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Message from the General Chair

Welcome to the LREC2022 Workshop on "Resources and ProcessIng of linguistic, para-linguistic
and extra-linguistic Data from people with various forms of cognitive/psychiatric/developmental
impairments" (RaPID-4). This volume documents the Proceedings of the RaPID-4 Workshop held
on Saturday, June 25th, 2022, as part of the 13th edition of the LREC 2022 conference (International
Conference on Language Resources and Evaluation). In this version of RaPID we also had the
opportunity to incorporate the PSST share task on "Post-Stroke Speech Transcription" (task: "Automated
Phoneme Recognition of Anomic Speech", see here https://psst.study for more details and below for an
outline).

RaPID-4 aims to be an interdisciplinary forum for researchers to share information, findings, methods,
models and experience on the collection and processing of data produced by people with various forms
of mental, cognitive, neuropsychiatric, or neurodegenerative impairments, such as aphasia, dementia,
autism, bipolar disorder, Parkinson’s disease or schizophrenia. Particularly, the workshop’s focus is
on creation, processing and application of data resources from individuals at various stages of these
impairments and with varying degrees of severity. Creation of resources includes e.g. annotation,
description, analysis and interpretation of linguistic, paralinguistc and extra-linguistic data (such
as spontaneous spoken language, transcripts, eyetracking measurements, wearable and sensor data,
etc). Processing is done to identify, extract, correlate, evaluate and disseminate various linguistic or
multimodal phenotypes and measurements, which then can be applied to aid diagnosis, monitor the
progression or predict individuals at risk.

A central aim of the workshop is to facilitate the study of the relationships among various levels
of linguistic, paralinguistic and extra-linguistic observations (e.g., acoustic measures; phonological,
syntactic and semantic features; eye tracking measurements; sensors, signs and multimodal signals).
Submission of papers are invited in all of the aforementioned areas, particularly emphasizing
multidisciplinary aspects of processing such data and the interplay between clinical/nursing/medical
sciences, language technology, computational linguistics, natural language processing (NLP) and
computer science. Processing of such data can be used to identify, extract, correlate, evaluate and
disseminate various linguistic or multimodal phenotypes and measurements, which then can be applied to
aid diagnosis, monitor the progression or predict individuals at risk. The workshop will act as a stimulus
for the discussion of several ongoing research questions driving current and future research by bringing
together researchers from various research communities.

The workshop solicited papers describing original research; and preferably describing substantial and
completed work, but also focused on a contribution, a negative result, an interesting application nugget,
a software package, a small, or work in progress. The workshop acted as a stimulus for the discussion
of several ongoing research questions driving current and future research and challenges by bringing
together researchers from various research communities. We are grateful to our Program Committee
members for their hard work in reading and evaluating all submissions. At the end, each submission
received between 3 to 5 reviews, which helped the authors revise and improve their papers accordingly.

There were 12 contributions accepted for the workshop. Keynote speakers were: Dr. Athanasios Tsanas,
the Usher Institute, University of Edinburgh, UK, and Associate Professor Visar Berisha, Arizona State
University, USA.

Workshop URL: https://spraakbanken.gu.se/en/rapid-2022.
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The PSST Challenge

The PSST Challenge is a collaboration between Oregon Health and Science University (OHSU) and
Portland State University (PSU). A project supported via a grant from the National Institute on Deafness
and Other Communication Disorders NIH (R01-DC015999-04S1), the purpose of which is to promote
the use of clinical datasets of aphasic speech by the mainstream machine learning community. The
original dataset comes via the AphasiaBank project (https://aphasia.talkbank.org, R01-DC008524), and
access to the data is governed by the AphasiaBank project’s protocols.

Anomia, or word-finding difficulty, is one of the most prominent cognitive sequelae of stroke, affecting
2.5-4 million stroke survivors in the US alone. Its ensuing communication difficulties can have a major
impact on the ability of a person to produce words and can affect their daily activities and health-related
quality of life. Existing diagnostic and assessment tools are laborious to administer, and efforts to
automate their administration often require detailed phonemic transcription by clinical staff, limiting
their use in practice.

Historically, automated speech recognition (ASR) technologies have struggled to adequately handle
disordered speech of the form produced by individuals with anomia. Furthermore, the most clinically-
interesting features of speech mispronunciations, neologisms, etc. are precisely those that ASR finds
the most challenging. Recent years, have seen major advances in the state of the art in ASR, with
architectures such as wav2vec 2.0 achieving notable decreases in phoneme error rate; however, these
results have been on speech from individuals without neurologic impairment.

The PSST Challenge will engage the ASR community in translating the latest computational techniques
to the task of high-accuracy automated phoneme recognition in disordered speech, which has applications
in many different clinical domains. Participants, after completing a data use agreement, will have access
to a unique dataset for phonemic ASR, consisting of a set of audio recordings of English-speaking
individuals with anomia undergoing assessments, as well as a new set of high-quality annotations
including phonemic transcriptions.

The primary task will be high-accuracy automated phoneme recognition of disordered speech, with
a second task focused on classifying audio samples into clinically-relevant categories. No clinical
background is necessary, and we encourage participation by people with all levels of computational
expertise.

Contacts for the task: Steven Bedrick (bedricks@ohsu.edu) or Gerasimos Fergadiotis (gf3@pdx.edu).
Shared Task URL: https://psst.study.
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Topics of Interest

The topics of interest for the workshop session include but are not limited to:

• Infrastructure for the domain: building, adapting and availability of linguistic resources, data sets
and tools

• Methods and protocols for data collection

• Acquisition and combination of novel data samples; including digital biomarkers, continuous
streaming, monitoring and aggregation of measurements; as well as self-reported behavioral and/or
physiological and activity data

• Guidelines, protocols, annotation schemas, annotation tools

• Addressing the challenges of representation, including dealing with data sparsity and
dimensionality issues, feature combination from different sources and modalities

• Domain adaptation of NLP/AI tools

• Acoustic/phonetic/phonologic, syntactic, semantic, pragmatic and discourse analysis of data;
including modeling of perception (e.g. eye-movement measures of reading) and production
processes (e.g. recording of the writing process by means of digital pens, keystroke logging etc.);
use of gestures accompanying speech and non-linguistic behavior

• Use of wearable, vision, and ambient sensors or their fusion for detection of cognitive disabilities
or decline

• (Novel) Modeling and deep / machine learning approaches for early diagnostics, prediction,
monitoring, classification etc. of various cognitive, psychiatric and/or developmental impairments

• Evaluation of the significance of features for screening and diagnostics

• Evaluation of tools, systems, components, metrics, applications and technologies including
methodologies making use of NLP; e.g. for predicting clinical scores from (linguistic) features

• Digital platforms/technologies for cognitive assessment and brain training

• Evaluation, comparison and critical assessment of resources

• Involvement of medical/clinical professionals and patients

• Ethical, gender bias and legal questions in research with human data in the domain, and how they
can be handled

• Deployment, assessment platforms and services as well as innovative mining approaches that can
be translated to practical/clinical applications

• Experiences, lessons learned and the future of NLP/AI in the area
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The effect of eHealth training on dysarthric speech
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Abstract
In the current study on dysarthric speech, we investigate the effect of web-based treatment, and whether there is a difference
between content and function words. Since the goal of the treatment is to speak louder, without raising pitch, we focus on
acoustic-phonetic features related to loudness, intensity, and pitch. We analyse dysarthric read speech from eight speakers at
word level. We also investigate whether there are differences between content words and function words, and whether the
treatment has a different impact on these two classes of words. Linear Mixed-Effects models show that there are differences
before and after treatment, that for some speakers the treatment has the desired effect, but not for all speakers, and that the
effect of the treatment on words for the two categories does not seem to be different. To a large extent, our results are in line
with the results of a previous study in which the same data were analyzed in a different way, i.e. by studying intelligibility scores.

Keywords: eHealth, Parkinson’s Disease, dysarthric speech, POS tagging, function and content words

1. Introduction
The automatic acoustic-phonetic analysis of atypical
speech is a promising pathway in pathological speech
assessment. Automatically identifying the most rele-
vant characteristics of pathological speech could lead
to a reliable, accurate and non-invasive assessment
method, able to distinguish typical speech from atypi-
cal speech, as well as measuring the extent of speech
problems and diagnosing different types of atypical
speech.
We focus in this study on dysarthria caused by Parkin-
son’s disease (PD). PD is a chronic and progressive
neurodegenerative disorder that significantly affects
the use and cost of societal resources. More than
90% of patients with PD suffer from speech disor-
ders (De Swart et al., 2003), collectively referred as
dysarthria. Such disorders are typically characterized
by increased acoustic noise, reduced voice intensity,
harsh and breathy voice quality, lack of emotional ex-
pression and tonal changes, disturbances of speech rate,
imprecise articulation of consonants, involuntary intro-
duction of pauses, rapid repetitions of words and sylla-
bles, and sudden deceleration or acceleration in speech
(Yang et al., 2020). These symptoms often have serious
repercussions on speech intelligibility and daily com-
munication. Moreover, some of them, such as the lack
of emotional expression, characterize dysarthria caused
by PD, and do not arise in other types of dysarthria.
Speech training with a serious game was given to eight
PD patients. Especially focusing on acoustic features
related to loudness, intensity and pitch, the game aimed
to improve the intelligibility of people with dysarthric
speech. Ganzeboom et al. (2022) collected human rat-
ings of the speakers’ intelligibility scores of utterances

in a pre and post test and concluded that there was
a significant speaker-specific improvement. Further-
more, the positive effect of a web-based treatment is
thoroughly investigated and confirmed in Ganzeboom
et al. (2022). We aimed to investigate its positive ef-
fects on acoustic-phonetic features related to loudness,
intensity, and pitch.
In this study, we investigated whether this improvement
is directly reflected in the acoustic features of loudness,
intensity and pitch at the word level, using NLP pars-
ing tools. We also wanted to explore the differences of
these three types of acoustic features among two global
word categories, namely content words and function
words.

2. Background
2.1. Treasure Hunters: a web-based

treatment
The serious speech training game Treasure Hunters
was developed in the project CHASING: ’CHAl-
lenging Speech training In Neurological patients by
interactive Gaming’. Additional information about
CHASING project is given in (Ganzeboom et al.,
2022) (http://waag.org/project/chasing,
http://hstrik.ruhosting.nl/CHASING).
The Treasure Hunters game is based on the Pitch
Limiting Voice Treatment (PLVT), where the goal is
to improve speech intelligibility by speaking louder,
without raising the pitch. Treasure Hunters gives
automatic feedback on the users’ voice loudness and
pitch, encouraging them to speak loud and low.
The target group for the Treasure Hunters game are
older patients suffering from dysarthria due to PD. Pre-
vious studies by Ganzeboom et al. (Ganzeboom et al.,
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2018) (Ganzeboom et al., 2022) showed that the effect
of the game on intelligibility varied between speakers.
For some speakers the game seemed to have to desired
effect, while for others this is not the case.

2.2. Loudness, intensity and pitch
PLVT is the standard treatment in dysarthria therapy in
the Netherlands (Kalf et al., 2011). In this treatment,
patients are encouraged to speak ‘loud and low’, im-
plying that they should try to increase voice intensity,
while avoiding to raise their pitch, which easily hap-
pens when intensity increases. Increasing voice inten-
sity often also results in better articulation. The pur-
pose of avoiding the side effect of pitch increase dis-
tinguishes PLVT from Lee Silverman Voice Treatment
(LSVT) (Ramig et al., 1995), which focuses only on in-
creasing intensity. Therefore, in the current study, we
focus on loudness, intensity, and pitch.
To study the effects of this therapy, we selected fea-
tures from eGeMAPS (Eyben et al., 2015) and features
extracted with our own Praat script that are related to
loudness, intensity, and pitch. Note that the entire set
of acoustic features was already analyzed at the utter-
ance level by van Bemmel et al. (2021) for the same
dysarthric speakers. Several individual features related
to loudness and pitch were found to be relevant in clas-
sifying before and after treatment recordings. Here, in-
stead of at utterance level, we want to analyse those
features at word level. Moreover, we want to identify
more general factors or components in the many fea-
tures related to intensity, loudness, and pitch.

2.3. Content and function words
One of the aims of this study is to investigate whether
there are meaningful acoustic-phonetic features for the
distinction between content words and function words.
These two classes of words are based on syntactic-
semantic criteria. Content words are members of open
word classes with a clear lexical meaning, such as
names, nouns, lexical verbs, adverbs or adjectives.
They are phonologically and morphologically indepen-
dent. Function words belong to closed word classes
that do not carry a full lexical meaning, and determine
the grammatical relations between content words. They
are often phonologically and morphologically depen-
dent, have reduced scrambling possibilities, and usu-
ally have a shorter length and high frequency of occur-
rence.
Importantly, content and function words have been
studied in relation to atypical speech. Several stud-
ies on stuttering (Howell et al., 1999), aphasic speech
(Bird et al., 2002), and amyotrophic lateral sclerosis
(Turner and Tjaden, 2000), observed differences in the
production and perception of these two word classes. In
particular, Turner and Tjaden (2000) focused on acous-
tic differences between content and function words,
finding no statistical difference between healthy and
pathological speech for vowels acoustic features of for-
mants, space area and duration. Their work also high-

lights that these features values were generally larger
for content words and that the difference of vowel space
area for content and function words, although not sta-
tistically relevant, tended to be smaller in pathological
speech than healthy speech. Bird et al. (2002) instead,
studied the production and the comprehension of these
two categories of words, finding discrepancies between
content and function words only for reading tasks, but
not when the imageability was controlled.
To determine how Dutch parts of speech are distributed
among these two categories, a literature study on Dutch
content and function words was carried in order to clas-
sify Dutch POS tags into the two word categories, as
explained in section 3.3.

2.4. Research Questions
1. Does the web-based gaming treatment have an im-
pact at word level with respect to loudness, intensity,
and pitch?
2. (a) Is the impact general or dependent on the
speaker involved, and (b), if speaker dependent, do
loudness, intensity, and pitch values improve in line
with the intelligibility score improvements found in
Ganzeboom et al. (Ganzeboom et al., 2022)?
3. Does the treatment have the same impact on content
and function words?

3. Material and methods
3.1. Data and Participants
The speech data were recorded from eight native Dutch
speakers with Parkinson’s Disease (PD) who under-
went web-based treatment with the “Treasure Hunters”
serious game for speech training (Ganzeboom et al.,
2022). During the four weeks of training the speak-
ers were instructed to speak loud and low, following
the concept of Pitch Limiting Voice Treatment used in
the Treasure Hunters game. Each speaker was recorded
twice, pre-treatment (T2) and four weeks after contin-
uous treatment (T3). During both times, each speaker
was asked to read seven Dutch sentences out loud after
reading it silently for themselves.
We selected all 32 read sentences from the phoneti-
cally balanced story “Papa en Marloes” (11 sentences;
(Van de Weijer and Slis, 1991)) and the text of apple
pie recipes (21 sentences), both used by Ganzeboom
et al. (2022). These sentences vary between 4 and 14
words with a total of 251 words (143 content words,
108 function words).
Table 1 shows general information about the speakers.

3.2. Extracting and POS tagging OTs
Part-of-speech (POS) tags were created for each word
in the orthographic transcriptions (OTs) using Alpino
(Bouma et al., 2000), a dependency parser for Dutch.
The OTs were obtained for each recording through
manual transcription by students at Radboud Univer-
sity. The differences between the standard written text
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Table 1: Speakers’ general data

Speaker Gender Age
(years)

Time since diagnosis
(years)

01 M 73 4.5
02 M 56 8.0
03 M 60 4.5
04 M 63 5.5
05 F 53 9.0
06 M 75 2.0
07 F 67 3.0
08 F 62 3.0

of the prompts and uttered words of the OTs are due
to the intrinsic nature of the read speech. Indeed, read
speech has a syntactic structure rather consistent and
not fragmented, similarly to written language, but at
the same time shares some typical elements of spon-
taneous speech such as stuttering, repetitions, frag-
mented words, filled pauses, elongated vowels and no
punctuation.
By comparing the POS tags of the prompts with the
POS tags of the OTs, it turned out that the absence of
punctuation marks prevented the correct functioning of
Alpino for the OTs. Therefore, a Python code was cre-
ated with the aim of locating and identifying the punc-
tuation of the prompts and reinserting it into the OTs.
To avoid errors, the spot of insertion of the punctuation
was determined by the first three words preceding and
the first three words following the prompt punctuation.
In order to predict the accuracy of the OTs POS tag-
ging, all POS tags of the prompts were manually
checked, and it turned out that out of a total of 252
words, 24 were incorrectly tagged by Alpino. Only
four of these errors concerned the tagging of a content
words instead of a function words or vice versa, while
the others were wrong tags assigned to words belong-
ing to the same word category.

3.3. Words labelling into content words and
function words

The ultimate goal of POS tagging was to label all ut-
tered words as content words and function words. All
POS tags used by Alpino have been matched with an
additional tag indicating the membership to one of the
two global word classes. This step was accomplished
through a Python script.
According to the literature research on Dutch content
words and function words, a model of tags matching
between Alpino POS tags and the two words categories
was created. The matching model, shown in Tables
2 and 3, was designed with the aim of making the
matches compatible with both the POS tags available
and the outcomes of the literature studies.

3.4. Acoustic features, outliers detection,
data normalization

A total of 103 acoustic features were automatically
extracted using Praat (Boersma and Weenik, 2020)

Table 2: Matching model for content words

POS tags Content words

N, SPEC nouns (+ proper nouns)
WW main verbs
ADJ adjectives
BW adverbs with semantic meaning

Table 3: Matching model for function words.
*: + 300 adverbs (adverbial grammatical function)

POS tags Function words

LID determiners (articles, prenominal pronouns)
VNW pronouns
VG conjunctions
VG subordinate conjunctions
TSW interjections
VZ adpositions
TW (cardinal) numerals
WW auxiliary and copula verbs
BW conjunctive adverbs*

and openSMILE (Eyben et al., 2010). The 15 fea-
tures extracted by Praat are duration, the four for-
mants, pitch variance, gravity center and the mean,
minimum, maximum and standard deviation of pitch
and intensity. Using the python package openSMILE,
the 88 extended Geneva Minimalistic Acoustic Pa-
rameter Set (eGeMAPS) (Eyben et al., 2016) features
were extracted. These 103 features were extracted on
word-level after the speech was force aligned using an
in-house forced aligner (http://webservices.
cls.ru.nl). Note that in (van Bemmel et al., 2021)
the same features were extracted with the same method
at phoneme, word and utterance level.
Afterwards, outlier detection was carried out among the
values of the extracted feature. Thus, a percentage of
outliers of about 20% was detected. It turned out that
most outliers were due to a worse quality of the audio
at the end and beginning of recordings.
A further pre-processing step was the data normaliza-
tion. Our data were standardized calculating the z-
scores. Since there were multiple recordings per speak-
ers, it was possible to calculate z-scores per speaker,
thus minimizing the inter-speaker differences and the
identify-confounding (Chaibub Neto et al., 2019).

3.5. Features reduction
From the 103 acoustic features, 24 features relating
to loudness, intensity, and pitch were selected for fur-
ther dimensionality reduction with Principal Compo-
nent Analysis (PCA) (Pearson, 1901). Based on the
Eigenvalue being larger than one, six principal compo-
nents were formed, as shown in Table 4. Three of the
principal components were related to loudness and in-
tensity features (li1, li2, li3), and the other three were
related to formant and pitch features from Praat (F0.1,
F0.2, Ppitch). Inspecting the subset of features grouped
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in each of the six components and the component load-
ings, it was possible to notice that some components
were more representative for loudness, intensity and
pitch than others. Among the principal components re-
lated to loudness and intensity, li1 grouped mean and
higher values of loudness and intensity, li2 grouped
lower values, whereas li3 grouped values expressing
the variation in loudness. Among the principal com-
ponents related to pitch, F0.1 grouped static values of
pitch obtained with eGeMAPS, F0.2 grouped pitch dy-
namic values and range obtained with eGeMAPS, and
Ppitch grouped pitch range and variation obtained with
Praat.
Note that interpretation of principal components is not
as straightforward as interpretation of acoustic features,
as components are a combination of features. However,
we can state that li1 and F0.1 seem to be the most com-
plete and exhaustive components for the representation
of loudness and intensity and pitch respectively. For
this reason, although we have analyzed and reported the
values obtained with all six components, we focused
more on li1 and F0.1.

3.6. Statistical analysis: Linear Mixed
Regression Models

Linear Mixed-Effects Models (lmer; package lme4
(Bates et al., 2007)) in R (R Core Team, 2020) was
used for the statistical analysis, in combination with the
packages lmerTest and SjPlot. The analysis contained
two fixed variables, Time (pre vs. post treatment) and
Wordclass (function vs. content words), plus their in-
teraction. We included three random effects: Speaker,
Word, and Speaker-by-Time. The last effect is a ran-
dom slope that enables the analysis to capture speaker
specific treatment effects. The criterion variables in
these analyses were the scores on the six PCA com-
ponents.

4. Results
4.1. The fixed effects
No significant effects (p<.05) were found for Time or
its interaction with Wordclass for any of the six PCA
components.
The variable Wordclass has a significant effect on the
values of li1, li2, F0.2 and li3. As the boxplots for these
components show, li1 and F0.2 are lower for function
words, while li2 and li3 are larger for function words.
Given the absence of significant interactions between
Wordclass and Time, speakers thus show similar dif-
ferences between content and function words in pre-
and post-treatment.
The boxplots 3 and 2 show the normalized values
of content and function words recorded for the eight
speakers for the components li1 and F0.1.

4.2. The random effects related to Speaker
Inspecting the plots of the random effects, the observa-
tion was made that the component values shown by the

Table 4: PCA groupings obtained with Praat and
eGeMAPS features related to intensity, loudness and
pitch

PC1: li1
loudness sma3 percentile80.0
loudness sma3 amean
intensity max
intensity mean
loudness sma3 pctlrange0-2
loudness sma3 percentile50.0
loudness sma3 meanRisingSlope

PC2: F0.1
F0semitoneFrom27.5Hz sma3nz percentile20.0
F0semitoneFrom27.5Hz sma3nz percentile50.0
F0semitoneFrom27.5Hz sma3nz amean
F0semitoneFrom27.5Hz sma3nz percentile80.0
HNRdBACF sma3nz ameanpitch minpitch mean
pitch min
pitch mean

PC3: li2
loudness sma3 amean
loudness sma3 pctlrange0-2
loudness sma3 percentile50.0
intensity min
loudness sma3 percentile20.0

PC4: F0.2
F0semitoneFrom27.5Hz sma3nz amean
F0semitoneFrom27.5Hz sma3nz percentile80.0
HNRdBACF sma3nz amean
F0semitoneFrom27.5Hz sma3nz pctlrange0-2
F0semitoneFrom27.5Hz sma3nz meanRisingSlope
F0semitoneFrom27.5Hz sma3nz meanFallingSlope
jitterLocal sma3nz amean

PC5: Ppitch
pitch min
pitch maxpitch var
pitch mean

PC6: li3
loudness sma3 meanRisingSlope
loudnessPeaksPerSec
loudness sma3 meanFallingSlope
jitterLocal sma3nz amean

speaker intercepts may differ between speakers. More
interesting are the slopes of Speaker-by-Time.
The slope values of li3 and Ppitch do not deviate from
0 for any speaker, indicating that there is no signifi-
cant difference between pre- and post-treatment for any
speaker. The speaker results of the random slopes of
the other four components can be seen in Table 5. The
“-” symbol indicates a negative slope, meaning that the
value of this component decreased from T2 to T3 for
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Figure 1: Boxplots of the normalized component li1
(relating to loudness and intensity) per Speaker per
WordClass.

