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Abstract
An assistive robot that could communicate with dementia patients would have great social benefit. An assistive robot Pepper
has been designed to administer Referential Communication Tasks (RCTs) to human subjects without dementia as a step
towards an agent to administer RCTs to dementia patients, potentially for earlier diagnosis. Currently, Pepper follows a rigid
RCT script, which affects the user experience. We aim to replace Pepper’s RCT script with a dialogue management approach,
to generate more natural interactions with RCT subjects. A Partially Observable Markov Decision Process (POMDP) dialogue
policy will be trained using reinforcement learning, using simulated dialogue partners. This paper describes two RCT datasets
and a methodology for their use in creating a database that the simulators can access for training the POMDP policies.
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1. Introduction
An assistive robot for dementia care that could com-
municate with dementia patients would have great so-
cial benefit, given the high incidence of Alzheimer’s
disease and similar kinds of cognitive decline in the el-
derly (AA, 2020), in combination with the scarcity of
caregivers to provide one-on-one companionship and
assistance (GCOA, 2021). The ultimate goal of our
work is to develop a Partially Observable Markov De-
cision Process (POMDP) policy for an artificial agent
to engage in dialogues with elderly patients at differ-
ent stages of cognitive decline, to provide assistance,
companionship or facilitate early detection. As an ini-
tial step towards our larger goal, we aim to develop a
POMDP policy that can engage in Referential Commu-
nication Tasks (RCTs; see below) with Alzheimer’s pa-
tients. The POMDP dialogue policy will be trained us-
ing Reinforcement learning (RL), which requires many
thousands of training episodes (trial dialogues). RL of
policies for dialogue systems, as well as for robotics
and other applications, typically utilizes simulators in
place of interactions with the real world. This paper de-
scribes two datasets we will harvest to populate a sim-
ulator database for training a variety of RCT dialogue
policies.
Referential Communication Tasks (RCTs), which have
many applications, pertain to referential skills, mean-
ing the way people introduce and refer back to concrete
or abstract objects, and the way they interpret others’
referring expressions. When humans engage in a di-
alogue, they can mention and then refer back to dif-
ferent people, objects, locations, plans, complex ideas,
and so on. Referring expressions are the noun phrase
descriptions, pronouns, and other linguistic devices we
use to indicate what entities we are talking about. RCTs
have been used to study how people choose referen-

Figure 1: Pepper administering an RCT; inset shows
Pepper’s screen in detail. The subject describes one of
the four unfamiliar images that appear in the four cor-
ners. Pepper must infer the correct image from the sub-
ject’s verbal description. For the selected image, iden-
tified in the inset with a blue box around it, the subject
said ”the picture looks like some bent over grass.”

tial expressions, e.g., for navigating a map (HCRC,
1993), or as part of studies of turn-taking behavior
(Hirschberg et al., 2021), complex scene discrimination
(Manuvinakurike et al., 2016), or to identify countries
on the world map (Paetzel et al., 2020). RCTs have
also been used to investigate communication impair-
ments in children (Bishop and Adams, 1991) or de-
mentia patients (Feyereisen et al., 2007). Typically, an
RCT involves a visual stimulus that is fully visible only
to one participant, who must describe it to the other di-
alogue participant in a way that leads to the identifica-
tion of the correct object. RCTs is used to assess the
ability to provide and understand specific information
of both ordinary people and people with dementia in
our experiment.
To illustrate an RCT from one of our two datasets, Fig-
ure 1 shows a Pepper robot administering an RCT to
a subject with no cognitive deficit. Pepper’s screen
presents four unfamiliar images to the subject (see in-
set), while Pepper instructs the subject to provide a ver-
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Scripted Pepper Future POMDP Version
Pepper 1 Pepper shows four images on its screen to Pepper 1 Pepper shows four images on its screen to

the subject, one of which is boxed. the subject, one of which is boxed.
Student 1: There are three lines, there is a triangle, a Student 1: There are three lines, there is a triangle, a

