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Abstract
As part of the PSST challenge, we explore how data augmentations, data sources, and model size affect phoneme transcription
accuracy on speech produced by individuals with aphasia. We evaluate model performance in terms of feature error rate
(FER) and phoneme error rate (PER). We find that data augmentations techniques, such as pitch shift, improve model
performance. Additionally, increasing the size of the model decreases FER and PER. Our experiments also show that adding
manually-transcribed speech from non-aphasic speakers (TIMIT) improves performance when Room Impulse Response is
used to augment the data. The best performing model combines aphasic and non-aphasic data and has a 21.0% PER and a
9.2% FER, a relative improvement of 9.8% compared to the baseline model on the primary outcome measurement. We show
that data augmentation, larger model size, and additional non-aphasic data sources can be helpful in improving automatic
phoneme recognition models for people with aphasia.

Keywords: aphasia, phoneme transcription, wav2vec 2.0, speech, phonemes, data augmentation, speech data augmen-
tation

1. Introduction
Aphasia is a dysfunction of the ability to understand
or produce language caused by damage to brain re-
gions used for speech (Damasio, 1992). A common,
broad distinction made in classifying different forms of
aphasia is between fluent and non-fluent aphasia (Fey-
ereisen et al., 1991). While those with fluent aphasias,
such as Wernicke’s aphasia, are typically able to pro-
duce syntactically and phonetically well-formed utter-
ances, non-fluent aphasias such as Broca’s aphasia and
transcortical motor aphasia are characterized by diffi-
culties in selecting and ordering phonemes and forming
syntactically complex utterances. However, while most
clinicians use fluency classifications in their diagnoses,
the distinction is not well-defined (Gordon, 1998), and
there is evidence that even so-called fluent aphasias in-
volve errors in phoneme production (Blumstein et al.,
1980; Kurowski and Blumstein, 2016; Vijayan and
Gandour, 1995; Holloman and Drummond, 1991), pos-
sibly as a result of impaired acoustic-phonological con-
trol (Robson et al., 2012).
This phenomenon of inserting, deleting or substituting
phonemes is known as phonemic paraphasia. Exam-
ples of this based on a related yet distinct clinical pop-
ulation with similar symptomatology include lat for
bat, or dake for drake. The errors are concentrated
on nouns and verbs, and occur evenly on vowels, sin-
gle consonants, and consonant clusters (Dalton et al.,
2018). For consonants, erroneous productions most
commonly differ from the target phoneme by a sin-
gle phonetic feature, though errors containing multiple
phonetic feature differences occur as well. Substitution
errors occur more commonly than insertion or deletion

* Equal contribution.

errors. These unintended phoneme substitutions are be-
lieved to be caused by a cascading activation of a target
and a competitor phonetic segment with a speech out-
put showing properties of both the target and competi-
tor phonemes (Kurowski and Blumstein, 2016).

Several studies have shown that reliable phonemic an-
notation can be beneficial in the diagnosis of apha-
sia, and its distinction from acquired apraxia of
speech (Cunningham et al., 2016), with phoneme dis-
tortion error rates being lower for patients with phone-
mic paraphasia. Error profiles can also be used as
an indicator for the possibility of remediation of these
phonological errors, as individuals displaying phono-
logical errors display less improvement than individ-
uals displaying motoric errors on a repetition train-
ing task (Buchwald et al., 2017). Finally, phonemic
transcriptions are an important component in the de-
velopment of individualized intervention plans for pa-
tients with aphasia (Abel et al., 2007). The ability
to automatically transcribe the speech of aphasic pa-
tients would allow for a richer profile of data for each
individual with less burden on the clinician. Auto-
matic speech recognition (ASR) has been proposed as
a valuable tool for developing effective speech ther-
apy interventions (Jamal et al., 2017), but achieving
robust, high-accuracy ASR for aphasic speech remains
a challenge. Conventional ASR systems struggle with
aphasic speech because of the irregularities of aphasic
speech, so aphasiatic ASR systems needs to be trained
specifically on aphasic speech.

