs as in most of the cases users can find a way to
fool these lists buy making on purpose typos, changing
the letter by numbers, using different font types or even
emojis. Moreover, there are many words that have dual
senses than can both express offense and non-offense
meaning depending on the context. An alternative way
of profanity detection is employing data-driven meth-
ods with classical machine learning and deep learning
methods. The task is getting harder when someone
works with morphologically complex languages like
Turkish.
Recently, automatic profanity detection became one of
the trending topics in natural language processing. First
attempts was focused on hate speech detection (Chen et
al., 2012; Davidson et al., 2017; Agarwal and Sureka,
2017). There are several datasets (Kumar et al., 2018;
Ibrohim and Budi, 2018) collected for this purpose
and even several shared tasks (Zampieri et al., 2020;
Zampieri et al., 2019; Basile et al., 2019) are organized
for offensive language and hate speech detection.
In this paper, we focus on Turkish profanity detection

on search engine queries. Despite the increasing inter-
est on this topic for other languages, there is still very
limited research on Turkish. For our best knowledge
there is only one available corpus on Turkish offensive
language (Çöltekin, 2020) (approximately 40K Twit-
ter entries). (Çelik and Yıldırım, 2020) is conducted
a comparison of classical machine learning techniques
for Turkish profanity detection. A dataset (approxi-
mately 80K) is also collected within this work but the
data is not publicly available yet and the only publicly
available profanity tool for Turkish for our best knowl-
edge is Sinkaf 1.
The profanity detection task for Turkish search engine
queries is challenging in two respects: the first one is
the agglutinative structure of Turkish which brings spe-
cial difficulties such as sparsity problem. The second is
the length of the entities because of the nature of search
engine queries. The phrases are very short (three words
on average) and classifiers should work with a very lim-
ited context.
The first aim of this work is to collect large set of data
from search engine queries. We collected a corpus of
400K entries 2 and labeled them in one of the two pro-
fanity classes (True or False mainly). Then we com-
pared the classification performance of several classi-
cal machine learning and deep learning techniques on
this dataset. This paper is organized as follows: Section
2 introduces the data collection and labeling processes.
In Section 3, we explain the data preprocessing steps.
Section 4 and 5 focuses classical machine learning and
deep learning model setups and their experimental re-
sults. Finally we conclude with Section 6.

1https://github.com/eonurk/sinkaf
2%50 of the data is freely available for academic pur-

poses. Please contact the authors for dataset acquisition.

17

2. Data Collection
For data-driven profanity detection to perform well on
real world scenarios, it is of crucial importance to have
training data that has a similar distribution with the real
world data. In order to satisfy this constraint, we car-
ried out an extensive data collection and labeling pro-
cess and collected a dataset of approximately 400K
phrases/sentences from search engine queries.

2.1. Labeling Process
We organized a team of twenty people for data label-
ing. We shared a labeling guide in which we itemized
the tagging criteria and provided positive and negative
examples. We grouped offense classes into four as dis-
crimination, sexual abuse, profanity and violence. Def-
inition of each class is as follows:

• Discrimination: All kind of hate speech that in-
cludes unjust or prejudicial treatment of different
categories of people, especially on the grounds of
race, age, sex, or disability.

• Sexual Abuse: All kind of phrases that implies
any adulty content including unwanted sexual ac-
tivity like pedophilia.

• Violence: Phrases involving physical force in-
tended to hurt, damage, or kill someone or some-
thing.

• Succ and f words: Rude and insulting words or
phrases to cause someone to feel hurt, angry, or
upset including swear words.

We asked annotators to complete a demo task (100
phrases for each annotator) before initializing the main
project. By the help of these demo outputs, we re-
vised the labeling guide and finalized the rule set. Dur-
ing the whole process, we employed an in-house la-
beling and verification tool. Figure 1 shows an exam-
ple annotation screen used in the study. In the light of
the given instructions, the annotator labeled the word
moruk (geezer) in the phrase yaşlı moruk (old geezer)
as profanity word and selected the type as violence. At
the end of the labeling process, all phrases that are la-
beled in one of the four classes are recorded as True
(Profane class) and the rest is recorded as False(not-
Profane).
In the first phase of the annotation process was dedi-
cated to the labeling of the entries and in the second
phase was used to check the mismatches between an-
notators and consolidate the output. Randomly selected
10% percent of the data (equally from each annotator)
is considered in the consolidation step in which four ex-
perts (different from the annotators) checked the wrong
labels and words. If all of the labels are correct, it is se-
lected as the final label. If any of the labels or words is
wrong, the true label is determined by the expert. Fig-
ure 2 illustrates the consolidation screen used in order
to analyze the annotations.