circle and a C at the end of the line. circle and a C at the end of the line.
Pepper 2: Give me a second to figure it out. Pepper 2: Give me a second to figure it out.
Pepper 3: Can you give me more details? Pepper 3: Does it have any other features?
Student 3: It looks like fifteen. Student 3: It looks like fifteen.
Pepper 4: Give me a second to figure it out. Pepper 4: It’s between the two at the top.
Pepper 5: Can you give me more details? Pepper 5: Can you describe it again?
Student 5: One has a triangle at the bottom, five has Student 5: It almost looks like cave art of an animal,

a C at the top and a circle at the bottom. with one round hoof and one triangular hoof.
Pepper 4: Give me a second to figure it out. Pepper 4: Give me a second.
Pepper 5: I think I know the one you are trying to Pepper 5: Got it. Thanks for your patient explanation.

describe. I’m ready for the next one. Let us move on to the next one.

Figure 2: The current scripted version of Pepper administering an RCT, and the envisioned dialogue-enabled
version of Pepper administering an RCT.

bal description of one of the four images. The main
purpose of this first data collection is to study how use
of Pepper to administer an RCT affects subjects’ atti-
tudes about robots and the RCT. For this data collec-
tion, Pepper followed a rigid script, as in Figure 2. In
future work, we aim to carry out a similar RCT where
we replace Pepper’s script with a POMDP dialogue
policy, for more natural interactions with subjects. This
dataset and a second one are described in section 3.
Briefly, the second dataset consists of RCTs adminis-
tered by a human researcher to elderly patients, includ-
ing patients with dementia. We will utilize these two
datasets to construct a database of simulator turns-at-
talk from three populations engaging in similar RCTs:
young individuals with no known cognitive decline, el-
derly patients with no known dementia, and elderly pa-
tients with Alzheimer’s.

POMDP dialogue policies can be used for dialogue
agents where there is a defined goal to achieve during
the dialogue, such as to complete an RCT interview,
and where dialogue states are not fully observable. The
interpretations of the dialogue partners’ intents are only
partially observable from the actual words used, and
any other relevant behavior, given that human language
is highly ambiguous. In reinforcement learning of a
POMDP dialogue policy, a fully trained policy will
choose each next communicative action a given its cur-
rent belief state s, based on its expectation of how an

action taken in a given state progresses the dialogue to-
wards the agent’s goal.

Construction of a simulator for reinforcement learning
of a dialogue policy requires a method to sample
different outcomes (successor states of s) for agent’s
communicative actions a taken in s. For example,
to simulate the way subjects might respond to Pep-
per when Pepper displays the image shown in the
inset of Figure 1, the initial state s would include a
representation of the full display, a set of available
actions for Pepper to choose among {a1, . . . , an},
and candidate simulator responses to each action.
For example, assume we want to test the hypothesis
that a policy could be learned for Pepper to respond
to a dialogue partner who seems to experience a
moment of confusion by selecting an encouragement
utterance (e.g., ”You seem a bit tired, let
me know when you are ready for the
next picture”) instead of immediately moving
to the next RCT item (e.g., ”Okay, let’s do
the next picture”). During the policy training,
the simulator could be designed to choose between
a relevant response, such as the one illustrated in
Figure 1, or a response that suggests a moment of
confusion, such as ”I forgot what I’m supposed to say
now.” Our method for providing a simulated dialogue
partner with this type of functionality involves creation
of a database of response types where the values of the
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attributes of entries in a response table make it possible
to control for different response types, during policy
training.
The remainder of the paper presents related work, de-
scribes the two RCT datasets, and presents our method-
ology for constructing simulated dialogue partners so
that we can train a range of RCT dialogue policies.