In this paper we explore how speech data augmenta-
tions, data sources and model parameters can be opti-
mized to create a robust, high accuracy phoneme tran-
scription model for aphasic speech. We hope to give
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the reader an intuition about the steps involved in the
creation of such a model with the aim of describing our
work in such detail that it can be easily reproduced.

1.1. Phoneme Feature Vectors
The goal of the Post-Stroke Speech Transcription
(PSST) challenge is to create accurate automatic tran-
scriptions of phonemes produced by speakers with
aphasia. To this end, we use phonemic feature vectors
in order to more precisely quantify the degree to which
a produced phoneme differs from a target phoneme. A
phoneme feature vector maps phonemes to their articu-
latory correlates (Chomsky and Halle, 1968). The fea-
tures correspond to aspects such as vocal tract cavity
configurations, place and manner of articulation, glot-
tal states of sounds, and tongue body positions. A
value of [+] for a given feature indicates that the fea-
ture is present, [-] indicates that it is absent, and [0]
indicates that a phoneme is unmarked with respect to
that feature (i.e., the feature is not relevant for defin-
ing the phoneme). For example, the consonant /f/ is
[- voice] while the consonant /v/ is [+ voice]. Fea-
ture error rate (FER) allows for a more fine-grained
analysis of errors in aphasic speech, penalizing errors
that sound more similar to the target less severely, in
contrast to phoneme error rate (PER), which does not
indicate how dissimilar a produced phoneme is from
a target phoneme and treats all incorrect productions
equally.

1.2. Models for Aphasia Prediction
Recently, Self Supervised Learning (SSL) has attracted
a lot of interest in all data modalities because of the
high cost of annotation of data; models like BERT (De-
vlin et al., 2019), SimCLR (Chen et al., 2020b) have
shown the ability to learn in a self supervised setting,
either by predicting the next token or by contrastive
learning. SSL is especially useful in the audio modal-
ity, mainly because of the presence of an abundance
of unannotated audio data on the internet. With re-
cent advances in deep learning, architectures like Hu-
BERT (Hsu et al., 2021) and wav2vec 2.0 (Baevski et
al., 2020) have shown results on par with supervised
learning methods while reducing the overhead of gath-
ering annotated data. In this work, we explore wav2vec
2.0 Base and Large models with various data augmen-
tation methodologies to transfer the speech recognition
knowledge of the pre-trained model to speech gener-
ated by a person with aphasia.

1.3. Data Augmentation
Many deep learning pipelines incorporate data aug-
mentation as an important technique to achieve state-
of-the-art results (Chen et al., 2020a). It is known to
improve generalisation and learn translation invariance,
which is useful for the models to learn the underlying
structure of data instead of specific aspects of the train-
ing samples, resulting in better performance (Worrall
et al., 2017). It has shown-state-of-the-art results in
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Figure 1: A sample from PSST dataset

different modalities such as images (Krizhevsky et al.,
2012) and text (Feng et al., 2021). Data augmentation
has also been applied successfully in the audio modal-
ity, resulting in major improvement in speech classifi-
cation and speech recognition (Tak et al., 2022). In this
paper we augment the audio data in the waveform do-
main, giving us more training samples while maintain-
ing the i.i.d assumption of the empirical data samples.

2. Data
2.1. Datasets
In our experiments we explored how combining and
augmenting data could help improve our predictions.
We explored how training on the PSST, TIMIT, and
Common Voice datasets affected model performance.
Data statistics are summarised in Table 1.