(a) Selecting the Profane Phrase

(b) Final View After Labeling

Figure 1: Labeling Example

Figure 2: Annotation Verification

2.2. Corpus Statistics
The total dataset we obtained after labeling process
consists of 392,806 phrases. In our dataset, each text
input is labeled as False (83.6% of the corpus) and
True (16.4% of the coprus). Same distribution is main-
tained during creation of train/test/validation datasets
using Stratified Splits & StratifiedKFold. The longest
query has 110 words whereas the shortest one is a sin-
gle word. Looking at the median values, we can state
that the most inputs contain three word sequences and
average word length is around six characters. Table 1
illustrates the distribution of query lengths. When tok-
enized by spaces, whole dataset has over 190K unique
words, including digits, letters, symbols. This means
high dimensionality is an important challenge for this
study. The data set created in this study will be made
partially publicly available with a permissive license.
In this work, we set aside 10% of entire data as test set
and performed data analysis and model training on the
90% of the dataset. For the cases that we need a seper-
ate validation set, 10% of train set is used. Validation
is mostly used for model performance evaluation and
hyperparameter tuning.

3. Data Preprocessing
In order to clean data, we applied several preprocessing
step as shown in Figure 3.
We can briefly explain these preprocessing steps as fol-
lows:

• Lowercasing: We applied lower casing to all texts
in the dataset.

18

mean std min 25% 50% 75% max
avg. word length 6.02 2.78 0.31 4.8 5.66 7.0 199
word count 3.09 1.66 1.0 2.0 3.0 4.0 110

Table 1: Corpus Statistics

Figure 3: Preprocessing steps applied to the Dataset

• Punctuation Removal: As punctuation has a lim-
ited effect on profanity, we removed all punctua-
tions.

• Single Letter Removal: Although the dataset in-
cludes words from different languages, the domi-
nating language is Turkish. Turkish language does
not have single letters as words except o (he/she/it)
which is already in our stop words list. We re-
moved single letters but as digits & numbers may
sometimes indicate offense, we kept numeric val-
ues untouched.

• Stop Words Removal: We removed the stop
words using a pre-defined Turkish Stop Words
list. These include written numbers, pronouns
(demonstratives such as bu (this), şunlar (these);
possessives such as onun (his), benim (my, mine),
reflexive: kendim (myself), kendin (yourself)) and
helping verbs (yapmak (to do), etmek (to make),
etc.). Note that our decision of removing stop
words is based on profanity classification. Re-
moval of stopwords may harm other tasks on
Turkish such as summarization & sentiment pre-
diction.

• Morphological Preprocessing/Spellchecking:
We experimented with three morphological pro-
cesses i) Normalization: Basic spell checker and
word suggestion. Noisy text normalization ap-
plied with Zemberek(Akin, 2019)), ii)Stemming:
Only Stemming applied after initial preprocessing
Tool with TurkishStemmer (Osman Tunçelli,
2019), iii)Lemmatization: Only Lemmatization
applied after initial preprocessing Tool with
Zeyrek3. Each process might change the word
completely and may also have adverse results.

3.1. Vector Representation of Text Input
Since machine learning tools accept numeric in-
put, a numeric representation of text is required.

3https://zeyrek.readthedocs.io/en/latest/

processed normalized stemmed lemmatized
181,734 129,532 149,898 151,364

Table 2: Number of word tokens after preprocessing
step (Originally: 181,933 tokens)

Figure 4: Word Count of the Dataset

Vectorization is a common way of creating nu-
meric features from text data. The most straight-
forward application is One-Hot-Encoding where
all words will be represented as numbers. We
used CountVectorizer (within scikit-learn) for this
step, as it takes care of tokenization and pro-
vides n-gram options. Another method is Term
Frequency-Inverse Document Frequency (tf-idf),
which is based on assigning weights to each to-
ken inversely proportional to its frequency across
all documents. Tf-idf tokenization helps reduce
the effect of stop words/less important words and
giving more emphasis to words that are rare and
important. By default, vectorization is made us-
ing each unique word as a token. However,
when grouped together, words might have differ-
ent meaning or stronger effect. N-Gram Range is
a method for grouping all n-word combinations as
a single unique token. We represent the compari-
son of two methods in Section 4.2.