2. Related Work
Simulation has been utilized for training dialogue poli-
cies for well over two decades (Schatzmann et al.,
2006) Eckert et al. (1997) proposed a statistical sim-
ulator permitting off-line testing and evaluation in an
automated fashion. Scheffler and Young (2000) pro-
posed a graph-based model which produce a proba-
bilistic simulation of mixed initiative dialogue with
recognition and understanding errors. Georgila et al.
(2005) designed a Markov Model for use with Infor-
mation State Update dialogue systems. Cuayáhuitl et
al. (2005) used a network of hidden Markov mod-
els (HMMs) to predict system and dialogue partner in-
tentions, where a statistical language model predicts
sequences of goals, and the component HMMs pre-
dict sequences of intentions. For robustness to imper-
fect automatic speech recognition, Schatzmann et al.
(2007b) simulated speech recognition errors at random
levels, using generative models that conditioned words
on the sets of dialogue actions expected from peo-
ple, with conditioning probabilities estimated from cor-
pora (Schatzmann et al., 2007b). Later work demon-
strated bootstrapped policy learning in the absence of
domain-specific corpora, using more complex simula-
tors to maintain a dialogue state tuple across simulator
turns, consisting of the dialogue goal plus a stack-based
agenda to track progress towards the goal (Schatzmann
et al., 2007a). Georgila et al. (2010) used simulated
users to train dialogue policies for older adults, even
though older adults have more complex and diverse in-
teraction. Agenda-based simulators are still used, e.g.,
in the movie domain (Li et al., 2016). Asri et al. (2016)
proposed a sequence-to-sequence model in the restau-
rant search domain which takes into account the en-
tire dialogue history. Shah et al. (2018) used end-
to-end neural models to build an agenda-based simu-
lator. Kreyssig et al. (2018) introduced the Neural
User Simulator which trains on corpora to learn how
to generate natural language. Shi et al. (2019) de-
veloped a rule-based simulator in training reinforce-
ment learning based dialog systems. An alternative to
simulation has been explored in incremental dialogue
policy learning in the context of fast-paced dialogue
games (Manuvinakurike et al., 2017).
We have experience training an adaptive POMDP pol-
icy for learning through communication using a sim-
ulated dialogue partner that accesses a multi-modal
database to look up answers to questions about games,
including visual demonstrations of board moves or
ways to win (Zare et al., 2022). We refer to this pol-

(a) Sorting phase. (b) Testing phase.

Figure 3: RCT Stimuli.

icy as 3GA because it has 3-way grounding in world
knowledge, game knowledge, and the discourse con-
text, and it is adaptive. Because the partners answer the
agent’s questions, rather than asking the agent for help
to complete a task, there is no need for an agenda, or an
HMM to predict the dialogue partner’s intentions. Dur-
ing training, we controlled for the completeness of in-
formation in the simulator’s answers, so that the trained
policy could adapt to different individuals who provide
more or less complete information.

3. Two Datasets of RCT Interactions
The two datasets discussed here are from human-robot
RCTs with student participants (HR RCT St), as illus-
trated in Figure 1, and from human-human RCTs with
elderly patients (HH RCT EP). Initially, we will use
the human-robot dataset (HR RCT St) to construct a
simulator for training a dialogue policy πHRI RCT to in-
vest the Pepper robot illustrated in Figure 1 with more
natural dialogue capabilities, and eliminate the rigidity
of a script. The HH RCT EP data dataset will be used
to train a dialogue policy πHRI EP for interaction with
elderly patients. The purpose of this policy is to adapt
to the cognitive state of the patient, analogous to (Yuan
et al., 2021a; Yuan et al., 2021b), as described in sec-
tion 5. Based on insights from these initial policies, we
will later train a dialogue policy πHRI RCT EP that can
administer RCTs to elderly patients with and without
dementia. In short, access to different RCT datasets
provides us with the means to design and populate a
database for multiple simulators.
The human-robot dataset (HR RCT St) was collected
to assess how comfortable humans would be with a
Pepper-based RCT. The data consists of 98 interactions
between Pepper and human subjects, where each RCT
interaction consisted of a sorting phase to help partic-
ipants acclimate to Pepper and orient to the RCT, fol-
lowed by a testing phase. Each interaction was approx-
imately 15-20 minutes in length. The subjects’ audio
was recorded for each interaction. The audio has been
transcribed using automatic speech recognition (ASR),
and will later be manually corrected.1