Figure 2: Boxplots of the normalized component ıF0.1
(relating to formants) per Speaker per WordClass.

that particular speaker. The “+” indicates a positive
slope, meaning an increase in component value instead.
The confidence interval of specific slopes did not cross
the 0, and those slopes are therefore considered signif-
icant. These slopes are marked in the Table 5 with *s.
Other slopes were too small to be considered signifi-
cant.
Given their component loadings, the li1 and F0.1 com-
ponents are most closely linked to the mean values of
loudness, intensity and pitch. The other principal com-
ponents are related to, e.g., lower values [minimum,
20-percentile] and variation in the feature values. Inter-
preting the outcome of the statistical analyses for these
components is thus more complex, but also less rele-
vant for the current research. We therefore focus on the
li1 and F0.1 components.
Figures 3 and 5 show the normalized values for the
components ıli1 and F0.1 before (T2) and after (T3)
treatment per speaker. Even if the p values of the in-
tercept and the variable Time are not < .05, speaker
03, 05 and 07 show a clear increase for the li1 com-
ponent and decrease or keep approximately stable for
the F0.1 component. Figures 4 and 6 show the slopes
of the random effects (intercept) speaker and Time for
the components li1 and F0.1, respectively. Note that
the left part of Figures 3 and 5 shows the speaker in-
tercept, indicating the between-speaker variance of the
component values, whereas the right part of the figure
shows the speaker slope indicating the treatment effect,

i.e. the difference between the pre and post test per
speaker.
Speakers 01, 02, and 06, had a negative slope for both
li1 and F0.1. For speakers 04, 05, and 07, a positive
slope was found for both li1 and F0.1. Speaker 03 had
a positive slope for li1 but a negative slope for F0.1,
while speaker 08 had the opposite.

Table 5: Random effects on Time(T3). Symbols - and
+ indicate a negative or positive slope. *: |value|> 0.5,
**: |value| > 1, ***: |value| > 1.5.
li3 and Ppitch components are not included since their
values do not deviate from zero.

Speaker F0.1 F0.2 li1 li2
01 - - -*** -*
02 - - - -
03 - - + +
04 + - + +
05 + + + +
06 - + - -
07 + + +** +
08 + - - +

Figure 3: Boxplot of the normalized component li1 (re-
lating to loudness and intensity) per speaker per time
point.

Figure 4: The random effects plot of the component
li1 (relating to loudness and intensity) shown for both
intercept (speaker) and time
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Figure 5: Boxplots of the normalized component F0.1
(relating to formant features) per speaker per time.

Figure 6: The random effects plot of the component
F0.1 (relating to formant features) shown for both
Speaker intercept and Speaker by Time intercept

5. Discussion
5.1. Trend of loudness, intensity, and pitch

compared with intelligibility scores
Our findings are mostly in line with Ganzeboom et
al. (2022)’s results, especially with regards to loud-
ness and intensity. Indeed, speakers 03, 04, 05 and 07,
who increase in intelligibility scores after the treatment
in Ganzeboom et al., show an evident increase of loud-
ness and intensity after the treatment in our research.
On the other hand, speaker 08, seemingly in contradic-
tion with their increase in intelligibility score, does not
show an increase in loudness and intensity after treat-
ment in our results.
With regards to the pitch, no speaker shows an evident
change for the component relating to the Praat pitch
features. However, for the other two components relat-
ing to pitch (F0.1 and F0.2), the differences per speaker
between pre and post treatment recordings also vary.
For speakers 03 and 06, who both improved, F0.1 in-
deed goes down after treatment. However, for speak-
ers 04, 05, 07 and 08, who also improved, the F0.1
seems to increase after treatment. Speaker 01 and 2,
who did not improve in intelligibility, also show a de-
crease in F0.1 and F0.2 scores after treatment. It seems
that pitch is less relevant in the eventual intelligibility
scoring than intensity, and even with some increase in

pitch, a speaker can still be evaluated as more intelligi-
ble after treatment.
The fact that there seem to be multiple significant
speaker results but not for the factor Time could be
the consequence of our small sample size. With only
eight speakers, there are undoubtedly between-speaker
effects that interfere with the Time effect. Addition-
ally, not all speakers profit from the treatment, some-
thing that came out in inspecting the interaction be-
tween speakers and Time.

5.2. Treatment impact on words categories
The two words categories show a clear difference in
intensity as well among each other. Both in T2 and
T3, speakers use greater intensity when pronouncing
content words, according to component li1. Com-
ponent li2 gives us an unexpected result, showing
larger values for function words. This is probably
due to the aforementioned nature of the two different
components. Li2 indeed, is less representative of the
loudness and intensity compared to li1, since it groups
five acoustic features that mainly indicate low values
of loudness and intensity, while li1 groups features
carrying mean and higher values. Even the pitch is
slightly higher in the content words according to F0.2,
while for F0.1 the pitch of content and function words
is approximately the same.

However, according to our data, there is no particu-
lar difference between the treatmen change shown by
the content words treatment and the treatment change
shown by the function words. Therefore, the web-
based treatment seems to impact the two groups of
words equally. Since all speakers show significant dif-
ferences between the two word classes (function and
content) in four out of six components, these natural
variations between pronunciation of function and con-
tent words seems to be unchanged by treatment. In-
deed, speech that does not present any tonal variance
results is in fact monotonous and unnatural. The fact
that the treatment does not flatten the acoustic differ-
ences between the two word categories is a positive ef-
fect and contributes to corroborate Ganzeboom’s intel-
ligibility scores, since some speakers manage both to
increase loudness and intensity without changing the
pitch, and to keep speech spontaneous and natural even
after the treatment.
It is interesting, however, to notice that Turner and
Tjaden (2000), comparing healthy speech with speech
from speakers with mild to moderate dysarthria associ-
ated with amyotrophic lateralsclerosis, did not find any
statistically significant difference between the patients
and controls, but noticed different trends between func-
tion and content words with respect to the two groups
of speakers.

5.3. Limitations
One of the limitations of our research is its focus on
a reduced number of features compared to those avail-
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able. This choice was dictated by the need to make
the large number of acoustic features extracted for
each word compatible with a valid statistical analysis.
Therefore, the advantage of avoiding the curse of multi-
dimensionality inevitably has the consequence of sac-
rificing information.
Additionally, the principal components obtained with
PCA are less easily interpretable than the acoustic fea-
tures they are created with. The components are some
combination of groups of features with specific com-
ponent loadings, making it difficult to draw clear con-
clusions out of increases or decreases of these compo-
nents.
However, many of the initial 103 features are highly
correlated with each other. In fact, we carried out the
PCA with the aim to consider the greatest number of
features that were linked to the loudness, intensity, and
pitch, not limiting the research by selecting a single
feature that most represented each of these three traits.
Nevertheless, there is a large number of features related
to the acoustic spectrum, to the four formants, and to
temporal characteristics, which for the aforementioned
reasons have been excluded from the research. It would
be interesting to study those features in future studies.
Furthermore, we must take into consideration that the
extraction of the acoustic features was done at word-
level, and that different results perhaps would have
come out with an analysis at utterance level as regards
loudness, intensity, and pitch. In their work for in-
stance, van Bemmel et al. (2021) detects the most rel-
evant features of the same data used in this research
analysing the features at phoneme, words and utter-
ance level. Yet, only a word level analysis would
have allowed a distinction between content and func-
tion words.
It would be appropriate to interpret our findings also in
the light of the type of speech that has been analyzed,
that is read speech. The nature of this type of speech
has very different characteristics from those of spon-
taneous speech, and these differences could certainly
have repercussions on a phonetic, lexical or syntactic
level.
Finally, as regards the method used, we have partially
adopted procedures that can only work for small cor-
pora, such as the automatic insertion of punctuation.
Also the labeling of words into content words and func-
tion words, based on Dutch POS tags, could turn prob-
lematic with words as POS tagging does not differenti-
ate sufficiently for a classification in content and func-
tion words.

6. Conclusions
Using six principle components based on 24 acous-
tic features related to loudness, intensity, and pitch
extracted from speech recordings with Praat and
eGeMAPS, we found that some of these components
reflect the changes in intelligibility after treatment with
a serious game for Parkinson’s Disease patients.

While no significant effect was found for the fixed fac-
tor Time, providing no proof for treatment impacting
loudness, intensity, and pitch that is consistent in all
speakers (answering question 1), it was found that the
treatment effects differ per speaker.
Li2 and F0.2, components relating to loudness and in-
tensity and eGeMAPS features of pitch respectively,
were found to have significant differences between
speakers for these two component values. Random
effect plots of the intercept also show differences be-
tween speakers for other components (answering ques-
tion 2a).
Random effect plots show the differences between
speaker slopes, where the link with previous research
into intelligibility improvement after treatment can be
made. For the components li3 and Ppitch relating to
eGeMAPS features of loudness and jitter and Praat fea-
tures of pitch respectively, none of the speakers had a
significant slope, indicating no difference after treat-
ment for these component values. This is in line with
Pitch Limiting Voice Treatment (PLVT), where the
pitch is not supposed to increase and loudness does.
The other components (two relating to loudness and in-
tensity and two relating to eGeMAPS features of pitch)
and their respective slopes differ per speaker, again
showing the speaker-dependent results. Speaker 01 and
02 did not improve in intelligibility, and all four of the
other components decreased as well, implying a de-
crease in articulation quality with the loss of loudness
in line with PLVT. Speaker 03 had a large improve-
ment in intelligibility after finishing treatment, and did
indeed show an increase in loudness and intensity com-
ponents while showing a decrease in pitch components,
perfectly following the PLVT. Speaker 04 and 06 both
had a slight increase in intelligibility and a mix of in-
crease and decrease for both loudness and intensity and
pitch. Speaker 05 and 07 both had a large improvement
in intelligibility and all four components increased, im-
plying that it is possible that speech is considered more
intelligible if both loudness and intensity and pitch are
increased. Speaker 08 had a large intelligibility score
but a mix of increase and decrease in the four compo-
nent values (answering question 2b).
Given that there is no significant effect of the interac-
tion between WordClass and Time, we can conclude
that the treatment with the Treasure Hunters game has
the same (namely, no) impact on content and function
words and any variation between these two groups is
consistent pre and post treatment (answering question
3).
Looking at this variation between content and function
words, it was found that four out of six components
(li1, li2, li3, F0.2) had a significant difference between
content and function words (answering question 2).

Overall, our research answered some questions and
raised many others. Among the topics that would
be more interesting to investigate in future studies,
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there is certainly the cause of such an evident speaker-
dependent result. Many critical aspects of our method
could also be further explored, such as the inclusion
of more acoustic features or resolving the problems
related to the POS tagging of read speech. Lastly, it
would be interesting to do a similar analysis with spon-
taneous speech, focusing in particular on the fact that
one of the symptoms of speech disorders in patients
with dysarthria is also the lack of emotional expression
and tonal changes.
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Abstract

Training classification models on clinical speech is a time-saving and effective solution for many healthcare challenges, such
as screening for Alzheimer’s Disease over the phone. One of the primary limiting factors of the success of artificial intelligence
(AI) solutions is the amount of relevant data available. Clinical data is expensive to collect, not sufficient for large-scale
machine learning or neural methods, and often not shareable between institutions due to data protection laws. With the
increasing demand for AI in health systems, generating synthetic clinical data that maintains the nuance of underlying patient
pathology is the next pressing task. Previous work has shown that automated evaluation of clinical speech tasks via automatic
speech recognition (ASR) is comparable to manually annotated results in diagnostic scenarios even though ASR systems
produce errors during the transcription process. In this work, we propose to generate synthetic clinical data by simulating ASR
deletion errors on the transcript to produce additional data. We compare the synthetic data to the real data with traditional
machine learning methods to test the feasibility of the proposed method. Using a dataset of 50 cognitively impaired and 50
control Dutch speakers, ten additional data points are synthetically generated for each subject, increasing the training size
for 100 to 1000 training points. We find consistent and comparable performance of models trained on only synthetic data
(AUC=0.77) to real data (AUC=0.77) in a variety of traditional machine learning scenarios. Additionally, linear models are not
able to distinguish between real and synthetic data.

Keywords: Data Augmentation, Synthetic Data, Clinical Speech, Mild Cognitive Impairment, Automatic Speech Recognition,
Machine Learning

1. Introduction
Analysing clinical speech by means of natural language
processing (NLP) techniques is a low-cost and effec-
tive approach for many healthcare challenges, such as
screening for early signs of Alzheimer’s Disease from
clinical speech tasks. One of the primary limiting fac-
tors of the success of artificial intelligence (AI) solu-
tions in health is the amount of relevant data avail-
able to train models. Clinical speech data is expensive
and invasive to collect and the quantity is not sufficient
for large-scale machine learning or even simple neu-
ral methods. In addition, collected data is difficult—if
not impossible—to share between clinical and research
institutions due to concerns for patient privacy. With
the increasing demand for digital AI-driven solutions in
health systems, generating synthetic clinical data that
can be scaled-up and performs on-par with real data is
the next challenge.
Previous work has shown that automated evaluation of
clinical speech tasks via automatic speech recognition
(ASR) is comparable to manually annotated results in
diagnostic scenarios even though ASR systems pro-
duce errors during the transcription process, namely
deletion (König et al., 2018; Konig et al., 2019). While
the ASR-related loss of data in such a setting is typi-
cally seen as one of the major limitations of those ap-
proaches, this natural limitation can be harnessed to
naturally generate synthetic data. The concept is simi-

lar to a technique used for synthetic data augmentation
in computer vision, where random parts of an image are
erased in order to generate multiple training examples
from a single image (Zhong et al., 2017). We propose a
novel technique for synthetic data augmentation by ex-
ploiting the already occurring ASR error to randomly
delete portions of the transcribed clinical speech.

In this paper, we investigate if the technique of ran-
domly erasing speech transcripts—a result which is al-
ready seen when using ASR systems as part of an au-
tomatic pipeline—can be applied to clinical speech to
generate synthetic training data. This is done using 100
older Dutch speakers where 50 show signs of mild cog-
nitive impairment. Ten synthetic files are generated per
participant for a total of 1000 data points. This paper
is scoped to consider if the synthetically generated data
has comparable results to authentic data in traditional
machine learning scenarios. Through a series of down-
stream machine learning classification experiments, the
synthetic data is compared to the traditional scenario as
a baseline. Overall, we find that random erasing can be
used to generate synthetic clinical data that performs as
well as the real data. Based on the foundation of these
findings, future work should investigate if more com-
plex neural methods benefit from the addition of syn-
thetic data as well as if the proposed method is trans-
ferable to other clinical tasks.
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2. Background
In this section, background is provided to further mo-
tivate the argumentation of the paper. First, the au-
tomatic pipeline for evaluating clinical speech is de-
scribed. Next, focusing on going from speech to text
portion of the automatic evaluation pipeline, an expla-
nation of how the quality of the transcription is esti-
mated if provided . Finally, drawing from data aug-
mentation techniques in computer vision, parallels are
drawn between the technique of random erasing and the
role of deletion during the transcription process.

2.1. Automatic Evaluation of the Semantic
Verbal Fluency task (SVF)

The semantic verbal fluency task is a timed clinical
speech test where a person is asked to name as many
words as they can pertaining to a given semantic cat-
egory (e.g. Name as many animals as you can in one
minute). This task has been shown to be sensitive for
screening for mild cognitive impairment (MCI) from
typical ageing in older adults (McDonnell et al., 2020;
Clark et al., 2009; Vaughan et al., 2016). The au-
tomatic pipeline for evaluating this speech task starts
with recording a person during the task. Next, this
speech is passed through an automatic speech recog-
nition (ASR) model to obtain a text transcript. Once
this automatic transcript has been generated multiple
methods of feature extraction and analysis have been
proposed for evaluating the SVF task based on relevant
cognitive clinical literature. Previous work has investi-
gated using semantically motivated measures, such as
semantic word embeddings, to consider semantic clus-
tering strategies (Troyer et al., 1997; Pakhomov and
Hemmy, 2014). Other methods have considered tem-
poral measures for clustering (Tröger et al., 2019) or
investigating the task on a finer time resolution (Linz et
al., 2019a).

2.2. Word Error rate (WER)
One of the first elements of an automatic pipeline for
evaluating the SVF, is to automatically transcribe the
speech task using automatic speech recognition. As
with any automatic method, there is always some form
of error. To evaluate automatic speech recognition,
word error rate is used. Word error rate (WER) is
the number of insertions, substitutions, and deletions
that occur during the automatic transcription process
divided by the number of words in the manual tran-
script. (Errattahi et al., 2018)

WER =
Substitutions+Deletions+ Insertions

WordCountmanualtranscript

The most common form of error found when automati-
cally transcribing the SVF task is deletion. In addition,
before extracting clinically relevant features from the
task, the text is preprocessed, removing words outside
the task domain. Therefore substitutions and insertions

that are not in the semantic category (e.g. animals)
would also be seen as deletions.
The effect of the automatic speech pipeline on this clin-
ical task has been investigated previously by comparing
manual versus automatic evaluation methods. Konig
and colleagues found that both methods yielded com-
parable results when screening for dementia over the
phone using the SVF (König et al., 2018).

2.3. Generating Synthetic Data
Drawing from computer vision, one of the common
methods is to alter images in the training set by crop-
ping, flipping, rotating, or randomly erasing part of the
image. By perturbing the original image in some way,
many versions of a single image can be created. Ran-
dom erasing is a data augmentation technique where
additional training data is created by erasing a random
portion of an image in varying amounts. Although the
idea is simple, it was previously proposed to reduce
overfitting in deep learning image recognition models
(Shorten and Khoshgoftaar, 2019; Zhong et al., 2017).
This idea lends itself easily to the clinical speech ap-
plication when combined with the WER caused by
the automatic transcription process. Since the deletion
caused by the WER does not affect the downstream ap-
plication of detecting cognitive impairment from the
speech recording, it should be possible to randomly
delete portions of manual transcripts at the same rate
as the WER. This can be done in many variations and
combinations, yielding synthetically augmented data.

3. Data
100 older Dutch speakers completed a battery of cog-
nitive tests including a one minute semantic verbal flu-
ency on the subject of animals with a clinician from
Maastricht University Clinic, Netherlands. Of the
100 participants, 50 are healthy controls (HC) and 50
present with mild cognitive impairment (MCI). The de-
mographic data for the sample population is given in
table 1.

HC MCI
N 50 50
Sex (M/F) 18/32 19/31
Age (years) 70.66 (8.96) 65.94 (7.80)
Word Error Rate (%) 20.29 23.13
MMSE (max 30) 28.68(1.27) 26.92 (2.07)

Table 1: Demographic information for the Dutch par-
ticipants. The Mini-Mental State Exam (MMSE) is
a test to measure cognitive function (Max score 30).
Means are given with standard deviation in parenthe-
ses.

To complete the SVF task, participants are instructed
to name as many animals as they can in one minute.
The response is recorded and transcribed twice; once
manually by trained clinicians via an iPad application.
The second time the data is transcribed automatically
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via Google translation services. In both cases, the re-
sponses are automatically pre-processed to remove any
additional sounds, such as ’uhh’ or ’ahh’. The final
response result is a time-aligned list of animals. For
example, a transcript could look like ”dog, cat, lions,
tiger, bear, blue whale, dolphin”.

4. Methods
4.1. Data Augmentation by Random Erasing

with WER (REWER)
First, the word error rate is calculated for each partic-
ipant between the manually annotated and automati-
cally generated transcript. The, number of words to
be deleted from the transcript is determined given the
WER percentage. Because the goal is to simulate the
naturally occurring error in the ASR transcript, the
WER produced by the ASR is applied to the manual
SVF transcript. An exhaustive list is created of every
possible variation of the SVF with the determined num-
ber of missing words from the manual transcript. From
this list, a random number generator is used to ran-
domly select ten newly generated, synthetically aug-
mented SVF texts per manual transcript. These files
are then saved for the next step of explicit feature ex-
traction.

4.2. Data Augmentation by Random Erasing
with Constant Deletion (REWCD)

One of the limiting factors of the REWER method is
that it requires manual transcription of the SVF task in
order to calculate the WER. To investigate additional
random erasing methods that do not require manual an-
notation, a constant rate of deletion is considered. In-
stead of a variable per participant deletion rate based
on the WER determined by ASR, a constant deletion
rate is considered for all transcripts. The same proce-
dure is applied as describe in Section 4.1 where the rate
of deletion is 10% and 20%. These rates are chosen to
be below the average WER for the sample population
given in Table 1.

4.3. Feature Extraction
A comprehensive feature set is extracted from the au-
tomatic and augmented transcripts based on recent ap-
proaches for automatically evaluating the SVF task.
Previous literature has proposed investigating the un-
derlying strategy for completing the SVF task by look-
ing for clusters of semantically related words in the task
(Troyer et al., 1997; Farzanfar et al., 2018). This pro-
cess was previously automated and Four features are
extracted for semantic clustering and switching based
on Linz et al., 2017 using pre-trained Dutch seman-
tic word embeddings from Fasttext (Bojanowski et al.,
2016). Beyond semantics, temporal methods have also
been proposed for extracting five clustering and switch-
ing metrics in SVF based on (Tröger et al., 2018). In
addition, another temporal method has been investi-
gated by breaking the sixty second task into six ten-
second bins (Linz et al., 2019b; Lindsay et al., 2021).

For more detailed feature explanations, short descrip-
tions of each feature are given in Table 2

5. Experiments
Statistical Analysis is done in R Studio (R Core Team,
2017). All coding experiments are implemented using
python 3.7.

5.1. Machine learning Classification
Scenarios

To test the feasibility of the proposed data augmenta-
tion technique, multiple machine learning experiments
are conducted.

5.1.1. Augmentation Approach with REWER and
REWCD

This train-test setup is applied to the three synthetic
data sets that are created as well as the combination of
all of them: the WER set (WER), the 10% constant rate
(C 10%), the 20% constant rate (C 20%), and the com-
bination of all three synthetic datasets (ALL SYNTH).
Since the idea of this paper is to produce synthetic data
that performs similarly to the real data, we propose to
train on the synthetically generated data and test on the
real ASR data. To keep the models comparable to train-
ing and testing on the real ASR data, leave one out
cross validation(LOOCV) is also used in this scenario.
In this case, the one participant that is in the test set has
all their synthetic data removed from the training set.
For a concrete example, this means of the 1000 gen-
erated files, 990 synthetic data points are in the train-
ing set and 1 real data point is in the test set. The 10
data points that are removed are the files generated by
the one being tested. This is done to prevent inflating
model results.

5.1.2. Classic Approach
To compare the newly proposed technique to traditional
methods, model performance is considered when train-
ing on the real ASR data (REAL ASR) using LOOCV.