3.2. Feature Selection & Evaluation
Metrics

After tokenization and vectorization, our train
data has between 120-150K features, and hyper-
parameter tuning of some ML algorithms with this
feature set is inefficient. (especially for tree-based
classifiers and ensemble models) For application

19

of these models, most relevant features must be
identified and data should be represented with
fewer features while maintaining the accuracy. To
evaluate the dependency of all features and the
target variable, we applied Chi2 test, which is a
statistical test with the null hypothesis being “the
feature and target variable are independent”. Test
returns a test-statistic and a p-value. For low p-
values, we can state that we have enough data to
reject the null hypothesis, meaning that the feature
is correlated to targets. For our processed data, we
have 18.702 unique features that have significant
correlation (p<0.05) to target. For ensemble mod-
els such as RandomForest, this feature set is used.

Since the work might be deployed in profanity de-
tection of online services, a low False Negative
rate will be desirable. For this reason, we will
use F1 scores mainly as it incorporates both the
True-Positive, False-Positive predictions Along-
side F1 Score, we will also keep an eye on the re-
call and precision. Most ML / DL algorithms pro-
vide predicted probabilities, where one can also
tweak the probability threshold to adjust preci-
sion/recall levels. Accuracy could be mislead-
ing in imbalanced datasets, but to visualize how a
model/pipeline is performing, we can plot a ROC
curve. Figure 5 shows a ROC Curve using Lo-
gistic Regression. Area under the curve is the
main indicator and the diagonal dotted line repre-
sents the performance of random guessing where
the model cannot distinguish between classes, and
as shown in figure, Logistic Regression Model is
way above this line.

Figure 5: ROC curves for Logistic Regression

4. Classical Machine Learning
Experiments

After initial preprocessing, we applied several
Machine Learning models to our data.

– LogisticRegression: Linear classifier using
logistic function (sigmoid curve) to calculate
class probabilities. Offers L1-L2 regulariza-
tion options.

– SGDClassifier: A linear classifier applied
with Stochastic Gradient Descent where loss
is calculated with each sample, and learning
rate can be adjusted gradually.

– LinearSVC: This model is a faster applica-
tion of Support Vector Classification with a
linear kernel and accepts sparse inputs. The
fitting time is much lower compared to stan-
dard SVC and is commonly used for text
classification.

– MultinomialNB: Calculates conditional
probability of features, with ‘naive’ assump-
tion of conditional independence among
features.

– KNeighborsClassifier: Algorithm based on
pre-determined number (k) of nearest data
points to each query point.

– RandomForestClassifier: Ensemble
method fitting a number of Decision Tree
Classifiers on sub sample of dataset and
averages the outcomes to make predictions.
Sub sample size and selection can be
controlled with model hyperparameters

– XGBClassifier: Uses Gradient Boosting
method to combine outputs of a set of Deci-
sion Trees where trees are fitted sequentially,
and gradient descent is applied for optimiza-
tion.

4.1. Effect of Morphological Processes

To test the results, we ran the processed data
through four ML classification algorithms with
default parameters. Table 3 includes the F1-score
on 5-fold cross validation of training set with dif-
ferent morphological processes. Processed col-
umn shows the results with the first four prepro-
cessing steps without morphological preprocess-
ing.

As shown in table 3, it seems that although normal-
ization corrects some spelling errors, it negatively af-
fects total performance, as many misspelled profane
words in our dataset are incorrectly changed. The first
four preprocessing steps yields good results, lemmati-
zation/stemming can also be tried as they have similar
performance. Additional features extracted from text

20

processed normalized stemmed lemmatized
SGDClassifier 0.80 0.79 0.82 0.82
LogisticRegression 0.86 0.85 0.87 0.87
LinearSVC 0.91 0.88 0.91 0.91
MultinomialNB 0.81 0.80 0.81 0.81

Table 3: The experimental results with different morphological processes

statistics are not applied, as we did not observe a cor-
relation between these statistics and the target variable.
Table 2 shows the final number of unique tokens after
preprocessing steps. Figure 4 shows the distribution of
word counts.