During an initial sorting phase to familiarize the sub-
jects with the task, Pepper’s screen displayed 12 un-
familiar images to the subject, as in Figure 3a. Pep-

1The HR RCT St dataset can be made public once the
transcriptions have been corrected.
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per would describe one of the images for the subject to
select. The subject had three chances to pick the cor-
rect image, where each next description from Pepper
would have more detail, before Pepper would move on
to the next image. During the testing phase it was Pep-
per’s turn to guess a target image from four that would
be displayed to the subject, as in Figure 3b, with the
subject providing a spoken description. CLIP, a pre-
trained image captioning model (Radford et al., 2021),
was used to compute probabilities for the four images
on the screen, given the subject’s description. If one
image probability was sufficiently high, Pepper would
instruct the subject to move to the next display. Oth-
erwise, Pepper would prompt the subject to give more
details. After three failed tries, Pepper would move to
the next display. The testing phase had 24 trials, with
different target images on each trial.
The human-human (HH RCT EP) dataset comprised
manual transcripts from 12 older adults with mild-
to-moderate AD and 16 cognitively healthy older
adults (Liu et al., 2022).2 The experiment also included
a sorting phase and a testing phase. Each subject’s in-
teraction had an approximate duration of two hours. In
the sorting phase, the subject was given a set of 12 ab-
stract images (Figure 3a) in a random order and the
experimenter was given the same 12 images in a cer-
tain order. The experimenter described each of the 12
images to the subject and the subject rearranged the im-
age cards accordingly. The sorting task was repeated at
least four rounds. If subjects made errors, they repeated
the task up to nine rounds until successfully sorting the
images without errors for two consecutive rounds. Two
experimenters carried out the testing phase together.
One was the same experimenter from the sorting phase
(A), and the other one was a new experimenter (B).
The two experimenters and the subject were all shown
the same four images, three that had been included in
the sorting phase and one new image. For the sub-
ject only, one of the four images was highlighted by a
black box, as in Figure 3b. The subject was instructed
to describe the target image to the knowledgeable ex-
perimenter (A) or the naive experimenter (B). The ap-
pointed experimenter marked the targeted image and
the other experimenter proceeded to the next trial. The
testing phase had 24 trials in a set: 12 trials referred to
the familiar images and 12 trials referred to the unfa-
miliar new images.

4. POMDP Dialogue Policies
A Markov Decision Process (MDP) models an agent’s
step-by-step decision making for situations where each
decision can have different outcomes with different
probabilities. MDPs and their variants simplify the de-
cision making task by adopting the Markov assumption
that each action is conditioned only on the current state,

2The experimental protocol was approved by the Inter-
nal Review Board at UTK under the number: UTK IRB-21-
06631-XM.