2.1.1. PSST
The PSST challenge dataset consists of a subset of the
AphasiaBank data (MacWhinney et al., 2011) anno-
tated with manually transcribed phonemes and made
available through the python package psst-data (Gale et
al., 2022). The data consists of 2298 utterances in the
training dataset, 341 utterances in the validation dataset
and 652 utterances in the test dataset. A sample from
the dataset is visualised in Figure 1. Speakers with sev-
eral different types of aphasia, as categorized by the
Western Aphasia Battery (WAB) (Risser and Spreen,
1985), were represented in the training dataset. Of
the 73 speakers, 26 had anomic aphasia, 18 had con-
duction aphasia, 18 had Broca’s aphasia, 8 had Wer-
nicke’s aphasia, 2 had transcortical motor aphasia, and
one speaker was classified as not aphasic based on their
WAB results.

2.1.2. TIMIT
TIMIT (Garofolo et al., 1993) is the most commonly
used dataset for phoneme recognition, as it is one of
the few datasets available with phoneme labels (Lopes
and Perdigao, 2011). Although TIMIT, like the PSST
data, uses a phoneme set based on ARPAbet, it is based
on a revised version. While, for the most part, there is a
simple mapping to the version of ARPAbet used in the
PSST data, there are three items1 that do not map ex-
actly. To avoid introducing imprecision into the train-
ing data, we elected to choose only segments that did

1dx (flap), nx (nasal flap), and q (glottal stop).
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Figure 2: Effect of data augmentation in the waveform

not include these three items; as the number of seg-
ments was quite low, we also drew from the test set. In
total, 1414 segments were used (1016 from train, 398
from test)2.

2.1.3. Common Voice
Common Voice is a crowdsourced dataset of speakers
of different languages. We used a subset of the En-
glish Common Voice with automatically added ARPA-
phonemes using the open source python g2p package.3

Dataset Number of
segments

Manually
transcribed

Audio
(mins.)

PSST 2298 Yes 166
TIMIT 1414 Yes 64
Common Voice 15777 No 1559

Table 1: Dataset overview

2.2. Data Augmentation
We used the open source audiomentations library4 to
augment the PSST data as well as other datasets used
in training. In our data augmentation we strove both
to augment the available samples of the PSST Dataset
to increase their number still keeping the dataset bal-
anced and similar to the original PSST dataset, and to
induce the noisy artefacts of PSST dataset into TIMIT.
Figure 2 shows the effect of different type of waveform
augmentation on the waveform of a sample audio and
Figure 3 shows the effect of the same sample in the mel
spectrogram domain.

2A list of IDs used, along with a fine-tuned model, is
included in https://huggingface.co/jimregan/
psst-partial-timit.

3https://pypi.org/project/g2p-en/
4https://github.com/iver56/
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Figure 3: Effect of data augmentation in mel spectrogram

2.2.1. Gaussian noise
Though seemingly paradoxical, adding noise to the
data acts as regularization and improves generaliza-
tion (Bishop, 1995). Gaussian noise is a common
data augmentation: at each time a datapoint is exposed
to the model a stochastic noise sampled from a stan-
dard Gaussian N (0, 1) is added to it making it differ-
ent. Noise amplitude σ is a hyperparameter uniformly
distributed over the range σ ∼ U(0.005, 0.015). The
newly generated samples after augmentation can be
represented as:

x(t) = x(t) + σ ×N (0, 1)

The effect of this data augmentation is visible in Fig-
ure 2a for the waveform and Figure 3a for the mel spec-
trogram.

2.2.2. Time stretch
Time stretch is a data augmentation where the audio file
is either sped up or slowed down without affecting the
pitch. In theory this would improve generalization by
making the model more independent of speaking rate.
Generally γ is the stretch factor, if γ > 1 then the speed
of the audio is increased and if γ < 1 then the speed
of the audio is reduced. The stretch factor is uniformly
distributed over γ ∼ U(0.8, 1.25). The augmentation
results of this transformation on the original waveform
can be seen in Figure 2c for the waveform and in Fig-
ure 3c for the mel spectrogram.