5.1.3. Machine learning Classification
Specifications

The classification models are created using the scikit-
learn library1 (Pedregosa et al., 2011).
For the feasibility of this method, binary classification
is done to distinguish between the MCI and control
group. Three classification algorithms are considered;
Logistic Regression (LR), Random Forest (RF), and
Support Vector Machine (SVC). Features are normal-
ized using the standard scalar. Grid search is used to
optimize model parameters in the training fold. In ad-
dition, univariate feature selection is done to test how
increasing the number of features increases as the data
increases. To gauge and compare model performance,
accuracy and area under the receiver operator curve
(AUC) are calculated.

1sklearn version==0.24.0 for python 3.7
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Feature Name Description

Word Count The total number of animal words said in one minute, excluding repetitions
Semantic Clustering Measures

Mean Cluster Size Average number of animals in an semantic cluster over the entire sample
Number of Switches the number of times switched to a different semantic cluster
Mean Intercluster Similarity On average, how semantically related are the semantic clusters

Temporal Clustering Measures
Mean Transition Time Mean time (in seconds) between consecutive words
Mean Cluster Size Average number of animals in a temporal cluster over the entire sample
Number of Switches the number of times switched to a different temporal cluster
Mean Intercluster Similarity On average, how semantically related are the temporal clusters

Bin Measures
Word Count by Bin The number of words per 10 second bin
Transition Length by Bin The average transition time in seconds between the end of one word and the

onset of the next word by 10 second bin
Semantic Similarity by Bin On average, how semantically related the words are by 10 second bin

Table 2: Features extracted from the SVF task produced by the participants with description.

5.2. Additional Experiments
A few other experiments are considered to examine the
synthetically generated data. A random baseline is gen-
erated using the permutation test to see if the synthetic
data can be distinguished from the real ASR data. In
addition, incremental experiments are considered to see
how the amount of synthetic data used in training ef-
fects the binary diagnostic classification experiment.

5.2.1. Permutation Test
To test if we can tell the difference between the syn-
thetic and authentic data, permutation test is computed.
A permutation test consists of obtaining a randomised
baseline by training a linear model a series of times
while permuting the target labels in question each time,
removing any dependence between the input features
and the mentioned target label. In this case, the tar-
get label is authentic or synthetic. The p-value repre-
sents the probability of obtaining the model accuracies
we observe, assuming the that the null hypothesis is
true. For this experiment, the null hypothesis is that
there is no difference between the synthetic and au-
thentic data. To test this, authentic and synthetic la-
bels are randomly assigned to the transcripts. A linear
model is trained and tested with the randomly assigned
labels. Accuracy is used to determine model perfor-
mance. This is permuted 1000 times for comparison.
An empirical p-value is calculated by computing how
many of the random models have a higher accuracy
than the model trained on the true labels. The empirical
p-value is calculated by taking the number of times per-
formance falls within the random model score distribu-
tion divided by the total number of permutations. The
p-value, in this case, represents how many of the ran-
dom models have superior or comparable performance
to the one trained on the actual experimental scenario.
We report the p-value with statistical significance set to
0.05.

5.2.2. Incremental Experiments
In addition, the amount of synthetic data used to train a
model is tested where the training amount is increased
incrementally. A model where one synthetic data point
per participant is trained, then a model where two syn-
thetic data points per participants is trained and so on,
until all ten points per participant are used. In this sce-
nario, the machine learning scenario is simplified. A
simple logistic regression using all extracted features
is created with no hyperparameter optimization. As
stated previously, LOOCV is used where the synthetic
data is used to train and real ASR data is used to test
and no data from the test participant is seen during
training.

6. Results
6.1. Machine Learning Results

Model N Accuracy AUC Method

BEST ACC

LR 13 0.74 0.76 REWER
SVC 22 0.75 0.76 REWER
RF 11 0.73 0.76 ASR

BEST AUC

LR 13 0.69 0.77 ASR
SVC 22 0.69 0.77 ALL SYNTH
RF 11 0.73 0.76 ASR

Table 3: Best result for feasibility experiments for each
classifier. N is the number of features. Method is which
training data had the best score. The upper table is
based on highest accuracy. The lower tables is based
on highest AUC.

Results for the machine learning experiments explained
in Section 5.1 are visualized in Figure 1. In addition

12



0.5

0.6

0.7

0.8
AU

C

LR SVC RF

0.5

0.6

0.7

0.8

0 10 20

Ac
cu

ra
cy

0 10 20

Number of Features
0 10 20

WERREAL_ASRC_20%C_10%ALl_SYNTHMethod

Figure 1: Visualization of results from the machine learning experiments. The number of features used to traain the
modedl is represented on x-axis. Logistic Regression(LR). Support Vector Machine(SVC), Random Forest(RF).
Area Under Curve (AUC).

the best accuracy and AUC score for each algorithm
are displayed in Table 3.
From the results, comparable performance is seen be-
tween both the REWER and REWCD methods to the
classic approach. Overall, the synthetic data improves
in performance with the number of features. Looking
at the best accuracy by classifier, for the logistic regres-
sion and support vector machine, the WER method pro-
duces the max result. For AUC, the support vector ma-
chine best result is achieved using the combined syn-
thetic data sets. However, real data yields better AUC
performance in general. There is also appears to be
some dependence on classifier type the random forest
classifier consistently performs better in both accuracy
and AUC with real data.

6.2. Permutation Test Results
For the random baseline from the permutation tests, No
significant p-values are reported. Values range from
0.44 to 0.56 with the average significance value being
0.51. Therefore, the alternate hypothesis is rejected and
the null hypothesis is accepted. This can be interpreted
as the linear model not being able to distinguish be-

tween the synthetic and authentic transcripts.

6.3. Incremental Experiments
Results for the incremental experiments are visualized
in Figure 2. In addition, Table 4 summarizes the results
by averaging AUC and accuracy scores by the number
of synthetic data points used during training per partic-
ipant.
As the amount of data increases, consistent AUC values
are reported ranging from 0.74 to 077, and consistently
averaging to 0.76. The accuracy presents with a mild
downward slope 71% with one data to 69% accuracy
at nine synthetic points per person. The slight decrease
in accuracy could be to the lack of optimization during
training as higher accuracy (74%) is reported for the
logistic regression with ten data points per person.

7. Discussion
Of the synthetic methods considered, WER had the best
accuracy. This result is expected based on the train-test
setup used. The REWER method generates training
data closest to the ASR test data. However, the con-
stant deletion had comparable results to the WER and
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Figure 2: Visualization for the incremental synthetic data experiments. The number of synthatic data points used
for training per participant is given on the x-axis. Area Under Curve (AUC).

N AUC Accuracy
1 0.76 0.71
2 0.76 0.71
3 0.76 0.69
4 0.76 0.70
5 0.76 0.69
6 0.76 0.69
7 0.76 0.69
8 0.76 0.69
9 0.76 0.69

Table 4: Summarization of incremental experiment re-
sults. N is the number of synthetic data points per par-
ticipant used during training. AUC and accuracy are
averaged over the augmentation method.

real data. One of the downsides to using WER is the
need for expensive and time-consuming manual anno-
tation. However, this can be bypassed with the constant
rate method. In addition, constant deletion rates could
be blended, similarly to what has been done with the
ALL SYNTH method that achieved the highest AUC
score for the SVM. Additional experiments determined
that a linear model was not able to distinguish between
the synthetic and real data based on the permutation
test. Furthermore, as the amount of synthetic data used
for training is increased consistent performance is re-
ported that is comparable to the real data scenario.
One benefit of using random erasing to generate syn-
thetic transcripts—rather than just simulating feature

values from a distribution—is that the data is still ex-
plainable. There are synthetic transcripts that can be
viewed and investigated. This is something that is
highly sought after in clinical settings as medical pro-
fessionals prefer tangible and explainable solutions.
These findings have an impact on future work. The
ability to generate additional synthetic clinical data
could open the door to training deep learning models
and neural approaches. As well as, the raw data could
be used for new solutions that are now possible due to
increased amounts of data. For example, the sequence
of words could be used as an input for an LSTM.
However, there are still some unknown factors of what
this method has on data in other domains. For in-
stance, this paper is scoped to a single clinical task
that is focused on assessing cognition. It is unknown
if this methodology would work on free speech clini-
cal tasks, such as the picture description task or story
telling task, where cognition and language abilities in-
teract more heavily (Themistocleous et al., 2020). Fu-
ture work would need to investigate the transference of
this technique to other domains.

8. Conclusion
This paper proposed to generate synthetic data by sim-
ulating ASR error already found in automatic evalua-
tion pipelines. Random erasing by either WER or con-
stant deletion is a low cost and simple solution that ef-
fectively delivers machine learning performance that is
on par with current real data methods. These findings
present impactful solutions for future work to investi-
gate how much data can be generated and achieving
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better performance using deep learning and neural ap-
proaches.
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Abstract 
New candidate diagnostics for cognitive decline and dementia have recently been proposed based on effects such as primacy and recency 
in word learning memory list tests. The diagnostic value is, however, currently limited by the multiple ways in which raw scores, and in 
particular these serial position effects (SPE), have been defined and analyzed to date. In this work, we build on previous analyses taking 
a metrological approach to the 10-item word learning list. We show i) how the variation in task difficulty reduces successively for trials 
2 and 3, ii) how SPE change with repeated trials as predicted with our entropy-based theory, and iii) how possibilities to separate cohort 
members according to cognitive health status are limited. These findings mainly depend on the test design itself: A test with only 10 
words, where SPE do not dominate over trials, requires more challenging words to increase the variation in task difficulty, and in turn 
to challenge the test persons. The work is novel and also contributes to the endeavour to develop for more consistent ways of defining 
and analyzing memory task difficulty, and in turn opens up for more practical and accurate measurement in clinical practice, research 
and trials. 
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1. Introduction 

Measurement of the memory ability of persons has a long 
tradition in neuropsychological assessment. Tests used to 
measure a person’s memory ability typically include 
language- and cultural-free blocks and digits recall as well 
as more complex word recalling sequences. Recently, 
improved diagnostics for cognitive decline and dementia, 
particularly when including serial position effects (SPE), 
have been sought when measuring memory abilities based 
on word learning lists (see summary by Weitzner & 
Calamia (2020)).  

SPE address the relationship between the ordering of 
symbols (in the present case, words) in a list and the 
likelihood of them being recalled. Specifically, when a test 
person is asked to freely recall as many words as possible 
from a word list, SPE mean that the first (primacy region, 
Pr) and the last (recency region, Rr) words are easier to 
remember than items in the middle (middle region, Mr) 
(Murdock, 1962). In a recent review, Weitzner & Calamia 
(2020) conclude that: ‘The analysis of SPE has 
demonstrated some utility as a marker of cognitive 
impairment associated with MCI, AD, and other 
dementias; however, research is limited by the multiple 
ways in which SPE are defined and analyzed.’ Despite the 
limitations, they found that individuals with MCI and AD 
showed reduced primacy and intact recency, with primacy 
being more reduced in AD. 

In line with that, there are, to our best knowledge, few 
studies which properly handle the ordinal response of a test 
person taking a word learning list test, making any claim of 
a new diagnostic questionable. Our previous analyses of the 
Rey’s Auditor Verbal Learning List Test (RAVLT) trial 
1/immediate recall (IR) have challenged previous claims of 
disease-related changes in serial positions effects (SPE), in  

 
particular putting those claimed changes in relation to 
measurement uncertainty (Melin, et al., 2021a; Pendrill et 
al., 2021). Our analyses of word learning list tests so far 
have focused on the first trial, while the present work 
extends our study to include more trials repeated directly 
after each other, including learning effects, as well as 
delayed recall (DR). 

An important part of ensuring construct validity and 
predictability is to explain how the difficulty of recalling is 
caused by a number of effects, particularly how the word 
list items are structured. A major result of our research so 
far, both of non-verbal, culture-free tests such as block or 
digit sequence tests, as well as the verbal lists studied here, 
has been to explain recall difficulty in terms of 
informational entropy (see section 2.2). It should be easier 
to recall a more ordered sequence of less entropy.  

Our previous studies of IR have included frequency (i.e., 
how frequently each word occurs in its language) as an 
explanatory variable, although it is found to contribute little 
to item task difficulty compared with the major 
contributions from the sequence length, i.e., the number of 
symbols (words) in each list (Melin et al., 2021a; Pendrill 
et al., 2021). The minor contribution from word frequency 
might however be due to the fact that the words in the list 
studied are all very short and common in everyday 
language, and therefore not expected to lead to any 
significant variation in recall difficulty. 

In contrast to RAVLT with 15 words with a fixed order on 
repeated trials 1 - 5, the word learning list (WLL) test 
included in the CERAD test battery has only 10 words and 
the word order changes with each of the three repeated 
trials. With only 10 words, SPE are expected to be less 
pronounced (Murdock, 1962) but repeated trials may 
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include learning effects similar to RAVLT (Goldberg et al., 
2015; Zhan et al., 2018). 

The European NeuroMET2 18HLT09 project has brought 
together clinicians, academics, metrologists and industry to 
address measurement challenges in current 
neurodegenerative diseases. Our part in NeuroMET 
includes how to properly handle cognitive data and in this 
paper we will present how task difficulty and SPE change 
with repeated trials in word recalling tests, as predicted 
with our entropy-based theory. 

2. Methods 

2.1 Participants and data collection 

The NeuroMET cohort has been recruited and tested bi-
annually from 2016 to 2022 at Charité hospital in Berlin. 
Measurements administered include neuropsychological 
assessments with a battery of legacy cognitive tests, clinical 
laboratory data for protein biomarkers and ultra-high field 
magnetic resonance imaging and spectroscopy (Quaglia et 
al., 2021). 

For this work, data have been included from baseline and 
follow-up visits from the WLL CERAD cognitive tests 
(German) from 214 individual assessments of healthy 
controls (HC, n=73), persons with subjective cognitive 
decline (SCD, n=44) as well as patients with mild cognitive 
impairment (MCI, n=43) and suspected dementia due 
Alzheimer’s Disease (AD, n=54). 

In trial 1 of WLL CERAD, the test person is asked to freely 
recall as many as possible of the 10 common but unrelated 
words read by the test leader. In the second trial, the same 
10 words are repeated but in a different order and the 
person is again asked to freely recall as many as possible. 
This is then repeated in a third trial, again with a different 
word order. 

The study was approved by the Ethics Committee of the 
Charité - Universitätsmedizin Berlin, Germany, and was 
conducted in accordance with the declaration of Helsinki. 

2.2 Data analyses 

The ordinal responses (raw scores) to the WLL CERAD 
(classification number 1 for pass or classification number 0 
for fail) were restituted through a logistic regression of the 
data to a dichotomous Rasch (1960) model using the 
WINSTEPS ® 5.2.0. This restitution process yields 
separate and linear measures for each memory task 
difficulty, δ, and individual person memory ability, θ, and 
compensates for ordinality:  

𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 =
𝑒(𝜃−𝛿)

1 + 𝑒(𝜃−𝛿)
 

 

The focus of this study is primarily on measures of memory 
task difficulties, δ. 

Secondly, a state-of-the-art multivariate formulation is 
made of a construct specification equation (CSE) (Pendrill, 
2019) for the quantity Z of the construct (in this case 
memory task difficulty, δ), expressed as a sum of a number 
of covariates, 𝑿𝒌 (explanatory variables) in the causal 
associative relation: 𝑍 = ∑ 𝛽𝑘 ∙ 𝑋𝑘𝑘 .  

Explanatory variables 𝑿𝒌 were identified in line with our 
previous work on RAVLT IR (Melin et al., 2021a; Pendrill 
et al., 2021) based on information theoretical entropy. In 
this case, the amount of information in these messages (G 
symbols with N repeats) according to the well-known 
Shannon (1948) expression of ‘surprisal’ in the work of 
Brillouin (1962), is given by: 

𝐼 = 𝑀 ∙ [𝑙𝑛(𝐺!) − ∑ 𝑙𝑛(𝑁𝑗!)

𝑁

𝑗=1

] 

 

where the normalisation constant, 𝑀 =
1

𝑙𝑛(𝐺)
 

This general expression gave us the following definitions 
for explanatory variables for the different contributions to 
memory IR task difficulty for each word, j: 

𝛿𝑀𝑟,𝑗 = 2 ∙ 𝑀 ∙ 𝑙𝑛(𝐺𝑗!); G = L/2  

𝛿𝑃𝑟,𝑗 = −𝑀 ∙ 𝑙𝑛(𝐺𝑗!);  𝐺 =  𝑖𝑡𝑒𝑚 𝑜𝑟𝑑𝑒𝑟  

 𝛿𝑅𝑟,𝑗 = −𝑀 ∙ 𝑙𝑛(𝐺𝑗!);  𝐺 =  𝐿 − 1 −  𝑖𝑡𝑒𝑚 𝑜𝑟𝑑𝑒𝑟  

𝛿𝑓𝑟𝑒𝑞,𝑗 = −𝑀 ∙ 𝑙𝑛𝑓𝑗   

Finally, formulation of a CSE for overall task difficulty 
(Pendrill 2019) for each trial included three steps in a 
principal component regression (PCR):  

i. A PCA amongst the set of explanatory 

variables, Xk, using the entropy-based 

estimates of 𝛿 given above  

ii. A linear regression of the empirical task 

difficulty values δj against 𝑿′ = 𝑿 ∙ 𝑷 in terms 

of the principal components, P; and 

iii. A conversion back from principal components 

to the explanatory variables, Xk 

3. Results 

3.1 Overall task difficulty 

Figure 1 presents how task difficulty for individual items is 
found empirically to change over the three trials. On the y-
axis lower values imply an easier task and vice versa, and 
the x-axis represents each item in order of appearance in 
each trial. 

Blue dots represent trial 1 with a clear parabolic fit line, 
indicating easier tasks in the beginning and at the end, i.e., 
the SPE for Pr and Rr, and qualitatively similar to our 
earlier RAVLT observations. The variation in task 
difficulty with order is successively reduced for trials 2 and 
3 (orange and grey dots in figure 1). Overall task difficulty 
also decreases with the three repeated trials. 
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Figure 1. Empirical task difficulty values on the y-axis (lower values 

implies an easier task), and the x-axis represent each item ordered by 

appearance in each trial. Error bars show measurement uncertainties 

with coverage factor k=2. 
 

Smaller contributions from SPE to task difficulty in trials 2 
and 3 are also confirmed by the CSEs formulated as 
described in section 2.2, yielding the following expressions 
for the three different trials: 
 
 

𝑧𝑅𝑊𝐿𝐿1,𝑗 = 6(5) + 0.8(6) × 𝛿𝑃𝑟,𝑗 + 1.2(1.2) × 𝛿𝑅𝑟,𝑗

− 0.2(1) × 𝛿𝑓𝑟𝑒𝑞,𝑗  

(1) 

𝑧𝑅𝑊𝐿𝐿2,𝑗 = 1(4) + 0.3(8) × 𝛿𝑃𝑟,𝑗 + 0.1(6) × 𝛿𝑅𝑟,𝑗

− 0.1(1) × 𝛿𝑓𝑟𝑒𝑞,𝑗  
(2) 

 𝑧𝑅𝑊𝐿𝐿3,𝑗 = 1(1) + 0.2(3) × 𝛿𝑃𝑟,𝑗 − 0.0(3) × 𝛿𝑅𝑟,𝑗

− 0.26(4) × 𝛿𝑓𝑟𝑒𝑞,𝑗 
(3) 

 
Figures 2a-c illustrate contributions from each explanatory 
variable according to eqs. 1-3 across the ten items, clearly 
showing how primacy disappears in the later trials, while 
there seems to be a small contribution from recency 
remaining also in trial 2 and 3. 
 
Because of the rapidly diminishing SPE due to learning 
effects on repeated trials of relatively short word lists, in 
contrast to our previous studies on RAVLT IR/trial 1, by 
WLL trial 3 frequency has become the dominating 
explanatory variable. One must remember, however, that 
the variation in empirical task difficulty values is small; in 
fact, only the second and last items can be separated from 
the others by amounts significantly larger than the 
measurement uncertainties. 
 
Furthermore, in figures 2a-c the predicted (zR) can 
graphically be compared with the empirical task difficulties 
(same as Figure 1). Pearson correlation coefficients were 
for trial 1: 0.70, trial 2: 0.65 and trial 3: 0.93, which are of 
comparable strength to the results for RAVLT (Melin, et 
al., 2021n) but not as strong as for the block and number 
recalling tests (Melin et al., 2021b) 
 
In the figures, error bars show measurement uncertainties 
with coverage factor k=2 for each memory task’s difficulty, 
U(δ), which propagate through the PCR (section 2.2). In 
turn the U(δ) have implications for U(β) and UzR together 
with uncertainties in the fit itself, which is an issue of 
sample size, collinearity and measurement disturbance. In 
the present case when comparing the less cognitive able 
patients (MCI and AD) with the more cognitive able 
persons (HC and SCD), the un-even sample sizes may bias 
the interpretations. However, this can indicate that there are 
sources of dispersion when making the multivariate 
regression which are not yet accounted for. 
 

 

 

 

Figures 2a-c. Corresponding plots presenting the contribution from 

each explanatory variable as well as the empirical and predicted task 

difficulty values for all three WLL trials. Task difficulty values on 

the y-axis (lower values implies an easier task), and the x-axis 

represents each item ordered by appearance in each trial. Error bars 

show measurement uncertainties k=2. 
 

3.2 Differences between sub-groups 
For trial 1, the “intercept” value + 6(5) (first term on the 

right-hand side (RHS) of each CSE for task difficulty) can 

be compared with 𝛿𝑀𝑟,𝑗 = 2 ∙ 𝑀 ∙ 𝑙𝑛(5!) = + 4.2 logits for 

the whole cohort. Our model for the learning effects 

observed for the 5 RAVLT trials (Melin et al., 2022), where 

the intercept value decreases in inverse proportion to the 

root of the number of trials performed, would predict that 

the intercept value would be 
4,2

√2
= 3 𝑙𝑜𝑔𝑖𝑡𝑠 at trial 2 and 

4,2

√3
= 2.5 𝑙𝑜𝑔𝑖𝑡𝑠 at trial 3. These predictions are within 

measurement uncertainties of the observed intercept values 

given in equations (1), (2) and (3). 
 
When comparing CSEs for the two groups of cohort 
members, for the second trial the intercepts were found to 
differ slightly (albeit with large uncertainties): 

𝑧𝑅𝑊𝐿𝐿2 𝐻𝐶+𝑆𝐶𝐷,𝑗 = 1(1) + 0.0(5) × 𝛿𝑃𝑟,𝑗

− 0.1(2) × 𝛿𝑅𝑟,𝑗

− 0.4(2) × 𝛿𝑓𝑟𝑒𝑞,𝑗  

(4) 

𝑧𝑅𝑊𝐿𝐿2 𝑀𝐶𝐼+𝐴𝐷,𝑗 = 2(1) + 0.3(4) × 𝛿𝑃𝑟,𝑗

+ 0.2(4) × 𝛿𝑅𝑟,𝑗

− 0.2(0) × 𝛿𝑓𝑟𝑒𝑞,𝑗 

(5) 
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In line with what one may expect, this difference in 
intercept might indicate a faster learning for the more 
cognitive able cohort members. Further, a difference 
between the cohort groups was observed in terms of the 
contributions to task difficulty from primacy and recency; 
for the more cognitive able cohort members, the 
contributions from primacy and recency are negligible 
already at the second trial. 