not on any prior states. Formally, an MDP is a 5-tuple
< S,A, T,R, s0 >, where S is the set of states, A
is the set of agent actions, T is the transition model
consisting of a probability distribution over successor
states si+1 given an action ai taken in si, R is a re-
ward function for the outcome of each action, and s0 is
the initial state. An MDP dialogue agent’s communica-
tive actions are chosen by a trained policy π that maps
dialogue states to optimal actions. In a Partially Ob-
servable MDP (POMDP), states are not fully observed.
For dialogue policies, S consists of the agent’s belief
states that represent the agent’s uncertain interpreta-
tions of a human dialogue partner’s utterances, A rep-
resents communicative actions available to the agent,
and the reward function R depends on the application.
In our recent work, it is a trade-off between a small
cost per turn and metrics that encourage the agent to
achieve its dialogue goal, such as to learn a board game,
using a measure of the inrease in the total game knowl-
edge (Zare et al., 2022). The turn cost leads to policies
where the agent ends the dialogue when the expected
penalty outweighs the potential gain. This contrasts
with a small turn reward used in (Manuvinakurike et
al., 2017), where the goal was for the agent to find an
image described by the user, and therefore to give the
agent more time. For the RCT task, we will experi-
ment with different reward functions, such as number
of RCT steps completed, and possibly signs of fatigue
from the human subject.
We apply Q-learning to learn the policy. The Bellman
equation shown below illustrates that a Q function from
a state s to the optimal action a sums over the cumu-
lative reward of all possible outcomes s′ of a, where
the cumulative reward is a product of the probability
of each outcome s′ with the sum of the immediate re-
ward R for that action, and the discounted Q function
applied to each successive state, using the discount γ.
The best action is the one with the maximum Q value.

Q(s, a) =
∑
s′

P (s′|s, a)[R(s, a, s′) + γ max
a′

Q(s′, a′)]

The role of a simulated dialogue partner in training a
dialogue policy is to simulate a wide range of partner
turns that might ever occur, so that during training, the
policy can explore many possible communicative ac-
tion choices, to learn a good Q function. The policy
cannot be learned from static transcripts: any one tran-
script represents actual turn sequences that occurred,
rather than all possible turn sequences that might oc-
cur. In contrast, simulator databases can be constructed
by harvesting transcripts.
To illustrate using the πHRIRCT policy, the immediate
reward for a communicative action a taken by Pepper
in state s would be computed after the simulator re-
sponds to the agent, which in turn would contribute to
the discounted cumulative sum for the entire dialogue.
Say we assume that a human subject will tend towards
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more helpful descriptions if Pepper thanks the subject
each time a single description is sufficiently clear for
the CLIP model to disambiguate, and if Pepper ex-
presses confusion otherwise. At every turn exchange,
the reward includes a small penalty to encourage effi-
ciency. After Pepper picks a correct image, there would
be also be a positive reward. The simulator can be used
to train the policy when to use a ”thank you” commu-
nicative action versus a ”confusion” communicative ac-
tion through thousands of trials that use the full array of
images in the experiment. Note that simulator turns do
not need to be identical to turns humans might take, or
even realistic. Ai and Litman (2011) showed that given
a simulator constrained to a range of behaviors, gener-
ating those behaviors randomly leads to better perfor-
mance. Rather, they need representations that human
turns might be mapped to, say by a natural language
understanding module.

5. Simulated Dialogue Partners
The preceding sections have explained how a Pepper
robot can administer an RCT (section 1), described two
datasets of RCT sessions (section 3), and outlined Q-
learning for POMDP dialogue policies to illustrate the
need for simulating many trial dialogues (section 4).
In section 2, we have also seen that a wide range of
simulator architectures have been used, from those that
maintain a stack-based agenda based on the simula-
tor goal for task-oriented systems (Schatzmann et al.,
2007a; Li et al., 2016), use of HMMs to predict se-
quences of dialogue-partner intentions, and turn-by-
turn look-up of response sets for our 3GA agent that
asks questions. Here we put it all together with a dis-
cussion of how to design and populate a database to
simulate dialogue partners for the RCT tasks. We first
present our previous work on a database for simulators
to train an adaptive POMDP that can learn board games
through multi-modal communication with people (Zare
et al., 2022). Then we describe how we will construct
an RCT database by analogy with this prior work.