4.2. Effect of Vectorization
In order to see the effect of vectorization on perfor-
mance, we performed a cross-validation on LinearSVC
model using both Tf-idf & Countvectorizer with Uni-
gram (1,1) and Bi-gram (1,2) options. Table 4 shows
the cross validation results. Although the results are
close to each other, and CountVectorizer with Unigram
seems to work well both in terms of recall and F1-
score. Increasing n-gram range does not contribute
much, which is somewhat expected as often times pro-
fane word can be indicated by a single word. As the
performances of ngram-ranges are close, we preferred
Counvectorizer with ngram-range(1,1) in the following
experiments.

Cnt(1) Cnt(2) Tfidf(1) Tfidf(2)
Fit T. 7.06 13.25 2.09 3.27
Acc. 0.97 0.97 0.97 0.96
F1 0.91 0.90 0.91 0.89
Recall 0.86 0.84 0.84 0.80

Table 4: Comparison of CountVectorizer and TfidfVec-
torizer with uni- and bi-grams (fit time in secs)

4.3. ML Experimental Results
Table 5 are the initial results of all models.
As a further step, we applied hyperparameter tuning
to LogisticRegression, SGDClassifier, LinearSVC and
RandomForestClassifier as shown in Table 6. Best
score is achieved by the tuned version of LinearSVC.
Classification report and confusion matrix on test set
with this model is shown in Table 7. Though there are
many False-Positive (Type 1 Error) classifications, the
model identifies True (Profane) classes accurately.

5. Deep Learning Methods
After the ML algorithms, we also experimented with
deep learning algorithms. We first started with a base-
line LSTM model then moved to transformer models
BERT and Electra. Finally we tried T5 models.

5.1. Baseline LSTM Model
As a baseline model, we created a two layer LSTM
model. We used Keras (Chollet and others, 2015)
preprocessing package4 for preprocessing and Adam
(Kingma and Ba, 2015) optimizer, which uses mo-
ments calculated with exponentially weighted averages
of gradients for optimization. For the loss calculation,
we prefered Binary Cross Entropy5 that uses function
uses cross entropy - negative logarithm of predicted
probabilities. Our baseline network is created with lay-
ers explained in Table 8. The model parameters are as
follows:

• Optimizer: AdamW (Learning Rate: 5e-4,
weight decay=1e-3, epsilon: 1e-8)

• GPU Batch Size: 128

• Gradient Clipping: (Max Norm = 2.0)

• Warmup – Linear Schedule with 20.000 steps

5.2. Transformer Models
Transfer Learning is a methodology used in machine
learning where the model stores the gained knowledge
(updated weights) while training for an objective, and
the stored weights are then re-applied with another
model to a different problem. This approach is very
common in deep learning, where pre-trained models
are used and fine-tuned to solve new computer vision
and natural language processing problems. The pre-
trained models we applied use Transformers(Cho et
al., 2014) and Self-Attention(Vaswani et al., 2017) to
identify the important parts of text data and learn con-
nections. We use two pre-trained models for our task;
BERT(Devlin et al., 2018) & ELECTRA(Clark et al.,
2020).

5.2.1. BERT
The main differentiating point of BERT is that it is a Bi-
Directional Model. Compared to uni-directional mod-
els where context of a word is represented by words to
its left (or right), BERT6 uses context from both sides
to represent the words. This is achieved by Masked
Language Modelling (MLM)(Song et al., 2019), where

4https://www.tensorflow.org/api docs/python/tf/keras
5https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html
6https://github.com/google-research/bert

21

model F1 Precision Recall Acc.
LogisticRegression 0.87 0.98 0.78 0.96
SGDClassifier 0.80 0.98 0.68 0.95
KNeighborsClassifier 0.74 0.99 0.60 0.93
LinearSVC 0.92 0.98 0.87 0.98
MultinomialNB 0.84 0.88 0.80 0.95
RandomForestClassifier 0.90 0.98 0.85 0.97
XGBClassifier 0.76 0.99 0.61 0.94