4. Conclusion 

Our entropy-based theory earlier developed for RAVLT 
was successfully replicated for WLL CERAD trial 1 in the 
present study, although the effects of SPE are not as 
pronounced with repeated WLL trials. This may be 
explained by the fact that WLL CERAD comprises only 10 
words in contrast to RAVLT as well as a different word 
ordering per trial. 

In the present work we have shown i) how the variation in 
task difficulty reduces successively for trials 2 and 3, ii) 
how SPE change with repeated trials as predicted with our 
entropy-based theory, and iii) how possibilities to separate 
cohort members according to cognitive health status are 
limited.  

These findings depend mainly on the test design itself: A 
test with only 10 words, where SPE do not dominate over 
trials, requires more challenging words to increase the 
variation in task difficulty, and in turn to challenge the test 
persons.  

In the present case of WLL CERAD, the 10 words are all 
common but unrelated. Thus, it was no surprise that 
frequency provided relatively little explanation in the CSE, 
particularly in the first trial where SPE dominate. However, 
including less common, i.e., less frequently used, words is 
expected to make a greater contribution to recall difficulty 
from frequency. Moreover, other related aspects to 
consider could be: word length (Surprenant et al., 2011), 
semantics (Earles & Kersten, 2017; Hyde & Jenkins, 1973), 
phonetics (Rezvanfard et al., 2011).  

The work here is not only novel, but also necessary for 
more consistent ways of defining and analyzing memory 
task difficulty, and in turn opens up for more practical and 
accurate measurement in clinical practice, research and 
trials. 

The observed response in any word learning list test, as 
well as for other tests of human abilities, typically gets 
classification numbers. As in the present case, 0 for fail and 
1 for pass (section 2.2). Such observed response constitutes 
raw data, xi,j, for test person i and item j, which is 
characterized by ordinality and is not a measure of the 
person’s memory ability nor the memory task difficulty. 
We have previously shown that metrological methods to 
simple syntax studies provide opportunities for more 
practical and accurate measurement in clinical practice, 
research and trials (Melin et al., 2021c). In this work, 
together with ongoing work on word learning list test 
(Melin et al., 2022; Melin et al., 2021a; Pendrill et al., 
2021) we advance a novel metrological approach to cover 
more consistent ways of defining and analysing memory 
task difficulty. 
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Abstract 
Autism Spectrum Disorders (ASD) are a group of complex developmental conditions whose effects and severity show high 

intraindividual variability. However, one of the main symptoms shared along the spectrum is social interaction impairments that can be 

explored through acoustic analysis of speech production. In this paper, we compare 14 Italian-speaking children with ASD and 14 

typically developing peers. Accordingly, we extracted and selected the acoustic features related to prosody, quality of voice, loudness, 

and spectral distribution using the parameter set eGeMAPS provided by the openSMILE feature extraction toolkit. We implemented 

four supervised machine learning methods to evaluate the extraction performances. Our findings show that Decision Trees (DTs) and 

Support Vector Machines (SVMs) are the best-performing methods. The overall DT models reach a 100% recall on all the trials, meaning 

they correctly recognise autistic features. However, half of its models overfit, while SVMs are more consistent. One of the results of the 

work is the creation of a speech pipeline to extract Italian speech biomarkers typical of ASD by comparing our results with studies based 

on other languages. A better understanding of this topic can support clinicians in diagnosing the disorder. 

Keywords: Autism Spectrum Disorders, acoustic analysis, machine learning, openSMILE, eGeMAPS 

 

1. Introduction 

The American Psychiatry Association defines Autism 
Spectrum Disorders (ASD) as a group of complex 
developmental conditions whose effects and severity are 
different in each person. However, some common 
symptoms have been found whose presence represents the 
criteria used during the diagnosis. According to the DSM-
5, one of them is the presence of impairments in social 
communication (Criterion A). Thus, the quality of language 
is an essential indicator during the diagnosis of ASD, both 
in comprehension and production. Even if these linguistic 
characteristics are present in a spectrum that showcases a 
wide variety, they still have something in common. Social 
interaction is mainly completed using different language 
skills. 
In the present study, we investigated the speech production 
of Italian-speaking children with ASD to understand if 
there are acoustic features that can be shared along the 
spectrum. Indeed, there are already many English 
contributions showing abnormalities of autistic speech at 
the prosodic level. Unfortunately, there are few studies on 
this promising field in Italian. To conduct this 
investigation, we performed an acoustic feature extraction 
and a supervised learning classification between the speech 
production of Italian-speaking children with ASD and their 
peers with typical neurodevelopment (TD).  

2. Prosody in ASD Speech  

The study of prosodic traits in people with autism is 
relatively new and, compared to other linguistics domains, 
still little explored (Diehl & Paul, 2013; Kiss et al., 2012; 
Tanaka et al., 2014; Van Santen et al., 2010). As a result, 
this research field was called by some experts the 
“Cinderella of speech” that remains "in the cellar, with few 
visitors" (Crystal, 2009; p. 257). Nevertheless, the research 
on the typical acoustic features in people with different 
neurodevelopmental disorders is promising. Through 
various methods, usually based on multimodal 
investigations (i.e., behavioural assessments, acoustic 
analysis, electrophysiological measures, brain imaging), it 

has been demonstrated that the speech of autistic people 

shows some anomalies from the prosodic point of view. 
Indeed, common variabilities along the spectrum have been 
recorded in the movements and the pitch types produced 
(Shriberg et al., 2001). This acoustic pattern is the speakers' 
attitude and emotional status medium.  
Based on these features, two main prosodic behaviours are 
commonly identified during the speech act: the pragmatic 
(or linguistic) and the affective functions (Anolli, 2002). 
The first represents the illocutive force, which is the act 
itself of talking by the speaker (see Searle & Vanderveken, 
1985). Moreover, it distinguishes the type of sentence 
produced, e.g., interrogative or affirmative. On the other 
hand, the second function represents the medium - 
sometimes unintended - of the emotional status felt by the 
speaker. Thus, people with alterations of these prosodic 
productions may exhibit impairments in elaborating the 
vocal chants and sentences showing their emotional status. 
Moreover, these impairments affect their comprehension of 
other people, causing difficulties in social interaction and 
communication (Olivati et al., 2017).  
From its first descriptions, the speech of people with autism 
has been defined as being monotonous, robotic, and pedant 
(Kanner, 1943). The patients present difficulties both in the 
production and perception skills. For instance, Kanner 
(1943; p. 228) wrote about one of the children he studied: 
"It made no difference whether one spoke to him in a 
friendly or a harsh way". Thus, the scholar who first 
defined autism gave an implicit focus on prosodic and 
affective traits in the speech production and comprehension 
of people with the disorder. However, the researchers 
ignored this part of Kanner's study in the decades that 
followed. Nevertheless, through prosody, we can detect the 
acoustic patterns that show the speaker's emotional status, 
one of the most visible symptoms in the atypical 
communication of people with ASD. Thus, during the last 
years, the research moved to the study of acoustic correlates 
while analysing these typical features of the disorder. 
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3. The Dataset 

The participants in the present study come from a pool of 
Italian-speaking children in a homogeneous geographical 
area from the region between Florence, Pistoia, and Prato. 
The corpus consists of audio recordings collected from two 
cohorts: children with ASD and their peers with typical 
neurodevelopment (TD). The data are balanced on the 
number of participants and their demographic 
characteristics. The children are 14 for each group with the 
same age (from 6 to 10 years) and sex (11 M, 3 F). Gender 
disparity is taken from the epidemiology of the disorder 
recorded by the DSM-5 (APA, 2013), i.e., four males every 
one female.  
The participants in the study were recruited from a previous 
project on discourse and storytelling in autism (Biancalani, 
2019), where the children were asked to tell a story from 
six pictures stimulating a semi-spontaneous speech during 
the interviews. The images illustrate a story about a 
birthday party and are easily interpretable by neurotypical 
children of different ages. The pictures come from the toy 
Shubi collection Storie da raccontare (in English, 'Story to 
tell'). The children from the ASD group were recruited 
from the speech and language therapy service of AUSL 
Toscana Centro and the Onlus foundation "Opera Santa 
Rita". The diagnosis was made by a neuropsychiatrist 
according to DSM-5 criteria. The data collection was 
carried out by a designed speech therapist in June 2019, 
after receiving the written consent of the caregivers of the 
children. The recordings were realised with a video camera 
placed on a tree-legged support. The setting was designed 
so that the child would feel comfortable. Therefore, the 
meeting was conducted in the room where they usually 
play. The interview started with activities generally done 
during the treatment session so the child would act in the 
most spontaneous way.  
It was necessary to conduct new data collection for the TD 
group. The recording was done for qualitative analysis in 
the previous study, and the audio quality was not good 
enough to realise an acoustic investigation. In particular, 
the background noise was so high that it was impossible to 
identify the child's voice automatically. It was attempted to 
denoise the recordings with the software Audacity, but this 
solution would have significantly changed the shape of the 
waveforms and their quality in general. The participants 
were chosen from the same geographical area and had the 
same demographic characteristics as those from the ASD 
group. Moreover, due to the COVID-19 pandemic, it was 
impossible to collect the data in situ, so the parents of each 
child did the recording using their phones. Even though we 
are aware that this might eschew our results, we consider 
that it will not have that significant impact because the 
storytelling task remained the same, and the quality of the 
recordings was high (i.e., there was no background noise). 

4. Extraction, Selection, and Classification 
of Acoustic Features 

In the present study, we decided to use the Munich open- 
Source Media Interpretation by Large feature-space 
Extraction (openSMILE) to extract the acoustic features. In 
the area of autistic vocalisation detection, this software has 
been used in previous studies, reaching satisfying results 
(Asgari & Shafran, 2018; Cho et al., 2019; Kim et al., 2017; 
Lee et al., 2013; Li et al., 2019; Marchi et al., 2015; 
Pokorny et al., 2017). After extracting the acoustic features, 

we selected the most statistically significant between the 
two groups of our dataset (ASD and TD). Then, we tested 
the features selection by implementing machine learning 
algorithms with a binary classification task. The role of 
training supervised learning methods is to classify them 
and show if they are significant in the speech production of 
people with ASD, according to the performance of each 
model. This model may evolve, through further studies, 
into a tool that helps the clinician determine whether Italian 
children have ASD at a young age. 

4.1 Methods 

We used openSMILE version 2.1, developed for the 
Interspeech challenge (Schuller et al., 2013). Among the 
feature sets currently available – i.e., GeMAPS (Geneva 
Minimalistic Standard Parameter Set), eGeMAPS (Eyben 
et al., 2015), and ComParE (Schuller et al., 2016) - we 
applied the second that was specifically ideated by its 
developers to become a tool used in paralinguistics and 
clinical speech analysis. 
Moreover, we chose this feature set over the other two 
proposed by openSMILE for several reasons. First, we 
decided against using ComParE, given that the size of the 
feature space (n = 6376) vastly outnumbers the sample size 
of our dataset. Furthermore, this would have caused our 
machine learning models to overfit, which is highly 
undesirable. On the other hand, we chose eGeMAPS over 
GeMAPS, given that the former extracts features based on 
their relation to various psychological changes in voice 
production (Eyben et al., 2015), which has proven useful in 
previous studies (Julião et al., 2020; Lee et al., 2020; 
Marchi et al., 2015; Memari et al., 2020; Pokorny et al., 
2017; Ringeval et al., 2016; Rybner et al., 2022; Schmitt et 
al., 2016). The acoustic features extracted by eGeMAPS 
are related to the frequency, energy, amplitude, and 
distribution on the spectrum. These are presented in Table 
1 - 3 with a short explanation extracted from Eyben et al. 
(2015; pp. 4-5). 
 
 

Features Explanation 

Pitch 
Logarithmic F0 on a semitone 

frequency scale, starting at 27.5 Hz  

Jiitter 
Deviations in individual consecutive 

F0  

Formants 1, 2, 3 

frequencies and 

bandwidth 

The centre frequency and the 

bandwidth of the first, second, and 

third formant  

Table 1: Frequency related features 

 

 

Features Explanation 

Harminics-to-Noise 

Ratio 

Relation of energy in harmonic 

components to energy in noise-like 

components  

Loudness 
Estimate of perceived signal intensity 

from an auditory spectrum  

Shimmer 
Difference of the peak amplitudes of 

consecutive F0 cycles  

Table 2: Energy and amplitude related features 
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Features Explanation 

Alpha Ratio  
Ratio of the summed energy from 50–

1000 Hz and 1–5 kHz  

Formants 1, 2, 3 

with relative 

energies 

Ratio of the energy of the spectral 

harmonic peak at the first, second, third 

formant's centre frequency to the energy 

of the spectral peak at F0  

Hammarberg 

Index 

Ratio of the strongest energy peak in the 

0–2 kHz region to the strongest peak in 

the 2–5 kHz region 

Harmonic 

difference  

H1–H2  

Ratio of energy of the first F0 harmonic 

(H1) to the energy of the second F0 

harmonic (H2)  

Harmonic 

difference 

H1–A3  

Ratio of energy of the first F0 harmonic 

(H1) to the energy of the highest 

harmonic in the third formant range (A3)  

MFCC 1-4 Mel-Frequency Cepstral Coefficients 1-4 

Spectral flux 
Difference of the spectra of two 

consecutive frames  

Spectral Slope  

0–500Hz and 

500–1500 Hz 

Linear regression slope of the logarithmic 

power spectrum within the two given 

bands  

Table 3: Spectral (balance) related features 

 

Once the acoustic features presented in Tables 1 - 3 were 
extracted, we selected the most statistically significant ones 
by implementing a non-parametrical statistical test, namely 
Mann-Whitney U-test (Mann & Whitney, 1947; Wilcoxon, 
1945). Thus, with the Mann-Whitney U-test, we tested 
whether the features had similar values between the two 
groups and selected the ones presenting the more 
significant distance. In the final discussion, we introduced 
the features selected by comparing them with those 
obtained by other studies. In doing so, we considered the 
different methods applied to the data collection and the 
analysis itself. 
Having irrelevant features can decrease the accuracy of 
machine learning models, especially when dealing with 
linear models such as support vector machines. On the 
other hand, the feature selection operated on clinical 
recorded data can lead to high performances of the 
classifier, which are not reproducible on new data 
considering all the speech production. This aspect produces 
a bias in the results obtained by the classifier when used to 
create a tool able to distinguish the speech productions of 
the disease. For instance, while performing the same task 
on people with Alzheimer Dementia’s speech, Luz et al. 
(2020) report that the performance evaluation metrics drop 
consistently if applied to the same dataset without 
performing the feature selection. However, this work aims 
to test the feature extraction effectiveness and not 
automatically classify ASD from new speech data. This 
goal could be reached by future studies conducted on larger 
datasets.  
We pre-processed the data obtained through feature 
selection to prepare it for the supervised learning methods. 
Then we normalised the data and implemented the K-fold 
Stratified cross-validation to train the models (k = 3). Thus, 
we split the training set into k parts, denominated folds. 
Next, we train a model that uses that fold as a validation set 

and the rest as its training set for each fold. This helps avoid 
overfitting the noise in the data. We split 80% for the train 
and 20% for the test sets. Given the small number of 
samples on our corpus (ASD = 14, TD = 14, total features 
= 16), the data processed on the sets were 22 by the train 
and six by the test sets.  
The machine learning methods implemented are all 
supervised: Decision Trees (DTs), K-Nearest Neighbours 
(KNNs), Random Forests (RFs), and Support Vector 
Machines (SVMs). First, we evaluate the performances of 
each model trained using different metrics: accuracy, 
recall, precision, F1-score, and Area under the Curve 
(AUC). Then, we chose the best ten models obtained by 
running each supervised method and comparing them with 
the others. Finally, we selected the best performing model 
of each method.  
All the computational steps are done by implementing 
different algorithms in Python (Chollet, 2021; Downey et 
al., 2012; Van Rossum & Drake, 2011) with the aid of the 
Jupyter Notebook (Kluyver et al., 2016). Moreover, all the 
machine learning methods performed are implemented 
using the Scikit-learn module for the Python programming 
language (Pedregosa et al., 2011). The code used is 
publicly available on GitHub: https://github.com/federica-
bcc/speech-autism. 

4.2 Results  

We extracted 88 parameters concerning the frequency, 
energy, and spectral distribution. Table 4 reports the 
parameters selected with their respective functionals in 
parenthesis (μ = mean, σ = standard deviation), the values 
obtained from both the groups with the number of outliers 
in parenthesis if found. The last column indicates the 
significance levels through the p-value (p).  
The best models of each supervised method reach high 
accuracy, with the highest being Decision Tree, Random 
Forest, and Support Vector Machine (accuracy = 83%), 
while the lowest KNN (accuracy = 67%). The AUC 
metric's highest values are reached by DT and SVM (AUC 
= 88%), while the KNN and the RF have lower 
performances (AUC = 75%). Tables 5 and 6 report the 
results obtained by the best model of each classifier on 
these metrics and the others (recall, precision, and F1-
score), both on the train and the test sets, respectively.  
On the other hand, Table 7 reports the mean of the 
evaluation metrics obtained by all the models for each 
method giving a clearer view of their overall behaviour on 
the classification task. 

4.3 Discussion 

In the present study, we analysed the speech production of 
Italian speaking children with ASD. Our corpus comprises 
28 audio recording files divided into two groups: 14 
children with ASD and 14 controls. First, we implemented 
the acoustic feature extraction using eGeMAPS provided 
by the openSMILE toolkit. Next, we extracted 88 
parameters for each audio file and selected the most 
statistically significant between the two groups. Finally, we 
implemented four supervised learning algorithms to test the 
validity of the feature selection.  
In the following sections, we discuss the features obtained 
with the feature selection (Section 4.3.1) and the results 
from the classification task (Section 4.4.2). 
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4.3.1 Typical Acoustic Features of ASD Speech 

To discuss the features selected, we divided them into 
thematic groups according to their linguistic qualities: 
frequency-related parameters (pitch and second formant), 
voice quality (shimmer, jitter, and Harmonics-to-Noise 
Ratio), loudness, and spectrum-related parameters (spectral 
flux and slope). 

Frequency-related parameters. The pitch is 
one of the main features of prosodic analysis. In general, 
there are opposite findings in the literature regarding the 
mean values of the pitch. The present study found higher 
values in this functional, but the difference between the two 
groups is not statistically significant. However, the 
increasing pitch could suggest chasing away the idea that 
the speech of people with ASD is robotic, monotonous and 
without melodic variation, as reported in the past literature 
(Kissine & Geelhand, 2019; Nayak et al., 2019; Olivati et 
al., 2017).  
We found interesting results on the standard deviation of 
the pitch falling slope. Moreover, even if not statistically 
significant, the same pattern is observed in the rising slope. 
These results confirm the high variation in the general 
prosody production, specifically on the intonation 
contours. Sharda et al. (2010) related these pitch excursions 
to their range and showed similarities to the one observed 
during "motherese" speech postulating a delayed 
developmental trajectory of speech. Nevertheless, even if 
interesting, Bonneh et al. (2011) disproved these results 
and showed that this trend does not always hold.  
Another explanation can be found in some interesting 
results on impairments controlling the cortical pitch. The 
most relevant finding on these assumptions is related to 
auditory processing in autism (Boddaert et al., 2004; 
Rosenhall et al., 1999). The research in this field has 
increased in the past few years, mainly thanks to neuro-
imaging techniques applied to experiments through a 
multimodal optic study.  

Feature ASD TD  p-value 

Pitch falling slope (σ) 168.81 ± 61.29 (0) 137.27 ± 130.12 (2) 0.0409* 

F2 Frequency (σ) 0.17 ± 0.013 (3) 0.15 ± 0.017 (0) 0.0030** 

F2 bandwidth (σ) 0.33 ± 0.038 (0) 0.38 ± 0.075 (1) 0.0326* 

Jitter (μ) 0.036 ± 0.008 0.024 ± 0.011 0.0094** 

Jitter (σ) 1.69 ± 0.21 (2) 1.88 ± 0.26 (1) 0.0094** 

Shimmer (μ) 1.23 ± 0.067 1.04+ 0.14 0.0016** 

Shimmer (σ) 0.46 ± 0.02 (1) 0.66 ± 0.16 (0) 0.0010*** 

Harmonics-to-Noise Ratio (μ) 5.04 ± 1.14 7.88 ± 2.10 0.0012** 

Harmonics-to-Noise Ratio (σ) 1.03 ± 0.29 0.64 ± 0.28 0.0016** 

Loudness (μ) 1.16 ± 0.44 0.82 ± 0.30 0.0508 

Loudness rising slope (σ) 7.87 ± 2.25 0.04 ± 0.02 0.0409* 

Loudness (Percentile 20.0) 0.59 ± 0.21 0.32 ± 0.18 0.0035** 

Spectral Flux (μ) 0.72 ± 0.38 0.42 ± 0.24 0.0366* 

Spectral Flux voiced segments (μ) 0.86 ± 0.43 0.51± 0.26 0.0409* 

Slope unvoiced segments, 0-500 Hz (μ) 0.056 ± 0.02 0.04 ± 0.02 0.0456* 

Slope unvoiced segments, 500-1500 Hz (μ) -0.0096 ± 0.0022 (0) -0.0027 ± 0.0071 (1) 0.0026** 

Table 4: Values of the acoustic features with statistical significance between the ASD and TD groups.   
Results are expressed as means ± standard deviations (n. outliers). Asterisks indicate when the group-related difference is 

significant under the Mann-Whitney U-test: * p < 0.05; ** p < 0.01, *** p < 0.001. 

Methods Acc. Rec. Prec. F1-sc. AUC 

DT 82 92 100 96 96 

KNN 77 83 77 80 77 

RF 77 67 89 67 78 

SVM 73 83 71 77 72 

Table 5: Values of the evaluation metrics obtained on the train 

set by the best models 

Methods Acc. Rec. Prec. F1-sc. AUC 

DT 83 100 96 80 88 

KNN 67 100 50 67 75 

RF 83 50 100 67 75 

SVM 83 100 67 80 88 

Table 6: Values of the evaluation metrics obtained on the test set 

by the best models 

Methods Acc. Rec. Prec. F1-sc. AUC 

DT 
68.2 

(16.40) 

100 

(0) 

54.5 

(13.50) 

69.5 

(11.46) 

76.3 

(12.92) 

KNN 
58.5 

(12.02) 

75 

(26.35) 

42 

(10.05) 

52.1 

(11.83) 

59.8 

(12.66) 

RF 
70.1 

(10.33) 

65 

(24.15) 

64 

(25.03) 

59.2 

(8.48) 

68.5 

(6.85) 

SVM 
79.8 

(6.75) 

95 

(15.81) 

63.6 

(7.17) 

77.4 

(5.48) 

84.9 

(5.44) 

Table 7: Means and (sd) of the evaluation metrics obtained on 

the test set by running the models ten times 
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Moreover, the extreme variation in the pitch values shows 
the difficulties of people with autism to perceive and, 
consequently, produce prosody in the same way as their 
peers (Olivati et al., 2017). This can lead to many 
difficulties in social interaction and communication 
because of the lack of others' speech intention 
comprehension than the production itself (Bonneh et al., 
2011). Moreover, on the correlation between production 
and perception, many studies conducted on the 
comprehension of the emotions communicated by the 
interlocutor show that children with ASD have less 
capacity than their peers. The same trend is reflected in 
their speech, especially in using different intonations to 
transmit each emotion (Chiew et al., 2017; Hubbard et al., 
2017; Schelinski & Kriegstein., 2019). 
Finally, another problem described in the literature is the 
influence of external factors on the recording and the 
inhomogeneity in extracting the correlations. First, the 
feature related to the formants, including the fundamental 
frequency, is sensitive to the speaker's age, gender, and 
height (Bone et al., 2014). Second, as reported in McCann 
and Peppe (2003), it would be expected that these 
descriptors for prosodic abnormalities should appear in 
many studies. However, the findings do not show coherent 
discussions because the evaluation measures are not well 
defined. 
For these reasons, in future studies, it will be interesting to 
investigate both the correlation of voice features to the 
personal characteristics of the speakers (age, gender, and 
height) and compare all the results with other studies that 
used the same metrics. 