2.2.3. Pitch shift
We use pitch shift to vary the pitch of the signal. This
improves generalization by helping learn a latent space
independent of fundamental frequency. Pitch shift
modifies the pitch of the audio sample either by raising
or lowering the pitch while keeping the duration of the
audio unchanged (Salamon and Bello, 2017). It is, in
some ways, an inverse of the time stretch augmentation.
We shifted individual samples by n semitones without

https://huggingface.co/jimregan/psst-partial-timit
https://huggingface.co/jimregan/psst-partial-timit
https://pypi.org/project/g2p-en/
https://github.com/iver56/audiomentations
https://github.com/iver56/audiomentations
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changing the tempo where n ∼ U(−4, 4). Figure 2b
and Figure 3b visualise the effect of this transforma-
tion in both the waveform and the mel spectrogram.

2.2.4. Voice Conversion
We used the official open source implementation5

of (Chou et al., 2019) to do one-shot voice conver-
sion of audio files to improve the variability in data and
make the data more speaker independent. They use a
Variational Auto Encoder (Kingma and Welling, 2013)
as a generative model with two encoders, where one is
a context encoder while the other is a speaker encoder,
with the use of Instance Normalization (IN) (Ulyanov
et al., 2016) and Adaptive Instance Normalization
(AdaIN) (Huang and Belongie, 2017) they synthesise
the text conditioned on the target speaker representa-
tion. In our experiments, for all of the audio files of
each speaker, the target audio file was chosen at ran-
dom from all other speakers and was augmented to their
speaker characteristics. This gave us varied samples of
the same utterance but with different speaker character-
istics. Since this method looks for voiced segments in
the mel domain, output from these are shorter than oth-
ers, but for visualisation only we have padded it with
Gaussian noise to make it visually similar to 2.2.1. This
padding was not used while training the model. The ef-
fect of this can be seen in both the waveform Figure 2d
and the mel spectrogram Figure 3d.

2.2.5. Room Impulse Response
Room Impulse Response (RIR) augmentation is a tech-
nique for simulating room acoustics (Habets, 2006) by
adding artificial reverberation. Given the variability
in the acoustics of the recording environments of the
AphasiaBank dataset, RIR might make it possible to
bridge the acoustic gap when using othe datasets. The
audiomentations library uses a wave-based technique,
where recordings with the reverberance qualities of a
particular room have been isolated and applied to the
input using a convolution operation. We used two sets
of publicly available impulse responses: EchoThief6

and the MIT McDermott dataset7, from which a record-
ing is selected at random for application to the utter-
ance.

2.3. Data Processing
All data was processed to work with the fairseq (Ott et
al., 2019) framework in order to standardize the train-
ing process.

2.4. Model Architecture
For training we chose to fine-tune wav2vec 2.0. We ex-
perimented with Base and Large model. Although later

5https://github.com/jjery2243542/
adaptive_voice_conversion

6http://tulrich.com/recording/ir_
capture/

7https://mcdermottlab.mit.edu/Reverb/
IR_Survey.html

wav2vec 2.0
Model Base Large

Transformer blocks 12 24
Attention heads 8 16
Model dimension 768 1024
Inner dimension 3072 4096

Table 2: wav2vec 2.0 model variants and hyperparam-
eters.

models like Large (LV-60k) has shown better results we
wanted to focus our experiments on data augmentations
and how they affect model performance.

2.4.1. Wav2vec 2.0
wav2vec 2.0 (W2V2) is an architecture proposed in
Baevski et al. (2020) that uses self-supervision in the
audio domain to create audio vectors that can be used
in training. The model consists of a multi-layer con-
volution feature encoder that takes as input raw audio
and outputs latent speech representations. These latent
representations are then fed to a Transformer to build
representations that has the ability to capture informa-
tion from the whole length of the sequence. This is
done through a masking function in the audio domain.
For our training, we chose to focus on the wav2vec 2.0
base model and the wav2vec 2.0 large model, to make
a comparison of how model size affects and interacts
with other techniques used while training. The model
hyperparameters are mentioned in Table 2.