5.1. The 3GA Simulator Database
We previously developed an adaptive POMDP dialogue
policy called 3GA, for learning board games from peo-
ple through multimodal communication. Figure 4 illus-
trates an excerpt of a 3GA dialogue to learn the Quarto
board game, which is played on a 4-by-4 grid, using 24
pieces in two colors (12 each), differentiated by two
heights, two shapes, and hollow or solid. The 3GA
policy was trained on three n-in-a-row board games,
so it could adapt to the game. It was also trained to
adapt to how informative the dialogue partner’s an-
swers tended to be. A dialogue partner who responds to
questions with ”I don’t know”, or with only partial in-
formation, has lower rates of information sharing. The
fully trained 3GA policy would ask more open-ended
questions (e.g., ”where else can I put this piece?”) with
partners who had high degrees of information sharing.

3GA-Q1 RequestNewWinCondition()
NL: Can you show me an example of a way to win?

A1
3GA-Q2 SameContext(D1), Confirm(translate(col0))
NL: Would it still count if the pieces were placed

down column one instead of column four?
A2 Affirm()
NL: Yeah, it would.

Figure 4: Excerpt of a dialogue where 3GA is learning
Quarto, a 4-in-a-row game, showing the natural lan-
guage (NL) below each MRL expression. These an-
swers are produced by a simulator, but 3GA also com-
municates well with people, using a text-based inter-
face.

With partners who shared less information, 3GA asked
more yes-no questions, as in question 3GA-Q2 in Fig-
ure 4. Our experiments showed that the strategy of
adapting to partner’s information sharing led to more
knowledge gain about a game (Zare et al., 2022).
The dialogue excerpt in Figure 4 shows a sequence
of two questions from the policy (3GA-Q1 and 3GA-
Q2) and the corresponding answers (A1 and A2), the
first of which is a demonstration of a way to win the
Quarto game. To win, four pieces in a row must share
at least one property; here all pieces are tall, repre-
sented as solid colors rather than hashed. Apart from
the first answer (A1), where the dialogue partner dis-
plays a game board to 3GA, each turn from 3GA or
the dialogue partner is shown both in a meaning repre-
sentation language (MRL) that we developed for com-
municating in unambiguous expressions about board
games (e.g., RequestNewWinCondition()), and
in natural language. For natural language understand-
ing and generation, we trained encoder-decoder models
on a corpus of dialogues where the MRL had English
translations. We collected a corpus of 960 dialogues
where students trained in our MRL added colloquial
English translations of all MRL turns to simulated dia-
logues.
During training, the 3GA policy was exposed to any of
the three games, and to different levels of information
sharing.3 A simulator would randomly select the game,
and a level of information sharing. To answer ques-
tions generated by the policy, the simulator accessed
a database. For the simulator to generate responses to
the questions shown in Figure 4, it accessed a static
database that stored all MRL questions associated with
a given game, an exhaustive set of possible MRL an-
swers to each question (including Unknown), and for
each MRL answer, multiple possible translations of the

3We refer the reader to our previous work for further de-
tails.
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Action Script
elicit next description Press record when you are ready.
inform processing description Give me a second to figure it out.
inform understood I think I know the one you are trying to describe.
inform move on Let us move on to the next one.
request more detail Can you give me more details?
end session Thank you for completing the test!

Figure 5: Pepper’s scripted communicative actions.

MRL into English text. Requests for demonstrations
of game boards were indexed with images showing all
possible game boards. In addition, the simulator ac-
cessed a dynamic database in which it stored answers
it had used already within a given dialogue.
Initial versions of 3GA were MDP policies, in which
the entire simulated dialogue would be carried out in
MRL. To train POMDP policies, after the simulator
accessed an MRL answer, it would also randomly se-
lect an English text version. To interpret the English
answer, 3GA utilized an encoder-decoder natural lan-
guage understanding module that produces a probabil-
ity distribution over possible MRLs (see above). The
MRL with the highest probability translation and its
probability would then be used.