Voice quality. The voice quality is measured as 
the difficulty in controlling the vocal fold vibrations, 
transforming the production into hoarseness, breathiness, 
and creaky voice. These irregularities can be quantified 
through the analysis of some features that "reflect 
mathematical properties of the sound wave" (Robin et al., 
2020; p. 102), such as the jitter for the pitch, the shimmer 
for the intensity and the Harmonics-to-Noise Ratio (HNR) 
for the description of the periodic and aperiodic acoustic 
propagation (Tsanas et al., 2011). The present study found 
interesting results on all these parameters, confirming the 
observations drawn by other investigations.  
Jitter and shimmer are related: the first measures 
periodicity in the speech signal, while the second the 
difference from a cycle to the next one. As done in other 
studies, these values were calculated using the local method 
by evaluating the pitch period and magnitude once per each 
span of the period (Boersma, 2001; Bone et al., 2012). 
However, they are also related to another aspect: they are 
valuable parameters to measure in a speech pathology 
analysis because the voice with language impairment is 
likely to have higher values than a healthy one (Styler, 
2021).  
In the present study, two populations are compared with the 
assumption that one of them (ASD) shows impairments in 
vocal production. The results we obtained from the jitter 
and the shimmer confirm this hypothesis. Indeed, the 
means are higher in the speech of ASD, with statistically 
significant differences described by the p-values obtained 
by the Mann-Whitney U-test (0.0094 for jitter and 0.0016 
for shimmer). However, the results are the opposite for the 
standard deviations. The findings suggest that these 

acoustic features vary consistently less in children with 
autism but have higher values on average. 
This trend has also been observed in previous studies. For 
instance, in Kissine & Geelhand (2019), the authors noted 
a highly statistically significant difference between these 
two parameters, with a higher rate in the production of ASD 
(jitter p < 0.001; shimmer p = 0.001). Moreover, their 
sample was composed by adults (mean age: about 28 years 
old) while, in the present study, the participants were 
children. Hence, future studies might explore if this trend 
is typical of autism throughout life, meaning a turning point 
in the early diagnosis of the disease. Indeed, the analysis of 
these correlations, combined with the pitch, intensity, and 
pause count, supports the hypothesis of assessing the 
speech modulation in ASD through studying the measure 
of dynamic-intonation variability (Bone et al., 2015).  
Moreover, the jitter and the shimmer show the noise 
present in the speech, and their values can be sensitive to 
its presence in the recording. For this reason, it is essential 
to analyse also the HNR that usually detects the friction in 
the vocal tract, attributed to hoarse, breathy, or laryngeal 
pathologies when it decreases significantly (Styler, 2021).  
In Bone et al. (2014), the mean of the HNR is shown to be 
strictly related to the jitter: when this latter increases, the 
other decreases. In the present study, we found this trend 
with significant results both on the means (jitter: p = 
0.0094**, HNR: p = 0.0012**) and on the standard 
deviations (jitter: p = 0.0094**, HNR: p = 0.0016**) that 
follows the opposite growth for both the mean and the 
standard deviation. 
The negative correlation between jitter and HNR is 
observed in many studies concerning the analysis of 
breathless, hoarseness and roughness voices, where they 
are also correlated to an increase in the cepstral values 
(Halberstam, 2004; Hillenbrand et al., 1994). McAllister et 
al. (1998) correlated in their studies the jitter to the breathy, 
hoarse, nasal speech and the shimmer to the breathiness, 
but no correlation with the cepstral values was found in this 
type of speech. In the same way, the present study did not 
find statistically significant results on these latter features. 
Bone et al. (2014) reported the same trend that we obtained. 
Therefore, we agree with the authors that it is necessary to 
conduct more analysis regarding voice quality to confirm 
this trend and to be able to use it during the diagnosis (Bone 
et al., 2014: 1173). 

The loudness. The loudness is defined as the 
energy intensity produced by a sound wave. We found a 
statistically significant difference on the 20th percentile (p 
= 0.0035), in the standard deviation (p = 0.0409), and in the 
general mean (p = 0.0508). Even if these functionals 
measure different distribution aspects, they all present the 
same trend, showing higher values for the ASD group. 
These results are confirmed in Bone et al. (2012), where the 
role of intensity in the perception of abnormal volume is 
underlined with the increasing rate of atypicality. 
Moreover, these findings suggest that ASD intonation 
might not be as monotonous as described in other studies 
since a higher variation influences the perceived 
expressivity in the intensity contours. Thus, loudness could 
measure the dynamic intonation of autistic speech 
production (Bone et al., 2015), especially in tasks where 
affective prosody is investigated (Hubbard et al., 2017). 
However, many researchers report the problem of having 
opposite results on intensity in the literature of reference. 
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For instance, in Mohanta et al. (2020; Mohanta & Mittal, 
2022), the authors reported higher values in ASD (Quigley 
et al., 2016; Filipe et al., 2014) but also lower (Scharfstein 
et al., 2011). Furthermore, in addition to a trend of papers 
that present lower intensity in autistic speech (Chevallier et 
al., 2011; Ochi et al., 2019), there is also a consistent 
number of papers that did not find statistically significant 
results at all (Diehl & Paul, 2012; 2013; Filipe et al., 2014; 
Grossman et al., 2010). Moreover, in many studies, the 
authors decided not to study the intensity levels to avoid the 
risk of obtaining unclear results (Bisson et al., 2014; 
Dahlgren et al., 2018).  
This difference in the results could be caused by the most 
reported problems: the recording environment and the 
microphone's position. The first cause reflects a common 
problem while doing a clinical speech collection and 
analysis since it is crucial to do so in a comfortable space 
for the patient. For the microphone, it would be necessary 
that all the participants wear it simultaneously from their 
mouths to ensure that all the variations are due to the actual 
speech production. 
For these reasons, we decided not to consider the results 
obtained as relevant for the present. However, further 
studies could solve these impediments by rethinking the 
data collection process based on these observations. 

Spectral-related parameters. In the present 
study, we found two spectral-related parameters with 
statistically significant results: the means of the spectral 
flux and the one from the slope of all the segments (voiced 
and unvoiced). Regarding the spectral flux, we found a 
statistically significant difference between both groups 
under all features extracted: voiced and unvoiced segments 
and the general mean that depends on them. Unfortunately, 
we did not find many literature studies for these features in 
the same context. Therefore, we hypothesised that these 
results show a trend typical of autistic speech. For example, 
Haider et al. (2019) report that jitter, shimmer, and spectral 
flux are valuable features to measure speech instability. 
Furthermore, using a speech sample from patients with 
dementia, the authors demonstrated that these features 
make the difference in higher accuracy levels between 
different classifiers. The same observation was done by 
Bonnet et al. (2011) regarding the spectral characteristics 
and the pitch values. However, we did not find any other 
relevant studies to confirm the importance of spectral 
features to detect ASD, but we found in Pokorny et al. 
(2017) the same trends as the present study. They also used 
eGeMAPS to extract the acoustic features and found results 
shared with ours. Indeed, the ten most significant features 
between ASD and TD groups are slope in the 0-500 Hz 
range of unvoiced segments and mean of the length of these 
and voiced segments. 
Furthermore, Volkmar (2017) posits the difficulty in 
registering the voice volumes visible on the spectrum 
because of the trend in autistic speech of having a small 
number of voice volumes that are usually louder than the 
typical speech. This trend may reflect the impairments in 
indicating areas of emphasis and higher values in some 
parameters, such as the spectral slope and flux. 
Further studies can clarify these results with more focused 
research on the spectral-related parameters and show 
whether the differences between the unvoiced and voiced 
segments are significant in the early detection of the 
disorder. 

4.3.2 Classification of Speech Samples through 
Machine Learning Algorithms 

The previous sections explained the methods and the 
results obtained by applying supervised machine learning 
methods to the feature selection applied to the dataset. The 
final aim of these implementations is to test whether these 
acoustic features are typical in the speech production of 
Italian-speaking children with ASD. Good results in the 
performances of the classifiers would confirm this 
assumption. Moreover, testing the effectiveness of the 
extraction represents a general evaluation of the feature set 
used (eGeMAPS) since it was proposed as a standard for 
clinical purposes in acoustic analysis (Eyben et al., 2015). 
The best DT, RF, and SVM models reach a high accuracy 
value (83%), meaning that the feature selection 
implemented obtained good results on the classifiers. 
Moreover, the DT, KNN, and SVM reach an optimal value 
of recall (100%) that indicates the recognition as true of all 
the acoustic features in the ASD speech.  
However, by comparing the metrics obtained by the four 
best models implemented, we can exclude KNN because it 
has a poor performance overall, presenting overfitting 
between the train and the test sets. 
Concerning RF, it had a decent performance without 
overfitting, and it is the model that reaches the highest level 
of precision (100%). Furthermore, it has the same values 
on accuracy as DT and SVM. However, these consistently 
outclassed RF for the other metrics, especially for the recall 
(50%).  
Between the DTs and the SVMs models, if we only look at 
Table 3, the first can be selected as the best classifier on 
this dataset. Moreover, it is the only one reaching a recall 
of 100% on the test set of all the models trained (Table 4). 
However, if we compare the results of all the models 
obtained by the k-folds average on the test set, it likely 
overfits more than RF and SVM. Half of the ten best 
models of all the ones trained for DT are good in the 
classification task, but the others tend to decrease their 
performances drastically from the train to the test sets. 
On the other hand, SVM reached high performances on 
almost all the evaluation metrics of the models trained. 
(Accuracy = 83% in eight models, Recall = 100%, 
Precision = 67% in nine models, F1-score = 80% in eight 
models, AUC = 88% in seven models out of ten).  
In the literature, we found the same trend in the 
implementation of supervised classifiers on the features 
extracted by eGeMAPS (Asgari & Shafran, 2018; Lee et 
al., 2020; Li et al., 2019; Pokorny et al., 2017; Rybner et 
al., 2022; Schmitt et al., 2016). Shahin et al. (2019) used 
the same SVM model and described it as the most 
performant compared to GeMAPS, the previous features 
set. The linear kernel on SVM was also used in Li et al. 
(2019), and the authors aimed to reach high performances 
since this supervised method is the best to use when dealing 
with small datasets. 

5. Conclusion 

The present work analysed the speech production of Italian 
speaking children with Autism Spectrum Disorders (ASD) 
compared with their peers with typical neurodevelopment 
(TD). Unfortunately, there are no other similar studies on 
Italian compared with other languages to the best of our 
knowledge.  
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The main aim of this study was to determine whether the 
features reflected in both the qualitative and quantitative 
literature for English and other languages are also relevant 
for autistic production in Italian. Therefore, we performed 
an acoustic analysis on a specific dataset and implemented 
different types of supervised machine learning methods.  
Our findings show that in the speech of Italian children with 
ASD, some typical acoustic features can be extracted and 
analysed as previously done in other languages. 
Furthermore, this task can be done using the extended 
Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) 
by considering the small sizes of the dataset used. 
However, further studies need to consider a larger 
collection of data and compare the performance of different 
feature subsets. In this way, it would be possible to create 
a standard set of typical acoustic features for children with 
ASD. The next step will be the ideation of a tool from a 
classifier able to distinguish the typical productions of the 
disorder from the not typical ones. 
Further studies can analyse pitch and intensity features by 
paying attention to the recording process to satisfy all the 
requirements. However, due to the necessity of maintaining 
some environmental comforts for the patients in a clinical 
condition, we assume it is important to rethink the 
recording process to satisfy these requirements and collect 
audio data. Moreover, as pointed out by De La Fuente et al. 
(2020), the studies should use the same feature set to 
conduct the feature extraction to have the possibility to 
better compare the results between different languages. 
To conclude, most of the problems found in this work 
concern the quality of recordings and the dataset size. 
However, the results obtained on the features extraction 
and classification are promising for developing a tool that 
can help the clinician diagnose the disorders at a young age. 
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Abstract
The corona pandemic and countermeasures such as social distancing and lockdowns have confronted individuals with new
challenges for their mental health and well-being. It can be assumed that the Jungian psychology types of extraverts and
introverts react differently to these challenges. We propose a Bi-LSTM model with an attention mechanism for classifying
introversion and extraversion from German tweets, which is trained on hand-labeled data created by 335 participants. With this
work, we provide this novel dataset for free use and validation. The proposed model achieves solid performance with F1 = .72.
Furthermore, we created a feature engineered logistic model tree (LMT) trained on hand-labeled tweets, to which the data is also
made available with this work. With this second model, German tweets before and during the pandemic have been investigated.
Extraverts display more positive emotions, whilst introverts show more insight and higher rates of anxiety. Even though such a
model can not replace proper psychological diagnostics, it can help shed light on linguistic markers and to help understand
introversion and extraversion better for a variety of applications and investigations.

Keywords: NLP, COVID-19, Implicit Motives, Introversion, Extraversion

1. Introduction

The first cases of individuals reportedly being infected
with the SARS-CoV-2 or COVID-19 virus appeared in
December of 2019. Ever since, a global pandemic of this
highly infectious disease has emerged, which has been
met with countermeasures. Those countermeasures in-
clude social distancing and temporary lockdowns (Bal-
asa, 2020). Governments stand in the dichotomy of
restricting social and public interactions as a measure
of safety and risking the mental health of the people af-
fected, as reports of declining mental well-being emerge
(Hämmig, 2019).
Even though professional mental consultation and sup-
port do exist, it is difficult to identify and contact heavily
impacted individuals (Lester and Howe, 2008). The di-
rect approach would not be feasible, as it would tie up
the capacities of mental health workers. Broad infor-
mation campaigns might cause high costs and still not
reach individuals in need. Lastly, affected people might
not even be aware of their mental health risks and thus
not reach out to available mental health consultations.
Depression detection systems or even sentiment analy-
ses of e.g. social media posts could potentially support
mental health workers (Coppersmith et al., 2018). But
those systems often rely on sufficient self-reports or
on topics of mental health or loneliness being directly
discussed, which require the individuals to already self-
reflect and openly discuss their well-being, resp. the
decline thereof (Zirikly et al., 2019).
Furthermore, the well-established safety net of e.g. ed-
ucational facilities, whose staff could identify troubled
individuals, can be unavailable due to the lockdown

restrictions. Thus, it might be worthwhile to explore
alternative and ideally automated approaches. Carl Gus-
tav Jung researched psychological types (also known as
psychological archetypes, (Jung, 1921)), and proposed
two perceiving types – sensation and intuition – and
two judging types – thinking and feeling. Furthermore,
those types are moderated or influenced by the main
attitude – extraversion and introversion.
Mental health detection often focuses on introverts due
to their self-inflicted distancing and more frequent occur-
rence of signs of depression compared with extraverts.
Recent empirical research on the effects of the pandemic
confirms those findings (Wei, 2020). Other findings,
however, contradict those results and report empirical
findings of extraverts’ suffering to be comparably worse
(Wijngaards et al., 2020).
As with many psychometrics, manual assessment of
psychology types can be costly (Johannßen et al., 2019).
Furthermore, burdened individuals might not be reach-
able by broadly conducted surveys amongst a popu-
lation. Thus, automation of those types with a focus
on introverts and extraverts might reveal the additional
potential for identifying individuals in need of support.
Therefore, with this work, we aim to classify the Jun-
gian psychological types of extraversion and introver-
sion from German text and to apply such a model to
utterances in 2019 compared with 2020 to investigate
whether there are noteworthy well-being differences.
In this work, we will first discuss related work to auto-
mated psychometrics, depression detection, and some
psychometrics in Section 2. Thereafter, the basics of the
Jungian psychological types will be laid out in Section
3. The implicit personality test (IPT) utilized in this

31



work is described in Section 4, followed by the descrip-
tion of the dataset for training neural models and for
identifying anxious individuals in Section 5. Section 6
discusses the methodology and approach. The results
will be presented in Section 7 and will be discussed in
Section 9. We conclude our findings in Section 10 and
discuss future outlooks.

2. Related Work
The automated assessment of personality or personal-
ity traits is a rather recent application domain. Whilst
earlier approaches relied more heavily on rule-based
systems, themselves mostly divided into wordlist-based
versus corpus-induced methods (Johannßen and Bie-
mann, 2018), machine learning has become more widely
utilized in recent years (Mehta et al., 2019). Accord-
ingly, the MBTI and the five-factor model of personality
(also called Big Five, (Goldberg, 1993)) have been (An-
gleitner, 1991) and are amongst the most widely utilized
personality tests, both of which rely on the Jungian
psychological typologies (see Section 3).
Jungian types have successfully been classified from
natural language texts by employing a BERT model by
Keh et al. (2019). For training their model, the authors
scraped data from a self-reporting web forum. The
resulting model was utilized for generating personality-
induced natural language texts.
The effects of the COVID-19 pandemic have been re-
searched extensively during its outbreak at the end of
2019. Johannßen & Biemann (2020) analyzed social
unrest indicators on the application of the pandemic
and found that an increase of an implicit motive power
paired with a self-regulatory passive coping with fears
were correlated with signs of crises.
Empirical research on the impacts of the COVID-19
pandemic on introverts and extraverts is somewhat con-
tradictory. Whilst some recent works found extraverts
to be more in danger of mental health degradation (Wi-
jngaards et al., 2020; Gubler et al., 2020), other works
come to the opposite conclusion (Wei, 2020).

3. Jungian psychological typologies
In “Psychological Types”, Jung (1921) distinguished
two main types, the Persona, and the Shadow. Whilst the
Persona of a person is being shown to the environment
and is individualistic, the Shadow remains disguised
and is part of a collective unconsciousness. With this
view, Jung differed from his tutor Freud to the extent
that Freud assumed for the psyche to only be individual.
Jung, on the other hand, assumed for humanity to share
a collective unconsciousness, which manifests in the
form of collectively shared psychological types, that
determine our intrinsic desires.
Accordingly, there are two main types, namely the ex-
traverts (e), and the introverts (i). A person either be-
longs to the former or the latter. Those two types moder-
ate (i.e. influence) all other types, namely sensation (s)

vs. intuition (n), thinking (t) vs. feeling (f), and judging
(j) vs. perceiving (p).
Based on Jung’s psychological types, many psychologi-
cal tests, and psychometrics emerged thereafter, partly
applying the theory directly or extending it. The modal-
ity and methodology of measuring types are versatile.
Some employ direct questionnaires (e.g. the original
Myers-Briggs Type-Indicator (MBTI), (Myers et al.,
2000)), some employ visual assertions (e.g. the visual
questionnaire or ViQ, (Scheffer and Manke, 2018)) and
others analyze natural language (e.g the IPT, which will
be described in Section 4).
Even though many of those testing procedures were
not psychologically asserted in terms of reliability, sta-
bility and validity (e.g. the Big Five or MBTI), those
psychological tests that are based on Jung’s psychologi-
cal types have nevertheless frequently been utilized for
typing individuals, and were correlated with behavioral
observations (Rammstedt et al., 2018).

4. Implicit personality test (IPT)
It is difficult to measure the psyche or personality di-
rectly (Fried and Flake, 2018). The research field of
psychology has developed and researched different ap-
proaches for measuring manifestations of the underly-
ing mental processes, all of which have advantages and
shortcomings. E.g. psychoanalysis tries to assume cog-
nitive mechanisms and past events in dialogues, whilst
behaviorism strictly limits statements on empirical and
reproducible observations (Mahoney, 1984). Both ap-
proaches require controlled environments, extensive
manual labor, and time. Testing procedures try to de-
termine personality traits with limited time and budget
and thus oftentimes balance reliability (i.e. are results
reproducible?), validity (i.e. do results correspond to
other observations and measures?), and limited testing
resources (Schultheiss and Brunstein, 2010, p. 76f).
Some personality testing procedures utilize question-
naires with high reliability. However, standardized sur-
veys and direct questionnaires at times suffer from socio-
expectation bias, i.e. participants rather worry about,
what testing personnel might think about them, when
answering a question in a certain way, rather than an-
swering freely. This bias can occur if the intentions of
questions can be guessed or are assumed (Bogner and
Landrock, 2016).
Implicit or projective testing procedures overcome this
shortcoming by providing participants with ambiguous
and situational imagery and asking them to answer ques-
tions e.g. who the main character is and what that indi-
vidual experiences and feels. Those projective methods
reveal intrinsic desires. Since there is no socially ac-
cepted or wrong answer, the socio-expectation bias is
said to be less severe. However, projective methods
have been criticized for their reliability (Schultheiss and
Brunstein, 2010, p. 119ff).
The IPT is such an implicit test and confronts partici-
pants with imagery such as displayed in Figure 1. Par-
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ticipants chose the main person and answer questions
about what is happening and how that person feels.
Some of those answers, manually labeled with either
i (introvert) or e (extravert) are displayed in Listing 1.
The human annotators are psychologists and receive
extensive training, which initially is wordlist centered
but shifts to narrations over time1. The IPT is based
on the MBTI and has mainly been utilized for business-
oriented aptitude diagnostics.

Figure 1: During the IPT, participants are presented
with projective imagery, to which they answer questions
such as who the main person might be and what that
person is experiencing. Such projective or implicit tests
are designed to reveal intrinsic desires (Schultheiss and
Brunstein, 2010).

I S i e s i e h t i h r e Sch ü l e r . das d i e
Sch ü l e r nach hause gehen . g e n e r v t

E E r k l ä r t jemandem etwas . Es
r i c h t i g zu machen . Er kann es

−−−−−−− T r a n s l a t e d from German −−−−−
I she s e e s h e r s t u d e n t s . Tha t t h e

s t u d e n t s go home . Annoyed
E E x p l a i n s some th ing t o someone .