2.4.2. Fine-tuning
Pre-trained base models are fine-tuned for phoneme
(and speech) recognition by adding a linear projection
on top of the model, used to classify into the number of
tokens found in the phoneme vocabulary (42).

2.4.3. Language Model
Language modelling refers to the use of various statisti-
cal and probabilistic methods to estimate the probabil-
ity of a sequence of words. Formally, we can formulate
the task of language modelling as

p(x1, . . . , xt) = p(x1).p(x2|x1). . . . .p(xt|x<t)

=

i=t∑
i=1

p(xi|xi−1, . . . , x1)

where xi are the tokens in a sentence.

2.5. Evaluation
2.5.1. Phoneme Error Rate
Phoneme error rate is the number of phoneme errors
(edits, insertions, and substitutions) divided by the
number of phonemes in the reference transcript, cal-
culated using the Levenshtein distance (Levenshtein,
1966).

https://github.com/jjery2243542/adaptive_voice_conversion
https://github.com/jjery2243542/adaptive_voice_conversion
http://tulrich.com/recording/ir_capture/
http://tulrich.com/recording/ir_capture/
https://mcdermottlab.mit.edu/Reverb/IR_Survey.html
https://mcdermottlab.mit.edu/Reverb/IR_Survey.html


66

PER = 100 ∗ #Edits

#Phones

2.5.2. Feature Error Rate
Feature error rate is the number of phoneme feature er-
rors where phonemes which differ by fewer features
are considered more correct. Transcribed phonemes
are converted into phoneme feature vectors in order to
calculate the feature error rate using the Levenshtein
distance.

FER = 100 ∗ #Edits

#Features

3. Experiment
In order to improve reproducibility we kept the hyper-
parameters constant using the same parameters as those
used in the psst-baseline training. 8 We trained in a
warm state manner with 4000 warm updates keeping
learning rate at 5e-05 using the Adam optimizer to train
the model.
Table 3 contains a summary of the best performing
models.

3.1. Base Models
Two pre-trained wav2vec 2.0 models were used as base
models for all experiments: “wav2vec 2.0 Base” and
“wav2vec 2.0 Large” are the “No finetuning” versions
of the models, as found in the fairseq GitHub reposi-
tory9.

3.2. PSST Augmentations
We augmented the PSST dataset with augmentations
defined in Section 2.2. We used Gaussian noise as a
data augmentation for the base model and pitch shift
and time stretch independently as augmentations for
two large models. There was a 50% probability of the
data being augmented, with the augmented dataset dou-
bling in size compared to the non-augmented data with
on average 25% augmented data, 25% overlapped data
and 50% consisting of the original data.

3.3. PSST with Augmented TIMIT
As speech recognition models can often be sensitive to
differences in acoustic conditions; it is not automati-
cally the case that additional data will lead to an im-
provement when there is a difference in recording con-
ditions. Because of the mismatch of recording con-
ditions between TIMIT, which was recorded in clean
conditions, and the PSST data, which was not, we ex-
perimented with augmenting the TIMIT data alone, to
attempt to artificially match the PSST data. As well
as Gaussian noise, pitch shift, and time stretch, we
also added RIR to match the dry, studio conditions of
TIMIT to PSST.

8https://github.com/PSST-Challenge/
psstbaseline

9https://github.com/pytorch/fairseq/
tree/main/examples/wav2vec/

3.4. Language Model
To explore the effect of the language model, we aug-
mented the transcription data of the combined PSST
and TIMIT datasets with the CMU Pronouncing Dic-
tionary (CMUdict)10, across configurations of 4-, 5-,
and 6-gram models11. We used two versions of the
PSST+TIMIT data: unmodified, and with silence to-
kens removed (and the spoken noise token, in the case
of PSST); to emulate the silence between words with
CMUdict, we used the unmodified entries, entries with
a silence token added at the start, added at the end,
and added at both start and end, with an additional “all
silences” configuration which combined all configura-
tions.