5.2. RCT Databases
The preceding section described a database we used for
a simulator to train MDP and POMDP dialogue poli-
cies in which the dialogue policy goal was for the agent
to learn board games from people. To train dialogue
policies for our Pepper robot in RCTs with different
subjects, we will construct an analogous database. As
discussed in section 3, we aim to develop simulators to
train RCT policies with different behaviors. Here we
discuss the database formats required for simulators for
two types of policies.
The current Pepper script for the first dataset described
above (HR RCT St) has the six atomic actions shown
in Figure 5. A POMDP dialogue policy to replace this
script could be trained that could use a natural lan-
guage generation sequence-to-sequence model, as in
our previous work (Zare et al., 2022), to produce al-
ternative verbalizations for the same dialogue action.
The advantage of a policy instead of a script would be
to extend the range of communicative actions, and the
states in which they could be selected, so as to influ-
ence subjects to produce better descriptions. As noted
in an earlier section, subjects could be thanked when
the first description leads Pepper (via the CLIP model)
to pick the correct image. Another way to influence
subjects descriptions would be to replace the single ac-
tion request more detail with a larger range of
actions, given an initial description that is not under-
stood, depending on different dialogue states, such as
different probability distributions from CLIP over the
four possibilities. If two images were equally probable,
Pepper could say That rules two out, but I’m still un-

Difficulty Example
Easy Would you like some tea?
Moderate What would you like to drink?
Difficult What do you think about this tea?

Figure 6: Question difficulty

sure. During training, the input to the simulator would
consist of a representation of the current state of the di-
alogue, and the dialogue action chosen by the policy.
The database for generating the simulator responses
would require tables for each image that contain al-
ternative natural language descriptions harvested from
the previous data collection. We would develop an au-
tomated procedure to sort each set of descriptions by
various criteria, such as length in words and concrete-
ness of the vocabulary, as well as ability of CLIP to
discriminate the image from the various combinations
of other images, so that the simulator could select new
descriptions based on the dialogue state. To continue
our example, if Pepper is confused between two im-
ages, one of which is the target image, the input to the
simulator could include this information, and the sim-
ulator could be designed to produce a description that
is highly ranked as a descriptor of the target and very
improbable as a descriptor of the confounding image.
In our previous work to apply Q-learning for interac-
tions in patients with dementia (Yuan et al., 2021a),
we investigated a simulator to encourage a policy to
adaptively respond to the simulator with easy, moderate
or difficult questions, depending on different simulator
settings to reflect different degrees of dementia. The
simulator could be set to have different rates of pro-
ducing relevant versus irrelevant versus non-responses
to questions from the agent. We found that an adap-
tive policy could be trained to follow up with difficult,
moderate and easy questions. Figure 6 illustrates three
categories of question difficulty. Yes/No questions tend
to be very specific, can be answered in the affirmative,
negative, or unknown. The moderate question is open-
ended, thus more difficult, but elicits a response that
is very concrete. In contrast, the difficult open-ended
question elicits an opinion that requires reflection and
reasoning. The data we collected from the dementia pa-
tients in RCT tasks can be used test whether a similar
policy could be trained that utilizes a database of actual
responses to RCT questions from elderly and dementia
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patients, categorized by relevance, and other properties
of the utterance, such as coherence.

6. Conclusion
The development of artificial agents to interact with de-
mentia patients is a challenging task. Referential com-
munication tasks (RCTs) have been used to assess de-
mentia, but in practice, administering these such tasks
is labor intensive. Our work addresses how to develop
an agent that can administer RCT tasks to human sub-
jects from youthful versus elderly populations, the lat-
ter includes individuals with dementia. Many tech-
niques are available to create simulated dialogue part-
ners that can be used to train MDP and POMDP dia-
logue policies. We have illustrated how two data from
our RCT datasets could be used to train a range of di-
alogue policies to enhance an existing robot that ad-
ministers RCTs using a scripted dialogue, and replace
the script with more naturalistic RCT interviews. Our
future work will test a range of simulators, investigate
policy performance, and ultimately test the trained poli-
cies with humans.
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