To do i t r i g h t . He can do i t

Listing 1: Short examples of answers given during the
IPT and corresponding manual labels

5. Data
Since manually asserting natural language texts on in-
troversion or extraversion is costly and would not be
scalable, we will first train a neural model (see Section
6) on the data described in this section. We collected
German natural language textual data before and from
the COVID-19 pandemic and apply said model to this
data set. Furthermore, we train in-domain Twitter mod-
els.
Model training data
The German natural language textual data utilized for
creating the model was collected by a company spe-

1For a closely related testing procedure, please refer to
Kuhl & Scheffer (1999)

cialized in aptitude diagnostical testing2 and is being
made public for free use and validation3. 2,680 textual
answers to provided projection imagery were given by
335 individuals. The population was drawn from the
workforce with ages ranging from 18 to 65. Further
demographic information was omitted under German
data protection laws. The data has been split by sepa-
rating participants into training (~90%, n=2,360), de-
velopment, and held-out testing data sets (~5%, n=160
each). Since all 8 answers per participant remained in a
data set without being shuffled and separated, we aim
to increase the generalization of the model (i.e. rather
training to learn the target label and not perform speaker
identification). The distribution of answers labeled as
extraversion is displayed in Table 1. The two labels
are distributed unevenly with the vast majority being
extraversion (67.4% of all labels with comparable distri-
butions overall data sets). Answers consist of an aver-
age of 42 words and thus can be considered short texts.
Each answer has been manually labeled with the four
typology pairs. Compared to data sources like Twitter,
the training data is rather clean without a lot of noise
such as spelling mistakes, spam, or unusual characters.
The Kohen’s Cappa measure for annotator agreement
on the task of extraversion and introversion IPT scores
K = .47 – only moderate agreement (McHugh, 2012).

# extra 8 7 6 5 4 3 2 1 0
% 9.7 22.0 21.4 17.3 13.5 8.5 5.9 1.5 .3

Table 1: Distribution of answers labeled as extraversion
in the training material. The upper row displays the
counts of answers labeled as extraversion per partici-
pant (8 answers in total), the lower row displays the
corresponding percentages. 67.4% of all instances were
labeled with extraversion and 32.6% with introversion.

Experimental data
One goal of this work is to research transferability across
different data domains, namely from the IPT to tweets.
Before utilizing any model for validation purposes on
tweets, we first need to measure transferability. For this
validation data, we sampled 1,100 tweets from a corpus
described hereafter, and had them manually labeled by
experts on extraversion and introversion. The agree-
ment scores K = .68 – which is a strong agreement
(McHugh, 2012). The data is also made available4.

Validation data
The experimental data was drawn from Twitter5, a

2WafM Wirtschaftsakademie GmbH https://www.
wafm.de/.

3https://www.inf.uni-hamburg.
de/en/inst/ab/lt/resources/data/
ipt-introextra-2022.html.

4https://www.inf.uni-hamburg.
de/en/inst/ab/lt/resources/data/
ipt-introextra-2022.html.

5Twitter https://www.twitter.com
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micro-messaging service. The service offers an API
for downloading 1% of the worldwide traffic of the so-
cial network (Gerlitz and Rieder, 2013). Since the goal
of this research is to find new ways of identifying in-
dividuals in need during the COVID-19 pandemic, we
crawled the Twitter API for the period from March to
May 2019 and from March to May 2020. Linguistically,
the samples are comparably similar (e.g. equal aver-
age lengths, equal part-of-speech (POS) tags, sentence
lengths, etc).
The crawled instances were filtered by a German flag
to only include posts from German individuals. Fur-
thermore, we filtered non-German samples via language
detection (Google translate python library6.). Besides
the texts themselves, the field date time was included,
which functions both as an identifier hence the inclusion
of milliseconds, and as an inclusion criterion for the
experimental setup. In total, 10,000 instances were sam-
pled, 5,000 per time period (2019, 2020). An answer
from 2019 contains 19.77 words on average and 19.76
from 2020, which makes this a short-text classification
task. Bias effects have to be assumed when comparing
two different time periods. We aimed to reduce this bias
by spreading the selection period over three months,
hence selective topics like sports, weather, or cultural
events should not overshadow the overreaching effects
the pandemic might have.

6. Methodology
In this methodology section, we propose a two-stage
approach to asserting domain transferability, describe
two employed model architectures, and present the ex-
perimental setup.

Two-stage approach
Since there is a considerable difference in labeled data
quality and availability between the training data from
the IPT and the experimental validation data from Twit-
ter, and since it can be assumed that domain transferabil-
ity does not produce convincing results, we propose two
consecutive experimental stages: i) first, we will train
two models from previous experiments (Johannßen et
al., 2019; Johannßen and Biemann, 2020) on the IPT
data set and validate them on the Twitter dataset, and
ii) secondly, we will train those models directly on the
Twitter validation set. We critically evaluate transfer-
ability and validation applicability, as it is often aspired
when performing NLP on psychological textual data
(Stajner and Yenikent, 2021; Plank and Hovy, 2015a).

Bi-LSTM attention Model
Previous work on German natural language textual data
with a focus on psychological measures have resulted
in a viable model, which has reached state-of-the-art
results on a shared task dataset and is being utilized for
this work as well (Johannßen et al., 2019; Johannßen
and Biemann, 2020).

6https://pypi.org/project/googletrans/

The first model is displayed in Figure 2 and consists of a
bi-directional long short-term memory (LSTM, (Hochre-
iter and Schmidhuber, 1997)) neural network, combined
with an attention mechanism.

Figure 2: The employed model is a bi-directional long
short-term memory neural network, combined with an
attention mechanism (image by (Zhou and Wu, 2018)).
This type of architecture allows for the model to observe
the input from both sides, left and right. The attention
supports algorithmic decisions made and at times allows
for an analysis of more algorithmic important parts of
an input or instance.

In addition to weight connections between each layer
to its successor, LSTMs (a special type of Recurrent
Neural Network (RNN)) also possess connections be-
tween units of the same layer. Furthermore, LSTMs
possess a so-called forget gate, which can control which
part of an unlimited memory to keep for decisions and
which to forget. A bi-directional network combines both
directions – forward and backward – of input and con-
catenates the impacts of a token in dependence of the
previous and following context of this token. Lastly, the
attention mechanism (Bahdanau et al., 2014) models
the algorithmic importance of a network by multiplying
hidden states with an alignment score to create a context
vector, which then gets concatenated with a previous
output.
The model is constructed with 5 layers (1 input, 3 hid-
den, 1 output) and contains 256 units in each hidden
layer. Input tokens are represented by 300-dimensional
fasttext embeddings, pre-trained on Common Crawl7

and Wikipedia8 (Grave et al., 2018). As optimizer we
chose Adam (Kingma and Ba, 2017) and the loss was
calculated via cross-entropy. Training parameters were
set to a step-width of 1e-6, a dropout rate of .5, and
mini-batch training of size 32 in 50 epochs.
Logistic Model Tree (LMT) Model
Since previous approaches (Johannßen et al., 2019) have
shown strong results from trained logistic model trees
on small datasets (LMT, Landwehr et al. (2005)), we
trained an LMT, which is a decision tree with logistic
regressions at its leaves, as a second model to be con-
sidered. We performed feature engineering but opted

7Common Crawl, https://commoncrawl.org/.
8Wikipedia, https://www.wikipedia.org/.
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for two different sets of hand-crafted features: one set
of features for modeling the IPT and one set of features
for modeling the same task on tweets directly.

IPT LMT: As described in our previous work (Johan-
nßen et al., 2019), for firstly engineering the IPT fea-
tures, the texts mostly were tokenized and processed per
token. Engineered features were the type-token-ratio,
the ratio of spelling mistakes, and frequencies between 3
and 10 appearances. Further features are LIWC and lan-
guage model perplexities. The psychometric dictionary
and software language inquiry and word count (LIWC)
was developed by Pennebaker et al. (1999) and later
transferred to German by Wolf et al. (2008). LIWC is a
simple wordlist-based but well-established tool amongst
psychologists and has been utilized for both, the private
sector and research. When analyzing a text, LIWC in-
crements categories (i.e. positive emotions, cognitive
processes, or anxiety) based on matching dictionary
terms per category, which have previously been psy-
chologically validated (Wolf et al., 2008). E.g. the
category family contains words such as sister, father,
mother, mom, etc. The counts per category then get
normalized over the length of the input. The results are
percentages of words belonging to each category. The
German LIWC allows for 96 categories to be assigned to
each token, ranging from rather syntactic features such
as personal pronouns to rather psychometric values such
as familiarity, negativity, or fear. Part-of-speech (POS)
tags were assigned to each token and thereafter counted
and normalized to form a token ratio. We trained a POS
tagger via the natural language toolkit (NLTK) on the
TIGER corpus, assembled by Brants at al. (2004) and
utilizing the STTS tagset, containing 54 individual POS
tags.

We trained a bigram language model for each class and
incorporated Good-Turing smoothing for calculating the
perplexity. During training, we tuned parameters (e.g.
which smoothing to use) via development set and tested
the model with the held-out test set. The perplexity of

a model q is: 2−
1
N

∑N
i=1 log2 q(xi) , with p being an

unknown probability distribution, x1, x2, . . . xN being
the sequence (i.e. the sentence) drawn from p and q
being the probability model.

Twitter model: Secondly, we engineered features for
the same task on the labeled Twitter data directly. For
the class extraversion, the most influential tasks reflected
upon stimulus from the outside, such as many add sym-
bols (@) and hashtags (#), plural forms, and plural pro-
nouns. Furthermore, multiple exclamation marks (often
used by German speakers to emphasize and shout), in-
stances written in all caps, and emojis indicate extraver-
sion in tweets. As for introversion, mostly the opposite
features indicate the class: only few emojis, exclama-
tion marks, hashtags, or add symbols. Singular forms
and singular pronouns indicate introversion, as well as
lowercased tokens (unusual in German, since common
and proper nouns are spelled with an initial uppercase).

Pre-processing
Since additional features did not enhance the model’s
performance metrics in preliminary experiments, we
decided against adding any (e.g. POS tags, spelling
mistakes, or linguistic inquiry and word count ( LIWC,
(Pennebaker et al., 2007; Wolf et al., 2008)) category
counts). We follow the pre-processing steps by Johan-
nßen & Biemann (2020) by removing stop-words, num-
bers, emojis, or Twitter-typical special characters, as
well as auto-correcting spelling mistakes. 1.000 remain-
ing pre-processed tweets were drawn.

Experimental setup
As described in Section 1, there are contradictory empir-
ical findings on whether introverts or extraverts are more
mentally challenged during the pandemic. To investi-
gate this contradiction, we collected data from 2019 and
2020, as described in Section 5. The proposed models
(see Section 6) will be trained on the task of classifying
extraverts and introverts by their use of natural textual
language and will thereafter be utilized for classifying
labels to the tweets from 2019 and 2020. Finally, we
will divide extraverts and introverts of both years and
investigate their linguistic tone and mood. This inves-
tigation will be performed by the use of LIWC. From
those LIWC category word percentages, we will investi-
gate, whether the tone of extraverts and introverts have
significantly changed and in which way.

7. Results
Model benchmarks
Firstly, we performed benchmarks to confirm our model
choices. The Benchmarks displayed in Table 2 have
shown that the proposed Bi-LSTM model with attention
mechanism achieves the best results on this classifica-
tion task, even outperforming a BERT base model. It
can be assumed that BERT base fails to capture the task
due to little training data and diverging content mean-
ings compared with everyday use of language (Ezen-
Can, 2020).

Model Accuracy Precision Recall F1 Score
BERT base .70 .49 .70 .58

CNN .72 .70 .72 64
LMT + features .66 .65 .66 .65

RNN .66 .64 .66 .65
Self attention .68 .71 .68 .69

LSTM .73 .70 .73 .69
Bi-LSTM attn. .71 .73 .71 .72

Table 2: Benchmark performances of different model
architectures. The proposed Bi-LSTM model with atten-
tion mechanism achieves the highest F1 score. Whilst
oftentimes BERT outperforms other architectures, the
employed BERT base might fail to capture the signals
due to diverging content meanings compared with ev-
eryday language use (Ezen-Can, 2020).

IPT model performances and Twitter validation
The confusion matrix of the IPT Bi-LSTM is displayed
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in Table 4. The current state-of-the-art (SOTA) approach
for classifying English introversion and extraversion by
Plank & Hovy (2015b) scores F1 = .72. Even though
those scores are not comparable due to the differing
languages and datasets, the proposed model nonethe-
less achieves comparable results with F1 = .72 on the
task with German textual data. The performance of the
IPT LMT model is slightly worse than the performance
of the Bi-LSTM attention model with F1 = .69 with
perplexity (and thus introversion/extraversion bigram
language models) being the discriminating feature on
its root node.

Model Bi-LSTM att. LMT
Precision .736 .693

Recall .7125 .685
F-Measure .7203 .689

Table 3: Bi-LSTM attention model and LMT model
performance measures of precision, recall, and the F-
measure for the task of classifying the Jungian psychol-
ogy types of extraversion and introversion. The model
was trained on the IPT.

Predicted

A
ct

ua
l

Extra Intro Σ
Extra 83 29 112
Intro 17 31 48

Σ 100 60 160

Table 4: The confusion matrix of the Bi-LSTM attention
model on the IPT classification task test set.

Despite the proposed Bi-LSTM model scoring well on
the held-out test IPT dataset, it does not validate well
on the experimental Twitter dataset. When utilizing this
model on a held-out test set (n = 160) of the 1,000
hand-labeled tweets and measuring its performance, the
model scores F1 = .5, indicating uninformed decisions
based on chance. The same can be observed for the
proposed IPT LMT model, which scores an even worse
F1 = .3, rendering it unapplicable for cross-domain
tweet classification.
In-domain Twitter model and validation
The proposed Bi-LSTM model with attention mecha-
nism fails to capture the aspects of introversion and
extraversion from the small Twitter dataset. The model
scores a mere F1 = .4 on the Twitter held-out test set
and thus is not applicable for being utilized for any
further predictions.
In contrast to the Bi-LSTM model, the feature en-
gineered and in-domain trained LMT twitter model
achieves good results on the held-out Twitter test set
with F1 = .69. The LMT model’s confusion matrix
is displayed in Table 5, showing that the model per-
forms sufficiently well on both classes and especially
introversion, which seems to be harder to model in gen-
eral (Stajner and Yenikent, 2021). Influential features

include the POS tags KOUI, PPOSAT, VAPP, and pro-
nouns, as well as LIWC categories Other, Past, School,
and Physical. Lastly, frequencies of exclamation marks,
hashtags, emojis, and add tags.
From those results, we can conclude that the out-of-
domain transferability between IPT models and tweets
does not validate. The Bi-LSTM model performs well
on the IPT but fails when being trained directly on the
Twitter dataset. The LMT IPT model performs slightly
worse. When training a feature-engineered LMT di-
rectly on tweets, it performs sufficiently. Hereafter, we
will only discuss the IPT Bi-LSTM and Twitter LMT.
Additionally, we will utilize the Twitter LMT for further
validation studies on the Covid-19 validation dataset
described in Section 5.

Predicted

A
ct

ua
l

Extra Intro Σ
Extra 37 21 58
Intro 13 37 50

Σ 50 58 108

Table 5: The confusion matrix of the LMT model on the
Twitter data test set.

Error Analysis
The employed attention mechanism at least partially al-
lows for the investigation of the algorithmic importance
of single input tokens for the IPT Bi-LSTM classifi-
cation task at hand. As Kain & Wallace (2019) point
out, the distribution of attention weight mass does not
necessarily correspond to the underlying theories of the
task at hand. However, in earlier work, we have ex-
plored the attention weights of the proposed model in
more depth and found them to be in line with implicit
test theory (Johannßen and Biemann, 2019). With the
limitations and the possibility of some explainability
in mind, we present the attention weight mass during
the training phase in Table 6. Those tokens with higher
mass indeed appear to correspond with the psycholog-
ical theory of introversion and extraversion. In those
examples, calmness is rather associated with introver-
sion and togetherness rather than extraversion.

use
verwenden

create
erschaffen

calm
ruhe

work
arbeit

being absorbed
vertieft intro

together
gemeinsam

ideas
ideen

neighbour
nachbar

trust
vertrauen

poem
gedicht extra

Table 6: Visualization of the attention weight mass per
German token with corresponding translations during
the training phase. Pre-processing steps were applied,
e.g. stop-words removal (thus the choppy utterances).
The tokens that received the highest mass do correspond
with the psychological theory of extroversion vs. in-
troversion (in this example calmness for introverts vs.
togetherness for extraverts).

The errors made by the IPT Bi-LSTM attention model
are displayed in Table 7. Very short and uncontextual-
ized answers were more often mistaken by the model
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and classified incorrectly. Furthermore, instances that
require broader world knowledge (e.g. holding a rope
being equivalent to team mountaineering) were misclas-
sified.

Label Text Pred.
E King kills; kills; drill in his hand I
E Hears his volleagues; to understand everything I
I Persons climbing; secures rope; in focus; reaction E
I sees landscape; holds rope; feels responsible E

Table 7: Errors made by the Bi-LSTM attention model.
Apparently, short answers and those that require broader
world knowledge were difficult to model. The labels
read E for Extraversion and I for Introversion.

The LMT Twitter model made similar mistakes as the
IPT Bi-LSTM model, which indicates, that despite the
data sources being different (IPT vs. tweets), there are
overreaching linguistic challenges when attempting to
model the task of classifying Jungian introversion and
extraversion. Once again, short and noisy instances are
prone to being misclassified, as well as those instances,
which require world knowledge. This is in line with the
findings from Stajner et al. (2021) on why the MBTI
(including introversion and extraversion) is difficult to
model.

8. Twitter LMT Model & LIWC
categories

The most precise method of identifying individuals in
need of support would either be self-reports or medical
diagnoses made by trained physicians. Both information
are sparse and those individuals with the most severe
threat of mental suffering oftentimes do not self-report
their struggling or visit facilities. With limited infor-
mation, we aim to determine whether classifications of
introversion and extraversion differentiate the observed
tweets not only into those two psychological types, but
also into groups that are challenged by the pandemic at
different levels.
As described in Section 6, we utilize the psychological
dictionary tool LIWC. Table 8 displays those results. Six
LIWC categories were investigated that correspond to
mental health and the social background (Pennebaker et
al., 2007). Those are inhibition positive feeling, insight,
anxiety, sad, sex and eat.
Table 8 is divided into three table paragraphs. The first
displays tweets classified as introversion from 2019
compared with 2020. The second table paragraph dis-
plays tweets classified as extraversion, and the third
table paragraph compares the whole instance data set
without this introversion/extraversion differentiation in
order to provide a comparison point (whether those
changes are specific for either of the two psychological
types or are present in the entire data set).
Even though we investigated the changes from 2019
compared with 2020 a confounding analysis showed
differences in LIWC categories between extraversion
and introversion in multiple categories, including those

in Table 8, indicating an unrecognized explanatory vari-
able.

Inhibition Positive
feeling Insight Anxiety Sad Sex Eat

In
tr

ov
er

si
on ’19 .27 .20 1.35 .12 .34 .33 .13

’20 .31 .21 1.71 .20 .28 .25 .09
∆ .04 .24 .36 .08 -.06 -.09 -.04
% 12.4 3.7 22.1 40.3 -21.8 -35.0 -56.7

E
xt

ra
ve

rs
io

n ’19 .29 .21 1.54 .13 .31 .24 .13
’20 .27 .27 1.57 .12 .37 .35 .17
∆ -.02 .06 -.03 -.01 -.07 .10 .04
% -7.1 24.2 3.0 -9.8 18.9 30.1 26.7

C
on

tr
ol ’19 .28 .21 1.42 .12 .33 .30 .13

’20 .29 .23 1.65 .16 .32 .29 .12
∆ .01 .04 .23 .04 .01 -.01 .01
% 5.2 13.3 14.9 26.2 -2.7 -3.3 -8.6

Table 8: The first table paragraph displays psychologi-
cal LIWC categories per instance with noticeable fluc-
tuations from 2019 compared with 2020, which were
classified as introversion. The displayed LIWC values
represent the percentages of words of an instance (i.e. an
answer) belonging to a category. In each case, the first
row displays the LIWC category counts in 2019, the sec-
ond in 2020, the third displays the absolute differences
(∆), and the fourth row displays the relative percentage
difference. The second table paragraph displays the
corresponding LIWC categories for extraversion predic-
tions. A control investigation is displayed in the third
and last table paragraph, where all instances from 2019
are compared with 2020 as a point of comparison of the
change magnitudes.

Table 8 shows some fundamental differences between
the groups of tweets classified as introverted and ex-
traverted. Accordingly, inhibition declined for rose
by 12%, whilst having increased by 7% for extraverts.
While positive feelings barely changed for introverts,
they increased by 24% for extraverted. Insight was
greatly increased for introverts (+ 22%). The big dif-
ference occurs for anxiety, which sharply increased by
40% for individuals classified as introverts, whilst hav-
ing declined roughly 10% for extraverted instances.
Noteworthy, sad did increase for extraverts (+19%),
whilst having decreased for introverts (-22%). The cat-
egory includes utterances such as crying, grief, or sad-
ness. Instance examinations showed that instances high
in sadness mostly read ’i miss you’ or missing someone
or something.
The social factors of sex and eat (being physical close-
ness and topics such as restaurants, dining, etc.) further
differentiate those two groups by having decreased for
introverts (-35% and -57%), whilst being increased in its
frequency for instances classified as extraversion (+30%
and +27%).
Needless to say, neither the attention weights, the binary
classifications, nor the LIWC psychological categories
can assert the individual’s state of mind for certain.
Nonetheless, they can serve as indicators. Following,
we will discuss those findings, put them into relation to
the pandemic, and will discuss the current research on

37



this topic from Section 2 with regard to those findings.

9. Discussion
As shown in Section 7, the proposed IPT Bi-LSTM
model reaches comparably strong performances on the
binary classification task between introversion and ex-
traversion. The attention weights during training as dis-
played in Table 6 appear to be aligned with the theory
of Jungian psychology types. For tweets, an in-domain
LMT was trained.
The results in Table 8 add novel findings to the current
discussion. Whilst introverts expressed fewer optimistic
utterances, those worries did not increase for extraverts.
Rather than that, negative emotions rose sharply for in-
troverts, which can be interpreted as clear signs of worry.
Anxiety generally increased but slightly more for intro-
verts. Noteworthy, sadness increased for extraverts. But
as single instance observations reveal, instances high in
sadness mostly miss persons or e.g. restaurants. This di-
rection of energy towards the outside suits extraversion
and would explain this rather negative emotion being
increased for extraverts. The last two observed LIWC
categories with remarkable changes from 2019 com-
pared with 2020 are of social relevance (sex and eat).
Firstly, utterances associated with physical closeness are
less frequent for introverts, whilst being by far more fre-
quent for extraverts. Utterances associated with dining,
eating, or visiting restaurants decreased for introverts,
whilst being increased for extraverts. This, again, suits
the understanding of Jungian extraversion (see Section
3).
Extraversion has been interpreted as sensitivity to posi-
tive affect and optimism, introversion, on the other hand,
as lacking sensitivity to positive affect and pessimism
(Watson and Clark, 1997; Watson and Tellegen, 1985).
Positive affect (i.e. extraversion) is crucial in times
of crisis to see the broader picture, cope with depres-
sive thoughts and ruminations, and stay action-oriented.
Introverts, which lack this disposition to experience
positive affect tend to be “state-oriented” and even de-
pressed, especially in times of crisis (Kuhl and Kazén,
1999). This could explain the higher frequencies of
negative emotions in the tweets.
All of those characteristics are unfavorable during lock-
downs or other inclined types of isolations and social
distancing. Those findings are supported by current
empirical research, such as conducted by Wei (2020),
who also found introverts to be rather inclined to suffer
during the pandemic.