Table 5: ML Algoritms Experimental Results

model F1 Precision Recall Acc.
LogisticRegression 0.89 0.98 0.81 0.97
SGDClassifier 0.82 0.91 0.75 0.95
LinearSVC 0.92 0.98 0.87 0.98
RandomForestClassifier 0.91 0.98 0.85 0.97

Table 6: The Effect of Hyperparameter Tuning

Actual vs. Predict True False
True 5638 125
False 810 32708

Table 7: Confusion Matrix of LinearSVC the Actual
Labels vs Predicted Labels

some words are masked in the input and Transform-
ers are used to predict these masked words. As a pre-
trained model, Bert has its own vocabulary and word
vectors. The vocabulary is fixed, but BERT has a spe-
cial word piece tokenization7. If the word as a whole
does not exist in the vocabulary, the Bert tokenizer
splits it into several sub-word segments and trains them
separately. This method looks really promising for
NLP tasks in Turkish, where there are many possible
conjugations of each word, due to the agglutinative na-
ture of the language. Application We used loodos/bert-
base-turkish-uncased8 model which has 12 encoder
layers with over 30K tokens and 768 features on ev-
ery vector.

• Model Class: BertForSequenceClassification

• Optimizer: AdamW (Learning Rate: 1e-5, ep-
silon: 1e-8)

• GPU Batch Size: 32

• Gradient Clipping: (Max Norm = 1.0)

5.2.2. Electra
Similar to BERT, Electra also uses Transformer mech-
anisms, but the main difference is about the training

7https://huggingface.co/docs/transformers/tokenizer summary#wordpiece
8https://huggingface.co/loodos/bert-base-turkish-uncased

part. Instead of MLM, Electra uses Replaced To-
ken Detection as a task for pre-training. In this task,
Electra models9 are trained to distinguish ”real” in-
put tokens vs ”fake” input tokens generated by an-
other neural network. After pre-training, the gener-
ator network is dismissed and model fine-tuning for
new tasks are done only with the discriminator. In ex-
perimets, We used dbmdz/electra-base-turkish-cased-
discriminator10 which is trained on 35GB corpora in-
cluding Oscar (Abadji et al., 2022) and Opus corpo-
ras(Aulamo et al., 2020). We used the model with the
following parameters:

• Model Class: ElectraForSequenceClassification

• Optimizer: AdamW (Learning Rate: 1e-5,
weight decay=1e-2, epsilon: 1e-8)

• GPU Batch Size: 32

• Gradient Clipping: (Max Norm = 1.0)

• Loss Function: BinaryCrossEntropy

• Warmup: Linear Schedule with 20.000 steps.

5.3. T5
T5 (Raffel et al., 2019) model is recently used in vari-
ous NLP tasks including summarization, classification,
question answering, etc. Since it is a sequence-to-
sequence model, it is available for our task too. Dur-
ing pre-training objective, the model is trained to pre-
dict spans of multiple words as well as single word to-
kens. This helps the model learn sequential relation-
ships and language structure better. The model has

9https://github.com/google-research/electra
10https://huggingface.co/dbmdz/electra-base-turkish-

cased-discriminator

22

Layer name Number of Parameters
Embedding(170913, 500) 85M
LSTM(500,64,numlayers=2,batchfirst=True,drpout=0.5) 16K
Linear(infeatures=64,outfeatures=32,bias=true) 256
Linear(infeatures=32,outfeatures=1,bias=true) 256
Sigmoid() 32768
Dropcout(p=0.5, inplace=False) 512

Table 8: Model Summary

a generate method where it generates IDs, which are
then transformed to words by the tokenizer. Therefore,
in our study, we received the output as text ‘True’ –
‘False’ strings and converted them to numeric 0 and
1 afterwards. We used mt5-small-turkish-question-
paraphrasing 11 model whic is pre-trained on TQP
dataset V0.1 (M. Yusuf Sarıgöz, 2021). We used this
model with the following parameters:

• Model Class: T5ForConditionalGeneration

• Optimizer: AdaFactor (Learning Rate: 1e-3)

• GPU Batch Size: 32

• Gradient Clipping: (Max Norm = 1.0)

• Warmup: Linear Schedule with 20.000 steps.