4. Results
The results of our experiments are summarised in Ta-
ble 3 and Figure 4. While evaluating on the PSST val-
idation dataset we found improved scores for several
techniques.
While some training heuristics–such as adding an n-
gram language model and using data augmentation
such as Voice Cloning, Gaussian Noise and Time-
stretch–had results comparable to the baseline trained
on PSST dataset with wav2vec 2.0 (FER: 10.2, PER:
22.2), other configurations lead to improved results.
The wav2vec 2.0 large model trained on the PSST data
had a relative improvement of 5.86% for PER (20.9 vs
22.2) and 3.92% for FER (9.8 vs 10.2).
The wav2vec 2.0 large model trained on the PSST data
with pitch shift improved the scores by 4.5% for PER
(21.2 vs 22.2) and 6.86% for FER (9.5 vs 10.2).
The wav2vec 2.0 large model trained on the PSST data
with pitch shift + TIMIT improved the scores by 4.5%
for PER (21.2 vs 22.2) and 7.3% for FER (9.7 vs 10.2).
The wav2vec 2.0 base model trained on the PSST data
+ TIMIT with RIR achieved the best score of the var-
ious combinations of augmentations described in sec-
tion 3.3, improving the scores by 1.8% for PER (21.8
vs 22.2) and 5.88% for FER (9.6 vs 10.2).
The wav2vec 2.0 large model trained on the PSST data
+ TIMIT with RIR achieved the best overall score, im-
proving the results by 5.41% for PER (21.0 vs 22.2)
and 9.8% for FER (9.2 vs 10.2).
As part of our experiments we also reproduced the
baseline model. Our reproduced baseline had lower
scores than the PSST Baseline by 1.96% for PER (10.4
vs 10.2) and 4.05% for FER (23.1 vs 22.2). The differ-
ence could be caused by initial weight randomization.
We choose to compare all our models to the original
baseline model.

10https://github.com/cmusphinx/cmudict
116 is the maximum number of n-grams supported by the

default configuration of the language model library used by
the PSST Challenge scripts.

https://github.com/PSST-Challenge/psstbaseline
https://github.com/PSST-Challenge/psstbaseline
https://github.com/pytorch/fairseq/tree/main/examples/wav2vec/
https://github.com/pytorch/fairseq/tree/main/examples/wav2vec/
https://github.com/cmusphinx/cmudict
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Name Data Model FER PER
PSST Baseline PSST Base 10.2% 22.2%
Reproduced Baseline PSST Base 10.4% 23.1%
Common Voice Common Voice phonemes Base 61.8% 91.6%
Baseline + TIMIT RIR PSST Partial TIMIT with RIR Base 9.6% 21.8%
Gaussian Noise (DA) PSST with Gaussian Noise Base 9.9% 22.9%
W2V2 Large PSST Large 9.8% 20.9%
W2V2 Large Voice Clone PSST + Voice clone Large 10.3% 22.7%
W2V2 Large Time-Stretch PSST Time Stretch Large 10.0% 21.2%
W2V2 Large Pitch-Shift PSST Pitch Shift Large 9.5% 21.2%
W2V2 Pitch-Shift + TIMIT RIR PSST Pitch Shift + TIMIT RIR Large 9.7% 21.2%
W2V2 Large + TIMIT RIR PSST + TIMIT RIR Large 9.2% 21.0%

Table 3: Experimentation results with different combinations of model and augmentations

Furthermore, we evaluated training on Common Voice
and TIMIT without PSST, finding that these models
were not successful at aphasic phoneme recognition
without fine-tuning on aphasic speech. We also con-
tinued fine-tuning Common Voice on PSST with poor
results. The poor results on Common Voice could be
related to the automatic phoneme transcriptions which
might not have been comparable to manually tran-
scribed phonemes.
Several models showed improvements in PER without
improvements in FER. One hypothesis is that this is
due to the manner of calculation of FER versus PER
per phoneme, PER has a binary outcome whereas FER
is averaged over 20 features hence leading to less vari-
ation in the score for FER.