10. Conclusion & Outlook
The Corona or COVID-19 pandemic can be described
as an event of a century. Many governments have re-
sorted to measurements of social distancing or lock-
downs. Even though those measurements save lives and
help to fight this menacing disease, it also burdens in-
dividuals. The aim of this work to build an NLP binary
classifier of the Jungian psychology types of introverts

and extraverts and investigate whether they react dif-
ferently to those methods has been reached with com-
parably strong results. Even though the model showed
strong results on the held-out test set, the Bi-LSTM
model was not applicable for out-of-domain data from
Twitter. Therefore, we crafted a second model on hand-
labeled tweets. All data was made public.
Experiments on Twitter data from 2019 compared with
2020 differentiated by introverts and extraverts revealed
that the mental suffering of introverts during the pan-
demic is comparably more severe, adding novel findings
to the current and contradictory debate. Introverts show
a higher frequency of utterances associated with isola-
tion, showed less optimism, spoke less about social in-
teractions, and showed more frequent anxiety utterances.
Meanwhile, extraverts showed less frequent utterances
of isolation and more frequent friendships. With our
approach, we offer an approach to identify individuals,
that show elevated signs of worry. With those findings,
those individuals could be supported by mental health
services. Furthermore, it underlines the necessity as
a society to look out for those individuals, that have
become especially retracted or express themselves with
isolating language.
A future outlook, some indicators such as the confound-
ing analysis, some already infrequent LIWC counting
measures, and the rather weak introversion classification
capabilities of the model should be taken into account
for further critical analyzations. The findings in this
paper should be viewed critically and examined with
complementary experiments. Furthermore, we aim to
deepen those findings and provide systems for auto-
mated personality detections, which then could help
society to better overall mental health.

11. Ethical Consideration
Even though this research is intended to foster psycho-
logical diagnostic research and mental health, such work
poses the problem of an ethical dilemma between risks
and promises (Johannßen et al., 2020). NLPsych sys-
tems can be misused (dual use (Williams-Jones et al.,
2014)), misunderstood (Luhmann system theory (Görke
and Scholl, 2006)), and will contain severe biases, which
are hard to detect due to data protection laws (Diehl et
al., 2015).
The proposed classification approach can neither re-
place clinical examinations nor should it be used for
anything else than the performed validation study: mass
observations with in-domain data for research purposes
and without the intention of diagnosing individuals.
This, however, is not what this work intends to pro-
vide. Rather, we aimed to support psychologists with
additional and evaluation objectivity tools and shed val-
idating light on the effects of the pandemic. We believe
this work to add insights into human well-being during
the COVID-19 pandemic and hope to foster research
for increased mental health, which is a result of a wide
range of research findings.
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Abstract
We present the outcome of the Post-Stroke Speech Transcription (PSST) challenge. For the challenge, we prepared a new
data resource of responses to two confrontation naming tests found in AphasiaBank, extracting audio and adding new phone-
mic transcripts for each response. The challenge consisted of two tasks. Task A asked challengers to build an automatic
speech recognizer (ASR) for phonemic transcription of the PSST samples, evaluated in terms of phoneme error rate (PER)
as well as a finer-grained metric derived from phonological feature theory, feature error rate (FER). The best model had a
9.9% FER / 20.0% PER, improving on our baseline by a relative 18% and 24%, respectively. Task B approximated a down-
stream assessment task, asking challengers to identify whether each recording contained a correctly pronounced target word.
Challengers were unable to improve on the baseline algorithm; however, using this algorithm with the improved transcripts
from Task A resulted in 92.8% accuracy / 0.921 F1, a relative improvement of 2.8% and 3.3%, respectively.
Keywords: anomia, aphasia, speech language pathology assessment, automatic speech recognition

1 Introduction

Anomia, or word-finding difficulty, is the primary
feature of aphasia (Goodglass and Wingfield, 1997;
Raymer and Rothi, 2001), an acquired neurogenic lan-
guage disorder that affects 2.5-4 million people in the
US (Simmons-Mackie, 2018). The primary cause of
aphasia is stroke, and 21%–40% of acute stroke pa-
tients are diagnosed with anomia by the time they are
discharged. Anomia is believed to be indicative of dis-
ruption in accessing a semantic description of the target
concept, and/or retrieving a fully phonologically spec-
ified representation (Dell, 1986; Dell et al., 1997).

Specifically, paraphasias, which are unintended word
production errors, typically result from reduced or in-
sufficiently persistent activation of target representa-
tions relative to competing non-target representations
and/or noise in the system (Dell et al., 1999; Dell et
al., 1997). In some cases, people with aphasia produce
real word errors. For example, reduced activation of
lexical-semantic representations may result in seman-
tic errors (e.g., “dog” for the target “cat”) or unrelated
errors, sharing no obvious semantic or phonological
features with the target word (“chair” for “cat”). Ac-
tivation of inappropriate phoneme representations may
sometimes result in real word errors (e.g., “dog” for
the target “log”). However, breakdowns in phonologi-
cal processing may also lead to non-word productions
known as neologisms that may or may not be phono-
logically related to the target (e.g., “tat” for the target
“cat” and “blat” for the target “dog”, respectively).

Given the prevalence of anomia in the aphasic pop-
ulation and its tendency to persist even when other
symptoms of aphasia remit (Goodglass and Wingfield,
1997), professionals typically assess anomia using con-
frontation naming tests (Cho-Reyes and Thompson,
2012; Roach et al., 1996; Kaplan et al., 2001), during
which a patient is presented with pictures of simple ob-

jects and they are asked to name them. The overall ac-
curacy on such tests is an important clinical metric that
has been found to be a good indicator of overall apha-
sia severity (Schuell et al., 1964; Walker and Schwartz,
2012) and is predictive of the ability to convey infor-
mation during discourse production (Fergadiotis et al.,
2019). Furthermore, improvement in naming accuracy
has been linked to improvement in overall communica-
tive skills (Carragher et al., 2012; Herbert et al., 2008).

Further, in research settings, professionals develop
individualized profiles based on the different types
of errors elicited through confrontation naming tests
(e.g., phonological, semantic, non-word errors, etc.)
and then use these profiles to characterize patients’
cognitive-linguistic deficits. Such individualized er-
ror profiles have informed theoretical accounts of
the cognitive machinery underlying word production
(Dell, 1986; Dell et al., 1997; Dell and O’Seaghdha,
1992); lesion-symptom mapping (Schwartz et al.,
2009; Schwartz et al., 2012; Walker et al., 2011); per-
sonalization of treatments (Best et al., 2013); treatment
efficacy studies (Brookshire et al., 2014; Kendall et
al., 2003; Kendall et al., 2006; Kendall et al., 2008);
the understanding of cross-linguistic treatment gener-
alization (Edmonds and Kiran, 2006); and cortical re-
organization investigations after a stroke (Fridriksson
et al., 2012)

Error profiles also have the potential to be highly in-
formative in clinical settings for developing individu-
alized intervention plans (Abel et al., 2007). However,
currently, developing a patient’s profile is prohibitively
time- and labor-intensive because it requires phonemic
transcriptions for determining response accuracy and
the nature of the errors. For naming tests with dozens
or hundreds of items, this is rarely feasible in fast-paced
clinical settings. As such, there is much interest in the
clinical community in automating this process.
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To this end, we introduce the Post-Stroke Speech Tran-
scription Challenge (PSST). The Challenge is a shared
task consisting of two sub-tasks, one for phonemic
transcription (Task A), one for binary classification
(Task B). The goals of the PSST Challenge are three-
fold: first, to produce an accessible dataset relating
to these clinical tasks for use by the machine learning
community; second, to establish benchmarks for these
tasks; and third, to lay the groundwork for a community
of practice for machine learning researchers interested
in aphasia and other similar disorders.

2 Background
2.1 Orthographic vs. Phonemic ASR
An automatic speech recognizer (ASR) typically im-
plies an orthographic system (e.g. one that produces
words written in the English alphabet). Phonemic
ASR, by contrast, uses symbols like ARPABet or the
International Phonetic Alphabet (IPA) to indicate how
the utterance was pronounced. Unlike their ortho-
graphic counterparts, phonemic ASRs might transcribe
the same word several different ways, capturing lin-
guistic variability (e.g. dialect, coarticulation) or iden-
tifying errors (e.g. mispronunciations, paraphasias).
The previous generation of orthographic ASRs used a
layered architecture, with an intermediate layer map-
ping phoneme sequences to words using a pronunci-
ation dictionary (Mohri et al., 2001). However, the
last decade saw a push toward so-called “end-to-end”
systems to directly predict orthographic sequences, en-
abled by deep neural networks, unassisted and unbound
by phoneme-to-word constraints (Graves and Jaitly,
2014). This period coincided with the introduction of
Librispeech (Panayotov et al., 2015), a corpus extracted
from the collection of public domain audiobooks Lib-
riVox. With 1,000 hours of training data available as
a free download, LibriSpeech not only became a stan-
dard resource in research toolkits, it also came to serve
as a primary benchmark for orthographic ASR. In a
flurry of activity, the word error rate (WER) for Lib-
riSpeech’s test-clean dropped from 5.5% (estab-
lished with its introduction) to under 1.5% just five
years later (Zhang et al., 2020). By comparison, the
go-to benchmark for phonemic ASR, TIMIT (Garofolo
et al., 1993), was less competitive, though phoneme er-
ror rates (PER) still halved: an early end-to-end system
had a PER of 17.7% (Graves et al., 2013) compared to
8.3% more recently (Baevski et al., 2020).

2.2 ASR for Aphasic Speech
End-to-end ASRs rely heavily on statistical methods,
learning acoustic and linguistic patterns from large
speech corpora. By definition, aphasic speech breaks
from typical linguistic patterns, with highly variable
error patterns exacerbating the difficulty of the ASR
task. Previous work with AphasiaBank reflects these
difficulties. Le and Provost (2016) reported 47%–76%

PER when grouped by severity of aphasia.1 Perez et al.
(2020) improved on this with a PER of 33%–61%. Le
et al. (2018) reported results in terms of WER: 37.4%
overall, ranging 34%–63% per severity group.
Small datasets are another hindrance to aphasic ASR,
though recent innovations enabled ASRs to be trained
on far less data. Similar to recent work in natu-
ral language processing (Mikolov et al., 2013; Rad-
ford and Narasimhan, 2018; Devlin et al., 2019), the
self-supervised methods behind wav2vec 2.0 (Baevski
et al., 2020) use large amounts of unlabeled speech
data, pretraining a model to predict its own abstract
feature representations using a contrastive loss func-
tion (van den Oord et al., 2018). These pretrained
models are intended to be fitted with new output lay-
ers and fine-tuned for specific tasks like ASR, and are
readily available for download. Using this technique,
Baevski et al. (2020) showed how a viable ASR could
be trained with as little as 10 minutes labeled data,
highlighting its utility for low-resource languages. Ap-
plying this to aphasic ASR, Torre et al. (2021) achieved
a 22.3–55.5% WER on English AphasiaBank, depend-
ing on severity. Remarkably, the authors also trained an
ASR using only 1 hour of Spanish AphasiaBank, with
a 42.8 WER and a character error rate (CER) of 24.8%.

2.3 Automating Aphasia Assessment Tasks
As discussed earlier (§1), the development of a ro-
bust ASR system for aphasic speech has the poten-
tial to transform clinical practice for the assessment
of aphasia. Currently, our group has been developing
novel methods to automatically classify clinically rele-
vant types of paraphasias in confrontation picture nam-
ing tests (Fergadiotis et al., 2016; Cowan et al., 2021;
Casilio et al., 2019; McKinney-Bock and Bedrick,
2019). Our algorithms determine the lexical status of
erroneous productions using a word frequency model,
use grapheme-to-phoneme analysis to assess phonolog-
ical similarity between productions and target words,
and employ a neural network to measure semantic sim-
ilarity. Then, information across these three dimen-
sions is combined automatically to classify paraphasias
in clinically relevant categories. However, automated
analyses of this sort still require that language samples
be manually transcribed which represents a major bar-
rier to their translation into practice. Without the ability
to automatically produce accurate phonemic transcripts
an ASR system, human experts must perform this la-
borious and error-prone task. For a naming test with
dozens or hundreds of items, this is rarely feasible in a
clinical setting. As a first step in evaluating the poten-
tial of an ASR system for aphasic speech to be used in
such a pipeline, Task B in this challenge is focused on

1Although they report PER, AphasiaBank’s transcripts are
(mostly) orthographic. Supplementary materialscontained
transcripts tokenized as words (not phonemes) and a pronun-
ciation dictionary, suggesting their ASR targeted a fixed vo-
cabulary instead of free-form phoneme prediction.
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a simpler task: assess the ability of the ASR system to
generate phonemic transcriptions not for error classifi-
cation but rather to determine response accuracy.

3 Preparing the PSST Corpus
Funding for the dataset preparation and baseline model
development activities, and for the shared task itself,
originated from the National Institutes of Health’s Of-
fice of Data Science Strategy, under the “Adminis-
trative Supplements to Support Collaborations to Im-
prove the AI/ML-Readiness of NIH-Supported Data”
program (NOT-OD-21-094). The goal of this funding
mechanism was to support efforts to promote and fa-
cilitate the use of existing biomedical datasets by the
AI/ML community.
The PSST Corpus is comprised of short speech seg-
ments from English AphasiaBank (MacWhinney et al.,
2011), specifically responses to the Boston Naming
Test Short Form (BNT-SF) (Mack et al., 1992) and
Verb Naming Test (VNT) (Thompson, 2012) portions
of the protocol. Participants included 107 individuals
with aphasia who completed both BNT-SF and VNT
as retrieved from English AphasiaBank on Septem-
ber 1, 2021. We defined aphasia as an Aphasia Quo-
tient (AQ) of <93.8 on the Western Aphasia Battery -
Revised (Kertesz, 2007) or <11 on the BNT-SF. Par-
ticipants were right-handed, predominantly English-
speaking, with a history of a single, left-hemispheric
stroke, adequate hearing and vision, and no significant
comorbid neurological or psychiatric illness. Individu-
als with concomitant motor speech disorders were also
included. The extracted segments averaged 3.9 seconds
in length, include 3291 utterances from 107 speakers,
and total approximately 3.5 hours of audio.
Ground truth phonemic transcriptions for the BNT-SF
and VNT were derived from two previous studies and
adapted for the purposes of this ASR project. Naming
attempts were originally identified and phonemically
transcribed by trained research assistants and disagree-
ments resolved by a licensed speech-language pathol-
ogist. Transcriptions were entered and time-aligned to
audiovisual recordings using ELAN (Max Planck Insti-
tute for Psycholingustics, 2022). Using the time align-
ments, we automatically extracted audio from the full
AphasiaBank videos, applying filters for loudness and
clarity (see Appendix B.2). A trained research assis-
tant and licensed speech-language pathologist updated
transcriptions to reflect the present study’s conventions,
then the transcripts were normalized and mapped to
ARPAbet for ASR purposes (see Appendix B.3). Cor-
rectness labels were assigned to all responses by a li-
censed speech-language pathologist, followed by an
audit and resolution process by consensus. We defined
correctness as the presence of the target word anywhere
within the segmented response. Pronunciation varia-
tions of the target word that could be explained by an
individual’s dialectal pattern and/or typical patterns of
coarticulation were scored as correct.

Train Validation Test

Hours 2.59 (73%) 0.36 (10%) 0.59 (17%)
Segments 2173 (70%) 325 (10%) 624 (20%)
Speakers 74 (69%) 11 (10%) 22 (21%)

Table 1: Quantities of data for each split of the PSST
dataset in terms of hours of audio, number of segments,
and number of speakers.

Data splits targeted train, valid, and test proportions
of 70%, 10%, and 20% respectively, with quantities
measured as hours of audio. As shown in Table 1,
the final proportions were approximately 73%, 10%,
and 17%. Each speaker was included in no more
than one of the splits. To stratify the splits by over-
all severity of aphasia, we categorized each participant
as mild (75 < AQ), moderate (50 < AQ ≤ 75), se-
vere (25 < AQ ≤ 50), or very severe (AQ ≤ 25) per
the criteria from the WAB (Kertesz, 2007). To find the
optimal split, 1000 candidate configurations were com-
puted, then we chose the configuration with the lowest
average KL divergence for duration of audio across the
three splits (with a value of about 0.007). Table 1 shows
the hours of audio, number of segments, and number of
speakers in each split.

4 Task A: ASR for Aphasic Speech
Task A asked participants to automatically transcribe
the phonemes in each segment of recorded audio. We
provided ARPAbet transcripts for the train and valida-
tion splits described in §3. We provided code to com-
pute FER and PER for these splits, and we made avail-
able our baseline model’s source code and pretrained
weights. Shortly before the deadline, we released the
audio from the test split with the transcripts withheld.
Challengers submitted the transcripts their models pro-
duced for the test set, and we used the same scripts to
compute final metrics. We received entries from two
challengers (Yuan et al., 2022; Moël et al., 2022), who
submitted transcripts for 7 models apiece.

4.1 Evaluation
Task A was evaluated in terms of PER and FER. To
calculate PER, we computed the Levenshtein distance
(phoneme errors, i.e. the minimum insertions, dele-
tions, and replacements) between target and ASR tran-
scripts. PER is defined as this distance divided by the
total length (in phonemes) of the target transcripts.
Like PER, the FER was computed as the errors (in
terms of feature distance) divided by the expected
length (number of phonemes × 24 features). Our im-
plementation of feature distance is very similar to one
found in panphon (Mortensen et al., 2016), specifi-
cally the feature_edit_distance() algorithm.
As discussed in Appendix A, phonological features
specified as present/absent ([+feature] / [−feature])
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ACWT01a-VNT20-shove

o͡ʊ p ʊ ʃ ɪ ŋ j ɝ

o͡ʊ m ʊ ʃ ɪ ŋ ʌ

Utterance
FER PER

15.4% 37.5%
Action Cost From To Features

EQ 0 / 24 o͡ʊ o͡ʊ

SUB 3.5 / 24 p m

-sonorant → +sonorant
-delayedrelease → 0delayedrelease

-nasal → +nasal
-voice → +voice

EQ 0 / 24 ʊ ʊ

EQ 0 / 24 ʃ ʃ

EQ 0 / 24 ɪ ɪ

EQ 0 / 24 ŋ ŋ

SUB 5 / 24 j ʌ

-syllabic → +syllabic
+high → -high
+front → -front
-back → +back

+tense → -tense

DEL 21 / 24 ɝ

+syllabic
-consonantal

+sonorant
+continuant

0delayedrelease
+approximant

-tap
-nasal
+voice

-spreadglottis
-labial
-round

-labiodental
+coronal
-anterior

+distributed
-strident
-lateral
-dorsal
0high
0low
0front
0back
0tense

Figure 1: An error analysis generated by the
pssteval-viewer tool we provided with the chal-
lenge materials. The tool shows the PSST tran-
script (top) aligned to an ASR’s output, the FER and
PER for the utterance, and then the feature analy-
sis used to compute the FER. This example is utter-
ance id ACWT01a-VNT20-shove as transcribed by
Moëll/O’Regan et al.’s MO4 model.

or unspecified ([0feature]). If two phonemes differed
and the feature was specified in both, that feature er-
ror had a cost of 1; if the feature was unspecified
in one phoneme, it cost ½. Insertions and deletions
were treated as if each feature of missing phoneme
was unspecified. The values for each feature align
with Hayes (2009), with the exception of diphthongs.
While English diphthongs are usually represented by

two letters, they behave more like a single sound (Lade-
foged and Johnson, 2015); further, each diphthong
has only one ARPAbet token. Neither Hayes (2009)
nor panphon defines features for diphthongs, so we
synthesized these definitions, prompting some special
rules for feature error calculation. See Appendix A for
more details, including the full table of features.

4.2 Models
Baseline Model (PSST–A) For the PSST base-
line ASR model (PSST–A), we began with a pre-
trained wav2vec2.0 acoustic model downloaded from
fairseq (Ott et al., 2019), specifically the BASE model
described in Baevski et al. (2020). This model con-
tains 95m parameters pretrained on 960 hours from the
LibriSpeech dataset (Panayotov et al., 2015). We fit-
ted the model with an output layer corresponding to
the phoneme inventory of the PSST transcripts, then
fine-tuned the model targeting a connectionist tempo-
ral classification (CTC) loss. Details on the fine-tuning
process can be found in Appendix C.

Yuan et al. (Y1–Y7) The approach taken by Yuan
et al. focused on data augmentation, exploring out-
side data sets prepared in a variety of ways. For the
challenge, they submitted 7 configurations for our sum-
mary, which we will call Y1 through Y7. Each model
used a wav2vec2.0 approach comparable to PSST–A,
but began with the LARGE variant, which uses 315 mil-
lion parameters, and is trained on 60,000 hours of unla-
beled audio from Librivox (from which LibriSpeech is
extracted). Y5 was trained only with PSST data, serv-
ing as a baseline for their augmentation experiments.
Y2 augmented PSST with 3.9 hours of TIMIT. Adher-
ing to convention, the 61 labels in TIMIT were col-
lapsed to 39 phonemes (Lopes and Perdigao, 2011a;
Lee and Hon, 1989), resulting in labels similar to
those provided for the PSST challenge, except /R/ was
merged with /d/, and /Z/ was merged with /S/.
Y4, Y6, and Y7 augmented PSST with LibriSpeech
data in various quantities. To prepare LibriSpeech
for use with phonemic ASR, Yuan et al. automati-
cally generated pseudo-labels from the orthography us-
ing a grapheme-to-phoneme (G2P) model, which had a
phoneme inventory nearly aligned with the PSST cor-
pus, although like the TIMIT experiment, the flap sym-
bol /R/ was unused.
Y1 and Y3 augmented PSST with 47 hours of Aphasi-
abank, taking care to exclude the speakers assigned to
the PSST test set. To prepare the (mostly) orthographic
corpus for phonemic ASR, Yuan et al. used a technique
of iterative self-labeling. First, they produced a set of
phonemic labels using a model trained on only PSST
data. Then they trained a new model, augmenting
PSST with the AphasiaBank samples that exceeded an
experimentally determined confidence threshold. Con-
fidence scores were computed in two ways: (a) un-
weighted, using a standard CTC loss; and (b) weighted,
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adjusting confidence with probabilities found during
the pseudo-labeling step. This process was repeated
until the model no longer improved. Y1 was un-
weighted with a 0.9 threshold, trimming 47.0 hours of
AphasiaBank to the best 33.3. Y3 was weighted, with
a 0.7 threshold, yielding 44.0 hours of AphasiaBank.

Moëll/O’Regan et al. (MO1-MO7)
Moëll/O’Regan et al. (2022) also explored data
augmentation strategies for their submissions to the
ASR challenge. We refer to their 7 configurations as
MO1 through MO7. The authors used two off-the-
shelf wav2vec2.0 architectures: BASE, which has 95m
parameters, which was pretrained on 960 hours of
unlabeled audio; and the LS-960 variant of LARGE,
with 315m parameters, which was pretrained on the
same 960 hours as BASE. Of those we received,
only MO3 and MO7 used BASE, while the rest used
LARGE. For MO6, they established an unaugmented
baseline with the LARGE architecture.