5.4. Experimental Results
Table 9 shows the results of fine-tuned models of deep
learning methods on our test data. As seen in the table,
our baseline method Classifier Network performs sim-
ilar to LinearSVC but BERT and ELECTRA performs
better than all classical machine learning methods ex-
plained in Section 4. We also compared the algorithms
from the response time aspect, as depending on the use
case, one can sacrifice performance for a faster algo-
rithm. Table 10 shows the inference speed12 of algo-
rithms for 100 samples from our test data. The average
text length of this sample is 18 chars.
We also compared our results with the publicly avail-
able Sinkaf tool which is implemented with both classi-
cal machine learning and deep algorithms. We selected
the same algorithms of Sinkaf that we performed best
for both categories (LinearSVC and BERT). As seen in
the last two columns of the Table 9, our tool outper-
forms Sinkaf for both cases.

6. Conclusion
In this work, we focused on Turkish profanity detec-
tion of search engine entries. In order to build a model

11https://huggingface.co/dbmdz/electra-base-turkish-
cased-discriminator

12The configuration of the machine: Intel(R) Core(TM) i7-
10750H CPU @ 2.60GHz, 2592 Mhz, 6 Core(s), 12 Logical
Processor(s) Installed Physical Memory (RAM), 16,0 GB

that effectively classifies given text sequences as pro-
fane or not-profane, we first collected approximately
400K data following a labeling process. Later we ap-
plied several classical machine learning algorithms and
deep learning models. We compared each approach’s
performance from both accuracy and speed aspects.
Although we have slightly better results with BERT &
Electra models (F1 score: 0.93), a default LinearSVC
model (F1 score: 0.92) also performs closely to trans-
former models. This strengthens our first indication
after n-gram model comparison that identifying a text
as profane/not profane is mostly indicated with sin-
gle words rather than word groups or contextual mean-
ing/clues. Therefore, simple non-sequential, linear al-
gorithms are almost as effective as deep learning net-
works for classification of profanity detection. Looking
at the predicted validation data, Linear Model missed
the True labels if the profane word has an uncommon
suffix or joined with another word (by mistake or inten-
tionally). Additional recall performance of Pre-trained
Transformer models come from these samples, where
sub-word tokenization and embedded vectors helped
the model classify these texts more correctly.

7. Bibliographical References
Abadji, J., Ortiz Suarez, P., Romary, L., and Sagot,

B. (2022). Towards a Cleaner Document-Oriented
Multilingual Crawled Corpus. arXiv e-prints, page
arXiv:2201.06642, January.

Agarwal, S. and Sureka, A. (2017). Characterizing lin-
guistic attributes for automatic classification of in-
tent based racist/radicalized posts on tumblr micro-
blogging website. CoRR, abs/1701.04931.

Akin, A. (2019). Zemberek.
Aulamo, M., Sulubacak, U., Virpioja, S., and Tiede-

mann, J. (2020). OpusTools and parallel corpus
diagnostics. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 3782–
3789, Marseille, France, May. European Language
Resources Association.

Basile, V., Bosco, C., Fersini, E., Nozza, D., Patti, V.,
Rangel Pardo, F. M., Rosso, P., and Sanguinetti, M.
(2019). SemEval-2019 task 5: Multilingual detec-
tion of hate speech against immigrants and women
in Twitter. In Proceedings of the 13th International
Workshop on Semantic Evaluation, pages 54–63,

23

model F1 Precision Recall Accuracy
Baseline LSTM 0.92 0.98 0.86 0.97
BERT 0.93 0.96 0.90 0.98
Electra 0.93 0.96 0.89 0.98
T5 0.90 0.94 0.87 0.97
Sinkaf-LinearSVC 0.30 0.75 0.18 0.85
Sinkaf-BERT 0.48 0.80 0.41 0.83

Table 9: Deep Learning Experimental Results

model mean std
LinearSVC 171.2ms 8.4ms
Baseline LSTM 231.9ms 17.2ms
BERT 5.0sec 121.8ms
Electra 5.1sec 117.1ms
T5 2.9sec 124.2ms

Table 10: Deep Learning Experimental Results

Minneapolis, Minnesota, USA, June. Association
for Computational Linguistics.