4.1. Language Models
The best performing language model, 5-gram with si-
lences removed from PSST and TIMIT, but with CMU-
dict data with silence tokens added at the end, achieved
PER of 22.1%, compared with the baseline of PSST
and nonaugmented TIMIT without a language model
(PER 22.5%). No difference in FER was observed with
any language model configuration. A plot of the results
of this language model and a selection of the results
from section 3.3 can be viewed in figure 4.

4.2. Model Availability
The models are available for download on Hugging-
face12.

5. Discussion
In this paper, we looked at the challenges of the cur-
rent Automatic Speech Recognition (ASR) techniques
for the low-resource task of aphasic phoneme recogni-
tion, and devised heuristics for improving the phoneme
transcriptions.
Training with a larger baseline model was one of the
most straightforward ways to improve performance. In
general, all the models trained with wav2vec 2.0 Large
outperformed similar models trained with wav2vec

12https://huggingface.co/birgermoell
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provements in PER.

2.0 Base. This is in line with the current trend in
deep learning, where larger self-supervised transformer
models outperform the state of the art by keeping archi-
tecture similar while increasing model size. However,
training on larger models has several drawbacks, one
being increased training and inference time, another
being the need for specialised GPUs that might be ex-
pensive to acquire or use. If computation is a bottle-
neck, it might be sensible to start by training a smaller
model with different parameters and later train a larger
model after good parameters have been found that im-
prove performance.
Data augmentations on PSST was another technique
that improved the performance. Pitch shift was the
most useful augmentation technique when outside data
sources were not used, with models using pitch shift
showing good results especially on FER. Pitch shift
transformation could be viewed as a transformation of

https://huggingface.co/birgermoell


68

the vocal tract length and vocal fold of the speaker,
which could help the model to generalise the differ-
ence between phonemic features and make the model
more speaker independent. Given more time, experi-
ences with pitch shift parameters might have the poten-
tial to improve accuracy further, in line with previous
research (Salamon and Bello, 2017).
While working with data augmentation it is important
that the underlying structure of the data is preserved,
i.e., data augmentation should aim to help the model
learn by augmenting features in the dataset, but not
change the features so much that the underlying signal
in the data gets corrupted. Voice cloning was an exper-
iment where the data augmentation might have failed
in this regard and the augmented samples had, in gen-
eral, a lower pitch than the originals. When working
with data augmentation, we believe that an inspection
of the augmented data itself is a good first step in de-
termining if the data will be useful for training. Here,
common sense reasoning by a person knowledgeable
in the field should suffice. If the data sounds reason-
able, it has the potential to be helpful for improving
model performance. This might seem obvious, but in
the paradigm of large training sets and large models we
still want to emphasize the importance of keeping a hu-
man in the loop.
A limitation in our work is the small size of the PSST
dataset and the modest improvements we made com-
pared to the baseline. The small dataset size makes it
harder to determine how well our models have gener-
alised. When working with deep learning models it is
always hard to determine how parameters interact and
we think it is sensible to view this work as a way to
understand data augmentation in the aphasic phoneme
domain rather than seeing it as a recipe for achieving
state of the art.
An interesting scientific question is: to what degree
do aphasic phonemic speech models improve by train-
ing on different data sources consisting of non-aphasic
speech?
We found that training a model only on Common Voice
or TIMIT was not sufficient to get a working model.
This shows that at least in our experiment some part
of the data needs to be aphasic. Furthermore, we con-
tinued fine-tuning on PSST from the model trained on
Common Voice with limited results. This might be be-
cause Common Voice was automatically transcribed,
but it may be related to the order of training.
In our experiment we found that the best performing
model trained on TIMIT + PSST is close in perfor-
mance to the best performing model trained only on
PSST data. Here, data augmentations on TIMIT using
RIR to make the data sound similar to PSST clearly
helped performance by bringing the datasets more into
alignment.
In theory, a similarly performing model that is trained
on both aphasic and non-aphasic speech is preferable,
as it has the potential to generalise better. Since our

best performing model uses both aphasic and non-
aphasic speech, a fair conclusion is that non-aphasic
speech prepared in the proper format is a data source
augmentation worth exploring when working with
aphasic data.
A well-functioning phonetic and feature error predic-
tion model for aphasia appears a promising way for-
ward in order to build automated electronic tools for
aphasia recovery.
Improved understanding of aphasia through automated
tools for testing might also help determine which indi-
viduals are most helped by specific interventions.

6. Conclusion
In conclusion, our paper has shown that data augmen-
tation, larger model size and additional non-aphasic
data sources can be helpful in improving automatic
phoneme recognition models for people with aphasia.
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A. Experimental details
A.1. TIMIT augmentations
Table 4 contains the results of the augmentations using
the 64 minutes of TIMIT (see subsection 2.1.2, above).
The name of the augmentation in the table corresponds
with the branch name of the git repository13.

Augmentation FER PER
unaugmented 10.2% 22.5%
gaussian 10.0% 22.1%
pitchshift 9.6% 22.9%
rir 9.6% 21.8%
timestretch 10.1% 22.8%
gaussian-rir 10.0% 23.4%
pitchshift-gaussian 9.9% 22.9%
pitchshift-rir 9.9% 22.8%
timestretch-gaussian 10.2% 22.8%
timestretch-pitchshift 9.8% 22.0%
timestretch-rir 9.7% 22.2%
pitchshift-gaussian-rir 10.1% 23.5%
timestretch-gaussian-rir 9.7% 22.3%
timestretch-pitchshift-gaussian 10.2% 22.9%
timestretch-pitchshift-rir 10.2% 22.5%
timestretch-pitchshift-gaussian-rir 10.9% 24.1%

Table 4: Results of combining various augmentations
of TIMIT with the unaugmented PSST data.

A.2. Language model experiments
Table 5 contains the results of all permutations of
the experiments with language models (see subsec-
tion 2.4.3, above). The models are contained in the

13https://huggingface.co/jimregan/
psst-partial-timit

same git repository as the TIMIT augmentations; the
README accompanying the repository contains a
mapping of branches to the experiment.

n-gram FER PER
Baseline + TIMIT – 10.2% 22.5%

All silences
4 10.5% 23.0%
5 10.5% 22.6%
6 10.3% 22.3%

No silences
4 10.3% 22.6%
5 10.2% 22.2%
6 10.2% 22.4%

PSST and TIMIT without silence

CMUdict-end
4 10.3% 22.6%
5 10.2% 22.1%
6 10.2% 22.3%

CMUdict-start
4 10.4% 22.6%
5 10.3% 22.4%
6 10.3% 22.3%

CMUdict-both
4 10.4% 22.7%
5 10.4% 22.3%
6 10.3% 22.3%

Unmodified PSST and TIMIT

Unmodified CMUdict
4 10.3% 22.8%
5 10.3% 22.4%
6 10.2% 22.4%

CMUdict-end
4 10.3% 22.7%
5 10.2% 22.2%
6 10.2% 22.3%

CMUdict-start
4 10.5% 22.8%
5 10.4% 22.5%
6 10.3% 22.4%

CMUdict-both
4 10.5% 22.8%
5 10.4% 22.4%
6 10.4% 22.4%

Table 5: Results of different language model configu-
rations.

https://huggingface.co/jimregan/psst-partial-timit
https://huggingface.co/jimregan/psst-partial-timit
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