Çöltekin, c. (2020). A corpus of turkish offensive
language on social media. In Proceedings of The
12th Language Resources and Evaluation Confer-
ence, pages 6174–6184, Marseille, France.

Chen, Y., Zhou, Y., Zhu, S., and Xu, H. (2012). De-
tecting offensive language in social media to pro-
tect adolescent online safety. In International Con-
ference on Privacy, Security, Risk and Trust and
2012 International Conference on Social Comput-
ing, IEEE, pages 71–80, 09.

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares,
F., Schwenk, H., and Bengio, Y. (2014). Learn-
ing phrase representations using RNN encoder-
decoder for statistical machine translation. CoRR,
abs/1406.1078.

Chollet, F. et al. (2015). Keras.
Clark, K., Luong, M., Le, Q. V., and Manning,

C. D. (2020). ELECTRA: pre-training text encoders
as discriminators rather than generators. CoRR,
abs/2003.10555.

Davidson, T., Warmsley, D., Macy, M., and Weber, I.
(2017). Automated hate speech detection and the
problem of offensive language. In Proceedings of
ICWSM, 03.

Devlin, J., Chang, M., Lee, K., and Toutanova, K.
(2018). BERT: pre-training of deep bidirectional
transformers for language understanding. CoRR,
abs/1810.04805.

Çelik, A. and Yıldırım, B. (2020). Turkish profanity
detection enhanced by artificial intelligence. In 2020
28th Signal Processing and Communications Appli-
cations Conference (SIU), pages 1–4.

Ibrohim, M. O. and Budi, I. (2018). A dataset and pre-

liminaries study for abusive language detection in in-
donesian social media. Procedia Computer Science,
135:222–229. The 3rd International Conference on
Computer Science and Computational Intelligence
(ICCSCI 2018) : Empowering Smart Technology in
Digital Era for a Better Life.

Kingma, D. P. and Ba, J. (2015). Adam: A method
for stochastic optimization. In Yoshua Bengio et al.,
editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings.

Kumar, R., Reganti, A. N., Bhatia, A., and Mahesh-
wari, T. (2018). Aggression-annotated corpus of
Hindi-English code-mixed data. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan, May. European Language Resources Associ-
ation (ELRA).

Osman Tunçelli, Burak Özdemir, H. O. (2019). Turk-
ishstemmer.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang,
S., Matena, M., Zhou, Y., Li, W., and Liu, P. J.
(2019). Exploring the limits of transfer learn-
ing with a unified text-to-text transformer. CoRR,
abs/1910.10683.

Song, K., Tan, X., Qin, T., Lu, J., and Liu, T. (2019).
MASS: masked sequence to sequence pre-training
for language generation. CoRR, abs/1905.02450.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polo-
sukhin, I. (2017). Attention is all you need. CoRR,
abs/1706.03762.

Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S.,
Farra, N., and Kumar, R. (2019). Semeval-2019 task
6: Identifying and categorizing offensive language
in social media (offenseval). In Proceedings of the
13th International Workshop on Semantic Evalua-
tion, pages 75–86.

Zampieri, M., Nakov, P., Rosenthal, S., Atanasova, P.,
Karadzhov, G., Mubarak, H., Derczynski, L., Pite-
nis, Z., and Çöltekin, a. (2020). Semeval-2020 task
12: Multilingual offensive language identification in
social media (offenseval 2020). In Proceedings of
the 14th International Workshop on Semantic Eval-
uation.

24

8. Language Resource References
M. Yusuf Sarıgöz. (2021). monatis/tqp: V0.1 (v0.1)

Turkish Question Paraphrasing dataset. Zenodo,
ISLRN https://doi.org/10.5281/zenodo.47198011.

	Introduction
	Data Collection
	Labeling Process
	Corpus Statistics

	Data Preprocessing
	Vector Representation of Text Input
	Feature Selection & Evaluation Metrics

	Classical Machine Learning Experiments
	Effect of Morphological Processes
	Effect of Vectorization
	ML Experimental Results

	Deep Learning Methods
	Baseline LSTM Model
	Transformer Models
	BERT
	Electra

	T5
	Experimental Results

	Conclusion
	Bibliographical References
	Language Resource References