Much of Moëll/O’Regan et al. focused on expand-
ing PSST and the other datasets with audio perturba-
tion techniques. In MO2 and MO5, they synthesized
new PSST data by adjusting the pitch of the audio
(while preserving time). In MO4, they synthesized new
PSST data by time-stretching the audio (while preserv-
ing pitch). For MO6, they augmented PSST by adding
Gaussian noise to the signals.

In MO1, MO3, and MO5, Moëll/O’Regan et al. aug-
mented PSST with TIMIT data. They chose to
omit utterances that conflicted with the PSST corpus’
phoneme inventory, resulting in only 1.1 hours of aug-
mentation data drawn from TIMIT’s train and test
splits. Noting an acoustic mismatch between the dry,
studio-quality recordings of TIMIT and the untreated
academic environments of the PSST recordings, the au-
thors experimented with artificial reverb on the TIMIT
data: using room impulse response (RIR) convolution,
they simulated random rooms by applying filters found
in online collections.

4.3 Results
Results for the Task A models are shown in Table 2.
PSST–A showed an FER of 12.1% and a PER of
26.4%. Only two models failed to outperform these
metrics: Y6 and Y7, the models using 100 and 960
hours of LibriSpeech. MO1 through MO7 improved on
PSST–A. Their best-performing model in terms of FER
was MO1, which augmented both PSST and TIMIT
data using RIR augmentation. MO2 (pitch-shift aug-
mentation) yielded their best PER at 25.1%. The
worst-performing models from Moëll/O’Regan et al.
were MO6 and MO7 (LARGE, with vs. without noise
augmentation) with an FER of 12% each, and a re-
spective PER of 25.9% and 26.1%. Y1 through Y5
were the five best-performing models. The stand-out
best was the unweighted pseudo-labeling configura-
tion of the AphasiaBank experiment at 9.9% FER and

20.0% PER. Y2, augmented with TIMIT, was the next
best, at 10.3% FER / 21.1% PER. Y3, the weighted
AphasiaBank configuration, followed closely behind at
10.4% FER / 21.5% PER. Y5 (no augmentation) had an
FER of 11.3% and a PER of 22.3%, and Y4 (3.9 hours
of LibriSpeech) improved on this only slightly.

4.4 Discussion
Both challengers were primarily focused on augmen-
tation of the PSST dataset, a sensible approach con-
sidering the small size of the corpus. Each empha-
sized a different augmentation strategy: Yuan et al.
explored the effects of domain shift and data quanti-
ties, while Moëll/O’Regan et al. synthesized additional
data with audio perturbation techniques. For Yuan et
al., their best model showed a relative improvement of
9% FER / 10% PER against its unaugmented counter-
part Y5. The best model from Moëll/O’Regan et al.
showed a relative improvement of 5% FER / 3% PER
against its unaugmented counterpart M07.
Another difference between the two challengers’ sub-
missions was their respective choices of pretrained
model. The models from Yuan et al. were all pretrained
on 60,000 hours of unlabeled audio, while every model
from Moëll/O’Regan et al. pretrained on 960 hours of
unlabeled audio. Comparing each challenger’s unaug-
mented LARGE models (Y5 and MO6), the 60,000-
hour model improved on the 960-hour model by a rela-
tive 9% FER / 14% PER. By comparison, model size
had minimal effect: MO6 improved on PSST–A by
<1% FER / 3% PER, having 315 million and 95 mil-
lion parameters, respectively.
Moëll/O’Regan et al. experimented with several dif-
ferent techniques, laying the foundation for future in-
vestigations. One interesting question the authors raise
is whether their pitch-shift techniques, which preserve
time, could be retaining acoustic markers of phonologi-
cal features more so than their other techniques. The ef-
fects of room acoustics could also be explored in more
depth: for example, what if RIR filter selection were
more intentional, factoring in room size, shape, and
construction material? Finally, Moëll/O’Regan et al.
were somewhat conservative with the balance of syn-
thetic data to unmodified PSST. With pitch perturba-
tion, 3-fold augmentation is known to be effective and
the recommended practice with last-generation ASR
toolkits (Ko et al., 2015). Also, several perturbation
techniques could be combined for numerous subtle
variations of synthetic data.
The Yuan et al. work also prompts fascinating ques-
tions. The paper’s narrative centers on the effects of
various quantities of in- and out-of-domain data. This
effect is clearest between the LibriSpeech-augmented
models: Y4 (using only 3.9 hours of LibriSpeech)
was fourth-best, whereas Y6 (100 hours) and Y7 (960
hours) were the overall worst. The authors hypothe-
size this is a consequence of domain mismatch. Indeed,
LibriSpeech is audibly different from the PSST corpus

45



Data (hours of audio) ASR
Model Arch Pretrain PSST TIMIT AphasiaBank Other FER PER

Y1 LARGE 60,000 2.8 33.3U 9.9% 20.0%
Y2 LARGE 60,000 2.8 3.9 10.3% 21.1%
Y3 LARGE 60,000 2.8 44.0W 10.4% 21.5%
Y4 LARGE 60,000 2.8 3.9L 10.6% 22.2%
Y5 LARGE 60,000 2.8 10.9% 22.3%
MO1 LARGE 960 2.8 1.1 r 11.3% 25.5%
MO2 LARGE 960 5.6 p 11.4% 25.1%
MO3 BASE 960 2.8 1.1 r 11.7% 26.3%
MO4 LARGE 960 5.6 t 11.7% 25.4%
MO5 LARGE 960 5.6 p 1.1 r 11.9% 26.0%
MO6 LARGE 960 2.8 12.0% 25.9%
MO7 BASE 960 5.6 n 12.0% 26.1%
PSST–A BASE 960 2.8 12.1% 26.4%
Y6 LARGE 60,000 2.8 100L 12.5% 26.0%
Y7 LARGE 60,000 2.8 960L 16.7% 38.0%

L Librispeech, pseudo-labeled with G2P p with pitch-shifted variants r RIR reverb applied
U iteratively pseudo-labeled (unweighted) t with time-shifted variants
W iteratively pseudo-labeled (weighted) n with Gaussian noise augmentation

Table 2: ASR results for Test set. Results are show in terms of feature error rate (FER), phoneme error rate (PER).
Values in gray did not improve on PSST–A.

in many ways: speaker demographics, recording con-
ditions, and factors concerning the clinical context of
PSST. In contrast to these “bottom-up” characteristics,
the authors also describe a “top-down” effect, pointing
out how a model like wav2vec2.0 tends to develop an
implicit language model (LM) As more out-of-domain
data is added, this implicit LM is biased toward out-of-
domain transcripts. They support this hypothesis with
a principal component analysis, illustrating how the
model’s contextualized representations visibly shift as
more out-of-domain data is added to the training data,
more so than the in-domain data from AphasiaBank.

These findings are compelling, though we’d like to
emphasize how a segment of speech can be tran-
scribed phonemically in many different ways and still
be correct, depending on its context. By ASR stan-
dards, TIMIT was transcribed using narrow conven-
tions—extremely narrow in the case of stop consonants
(e.g. /b/), which are subdivided as closures (e.g. BCL)
and releases (e.g. B) occurring in isolation or as a se-
quence (e.g. BCL B). In ASR systems, these closures
are conventionally relabeled as as silence. (Lopes and
Perdigao, 2011a) As a result, the word “maybe" is alter-
nately realized with the stop (when M EY BCL B IY
becomes /m>eI bi/) or without (when M EY BCL IY
becomes /m>eI i/). In PSST conventions, however, both
of these pronunciations are /m>eIbi/. Considering how
open-ended transcription can be, we note how Yuan
et al. used different techniques to generate pseudo-
labels: G2P for Librispeech versus iterative pseudo-
labeling for AphasiaBank. The G2P model was trained
on a word-to-pronunciation dictionary, and the tran-

scripts are a function of orthography, uninfluenced by
the recordings. On the other hand, the AphasiaBank
labels were generated by a model trained on the PSST
labels themselves, and the transcripts are a function of
the audio recordings. Unlike their AphasiaBank model,
their G2P model has never been exposed to contextu-
ally important phenomena like the mispronunciations,
neologisms, inter- and intra-word variation, etc. found
in the PSST transcripts. So while the LibriSpeech data
is out-of-domain, perhaps its pseudo-labels are better
characterized out-of-range, with the important distinc-
tion that the latter could have a remedy. We could learn
more if the LibriSpeech experiments were repeated us-
ing the iterative pseudo-labeling methods.

5 Task B: Correctness
In Task B, we asked participants to perform a sim-
ple example of a downstream task, namely, determin-
ing whether a recording contained a target word pro-
nounced correctly. Since the BNT-SF and VNT are
confrontation naming tests, they are intended to elicit
specific nouns and verbs (respectively) in response.
For the challenge, we used the same audio samples
as Task A, with true/false labels provided by our an-
notators (see §3). We also provided a set of accept-
able phoneme sequences for each stimulus, including
all variations in conjugation, dialect, etc. that we found
during data preparation. This allowed us to focus on
the question of how to identify and preserve sufficient
acoustic-phonetic information from a speech signal to
improve on a downstream classification task. Like Task
A, we provided scripts for the classification metrics for
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the train and valid splits, and we provided the source
code for the baseline model.
We received a submission from one challenger (Tran,
2022) for Task B. Our baseline model relies on ASR
transcripts from Task A, so we also experimented with
the Task A transcripts submitted by challengers.

5.1 Evaluation
Task B was evaluated in terms of F1-score, precision,
recall, and accuracy. To compute each metric, we tal-
lied the true positives (TP ), true negatives (TN ), false
positives (FP ), and false negatives (FN ). Precision
was computed as TP

TP+FP , recall as TP
TP+FN , and ac-

curacy as TP+TN
TP+TN+FP+FN . F1 is the harmonic mean

of precision and recall, or 2TP
2TP+FP+FN .

5.2 Models
Baseline Model (PSST–B) The baseline model for
Task B relied on a simple string matching algorithm.
We began with the transcripts produced by PSST–A, re-
moving any silence and noise labels. If a transcript con-
tained any of the pre-determined “correct” phoneme se-
quences, uninterrupted and in its entirety, the sample
was marked true; otherwise, it was marked false.

Challenge Submission: Tran (2022) The approach
in Tran (2022) explored acoustic feature engineering
as a supplement to the methods used in the baseline
model. Motivated by previous work identifying acous-
tic markers of mild cognitive impairment (MCI) (Roark
et al., 2011), Tran conducted a broad search for rel-
evant acoustic features using speech analysis toolkits.
These features were aggregated using statistical func-
tions such as mean, minimum, and maximum. Sim-
ilarly, aggregates of ASR confidence measurements
were also explored in the feature set. Features were
selected using a T-test, focusing on those deemed sta-
tistically significant: mean/standard deviation of loud-
ness, mean/standard deviation of spectral flux, and
mean/max of the ASR confidence measures. The fea-
tures were concatenated with the PSST–B predictions
into fixed-length vectors, then used to train support vec-
tor machine (SVM) and logistic regression classifiers.
Hyperparameters were optimized with grid search, and
both linear and non-linear SVM kernels were explored.

The Effects of ASR on Task B Although neither
Yuan et al. (2022) nor Moël et al. (2022) applied
their work to Task B, we used their transcripts to ob-
serve how each ASR model affected the Correctness
task. For this experiment, we followed the same meth-
ods as PSST–B, swapping out the transcripts for those
produced by challengers’ models. We also computed
metrics using the gold standard transcripts to identify
this model’s ceiling with hypothetically “perfect" ASR.

5.3 Results
The baseline model had an accuracy of 0.903, preci-
sion of 0.929, recall of 0.858, and F1 of 0.892. The

techniques used in Tran (2022) yielded the same labels
as the baseline model, so all metrics were the same.
In the experiment using transcripts from Task A, we
found mixed results, which we report in Table 3. The
ceiling for “perfect" ASR showed a 0.984 F1, 0.968
precision, 1.000 recall, and 0.985 accuracy. The base-
line transcripts had a 0.892 F1, 0.929 precision, 0.858
recall, and 0.903 accuracy. Y2 achieved the top F1 of
0.921, and the top accuracy of 0.985. All of Y1–Y5
improved on the four metrics with one exception: Y5
was below the baseline precision, while obtaining the
best recall of 0.914, and the second-best F1 (0.920) and
accuracy (0.926). Although Y1 achieved the stand-out
best FER and PER in Task A, its transcripts were less
effective for identifying correctness, having an F1 of
0.917 and an accuracy of 0.925. Similarly, the gains
MO1 through MO7 showed in Task A did not translate
to the classification task. Of these, MO7 had the best F1
at 0.888 and accuracy at 0.900. MO4 improved on the
baseline in terms of recall (0.865), but at the expense
of precision (0.910). MO6, MO3, and MO5 improved
on precision (0.934, 0.931, and 0.930, respectively) at
the expense of recall (0.842, 0.842, and 0.832, respec-
tively). Y6 and Y7 also improved a bit on precision
(0.934 and 0.942, respectively) while taking a heavy
hit to recall (0.696 and 0.432, respectively).

5.4 Discussion
As Tran points out, the baseline established by PSST–B
was quite strong. Surprisingly, while 26% of the
phonemes produced by PSST–A were incorrect, less
than 10% of those transcripts were labeled incorrect
by PSST–A. When planning the challenge, we chose
to avoid more difficult (and more clinically informa-
tive) tasks, like those that require subtler judgements
phonological similarity judgements. In retrospect, we
may have designed Task B to be too easy, leaving little
room to improve on the baseline.
Tran’s experiments showed negative results, produc-
ing labels identical to PSST–B. This suggests that
the acoustic features didn’t provide more information
than the PSST–B algorithm could glean from the tran-
scripts. The author also notes that without including the
PSST–B predictions as a feature, the performance of the
acoustic models was only slightly better than chance.
Further, Tran discusses the challenge of retaining valu-
able information while aggregating time sequences to
fixed-length vectors. To this, we note some problem
formulation differences between Task B and work like
Roark et al. (2011) and Fraser et al. (2014). First, their
acoustic markers were found in narrative speech tasks,
consisting of several successive sentences, containing
more prosodic information than a confrontation nam-
ing test. Second, the Task B correctness labels describe
an event (a paraphasia) as opposed to a condition like
aphasia or MCI; thus, the clinical dementia rating used
in the cited work is more analogous to the AQ index
included with the PSST data.
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Transcripts F1 Precision Recall Accuracy FER PER

PSST-Gold 0.984 0.968 1.000 0.985 0% 0%
Y2 0.921 0.941 0.901 0.928 10.3% 21.1%
Y5 0.920 0.926 0.914 0.926 10.9% 22.3%
Y1 0.917 0.941 0.894 0.925 9.9% 20.0%
Y3 0.903 0.949 0.861 0.914 10.4% 21.5%
Y4 0.899 0.930 0.871 0.910 10.6% 22.2%
PSST-Baseline 0.892 0.929 0.858 0.903 12.1% 26.4%
MO7 0.888 0.928 0.851 0.900 12.0% 26.1%
MO4 0.887 0.910 0.865 0.897 11.7% 25.4%
MO6 0.885 0.934 0.842 0.899 12.0% 25.9%
MO1 0.884 0.912 0.858 0.896 11.3% 25.5%
MO3 0.884 0.931 0.842 0.897 11.7% 26.3%
MO2 0.883 0.921 0.848 0.896 11.4% 25.1%
MO5 0.878 0.930 0.832 0.893 11.9% 26.0%
Y6 0.798 0.934 0.696 0.836 12.5% 26.0%
Y7 0.593 0.942 0.432 0.724 16.6% 38.0%

Table 3: Correctness results using the PSST–B model, using Test transcripts generated by Task A models Y1-Y7
and MO1-MO7. F1, precision, recall, and accuracy scores are shown, alongside the FER and PER shown in Task
A. The first row, PSST-Gold, used the gold standard transcripts. Values in gray did not improve on PSST–A.

In the experiment using transcripts from Task A, we
see how improvements to FER and PER do not nec-
essarily ripple out to the downstream task. FER and
PER consider the full transcript, so improvements out-
side the response boundaries have no effect on cor-
rectness. Even if improvements occurred within the
response boundary, so long as any errors remain, the
PSST–B algorithm will mark it as false. A correctness
algorithm that considered likelihoods for each token in
the sequence might better show a relationship to incre-
mental ASR improvements.
The perfect recall and imperfect precision of PSST-
Gold indicate that with ideal transcripts, 10 false pos-
itives account for all the errors. In these samples, the
correct sequence of phonemes were present, but the re-
sponse was incorrect for other reasons. For example,
the string /m>eIlbAks/ (“mailbox") contains /m>eIl/, it
is incorrect because it is a different word, and a noun
rather than a verb. Similarly, /klæfIN/ contains the
/læfIN/ (“laughing”), but the production is a non-word.
This can be seen as a limitation of the algorithm with
no sensitivity to word and syllable boundaries. Unlike
PSST-Gold, the remaining transcripts had worse recall
than precision, suggesting they tended to miss correctly
pronounced words (false negatives) more so than they
smoothed out mispronunciations (false positives).
We reviewed PSST–B errors that were common across
the transcripts. In one instance, we provided the tran-
script /pUSIN/ (“pushing") and labeled the response as
correct, whereas none of the ASR transcripts agreed. In
fact, 7 of 12 transcripts had /m/ as the initial consonant,
and upon listening to the sample post-hoc, we tend to
agree with the ASR. Another particular challenge per-
tains to matters of motor planning and articulation. One
example included a prolongation of the initial /m/ in the

word “mixing", i.e. /m:- mIksIN/. During the prolon-
gation, the participant was also lowering the jaw with
lips closed, introducing more oral resonance than typ-
ical for /m/, and demonstrating involuntary pitch fluc-
tuations. This seemed to confuse all the ASR systems,
though predictably: 6 were transcribed as /pIksIN/ and
5 as /bpIksIN/ In their raw form, our transcripts anno-
tated phenomena like phonological fragments and pro-
longations, but these annotations were removed during
pre-processing. Furthermore, none of our annotations
addressed deviations in pitch or resonance.

6 Conclusion
As we hoped, the PSST participants improved on our
baseline approach. The ASR metrics FER and PER
were improved by a relative 18% and 24%, respec-
tively. Those improvements alone improved the F1
of the Correctness task by a relative 3.3%. These
ideas warrant further experimentation, and we expect
progress will continue as a result of expanding the
PSST data and refining this work.
To this end, as a next step we will investigate which
linguistic and clinical characteristics pose the great-
est challenge across the ASR systems. Further, we
will assess how FER/PER relate to the performance
of downstream tasks; and, explore how different ap-
proaches to FER computation could improve its util-
ity. At the same, we intent to continue expanding the
PSST dataset using AphasiaBank data while also refin-
ing our evaluation methods. Given the opportunity to
hold another PSST challenge, we see ample opportu-
nity to raise the bar with the downstream tasks: intro-
ducing tasks like phonological and morphological sim-
ilarity assessment, or leaning in to the complexities as-
sociated with accents and dialect.
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Appendices

A More on Phonological Features and
Feature Error Rate (FER)

Phoneme error rate (PER) is the go-to evaluation met-
ric for phonemic ASR, derived from the edit distance
between the predicted and target phonemes. For PSST,
we explore a feature error rate (FER) as finer-grained
alternative to PER. Instead of the phonemic edit dis-
tance, the error in FER is a phonological feature dis-
tance (Mortensen et al., 2016; Tao et al., 2006). In
short, each phoneme is represented by a quasi-binary
vector indicating the presence and absence of each fea-
ture described by the system, and these vectors can be
used to compute a measure akin to Euclidean distance.
Feature distance is then normalized by the sequence
length to determine the error rate, much like PER. In
other words, FER is a way of giving “partial credit” to
an ASR transcript when it produces phonemes which
are similar (but not exact) to the target transcript, defin-
ing similarity in terms of distinctive phonological fea-
tures.
Phonological features distill information about how
people distinguish the sounds of their language from
one another, while also grouping phonemes into natu-
ral classes (Chomsky and Halle, 1968). For example,
the English words “bead” and “bid” both contain high
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ARPAbet IPA Example Word Special diphthong features
EY />eI/ "bay" [-+high, +-tense]
OW / >oU/ "beau" [-+high, +-tense]
OY />OI/ "boy" [-+high, -+front, +-back, +-round]
AW / >aU/ "bough" [-+high, +-low, -+back, -+round]
AY />aI/ "buy" [-+high, +-low, -+front]

Table 4: Diphthongs and their unique features used during computation of feature error rate (FER)

Cost Feature Changes

1 [–feature] ↔ [+feature]

0.75 [–feature] ↔ [+–feature]
[–+feature] ↔ [+feature]

0.5
[–feature] ↔ [0feature]

[–+feature] ↔ [+–feature]
[0feature] ↔ [+feature]

0.25

[–feature] ↔ [–+feature]
[–+feature] ↔ [0feature]

[0feature] ↔ [+–feature]
[+–feature] ↔ [+feature]

0

[–feature] ↔ [–feature]
[–+feature] ↔ [–+feature]

[0feature] ↔ [0feature]
[+–feature] ↔ [+–feature]

[+feature] ↔ [+feature]

Table 5: Costs associated with each feature difference
during computation of feature error rate (FER)

front vowels. In the feature system proposed by (Hayes,
2009), high front vowels are a natural class primarily
described as [+syllabic, +high, +front]. In fact, the
two phonemes share all the same features, save for one
distinction: the /i/ in bead is [+tense], while the /I/
in “bid” is said to be lax, or [−tense], distinguished by
only that feature. Some phonemes do not specify a cer-
tain feature, for example, the tense/lax distinction only
applies to vowels, so /b/ and /d/ are both [0tense].

Distinctive features are thus used in phonological anal-
ysis to classify phonemes and describe their linguis-
tic behavior (e.g. allophonic variations or historical
sound changes), and they are empirically validated
for that purpose. Recently, however, phonological
features have found novel applications in computa-
tional linguistics, enhancing statistical models with in-
formation about phonemes’ features and feature dis-
tances (Mortensen et al., 2016).

For the PSST challenge, we use FER as an evaluation
metric for ASR. Previous research has used a varia-
tion of the concept as a metric for automatic phoneme
recognition (Halpern et al., 2022), but the practice is
not well established. Our motivation here is to gain
insight into what makes an ASR a better fit for our
tasks. During transcription, certain feature-adjacent

phonemes can be quite difficult to distinguish (by an
ASR or a human). Yet in some contexts, feature-
adjacent phonemes like /t/ and /d/ are functionally
interchangeable (e.g. a sound change attributable to
dialect), whereas more distant phoneme errors would
invalidate an analysis.
Compared to PER, FER is much more difficult to com-
pute and understand, and all the more difficult for those
with no background in phonology. For this reason, we
put together the pssteval-viewer tool to illustrate
how FER was computed for each utterance, which we
shared with PSST challengers in our evaluation toolkit.
An example feature analysis generated by the software
is shown in Figure 1.
To build our table of feature values, we began with the
system specified by Hayes (2009). We excluded two
features which do not contrast in our ARPAbet tran-
script (nor English, generally): [constrictedglottis] and
[trill]. Diphthongs presented a conundrum: with no
single entry for diphthongs in the feature table, the two
components would be treated as two phonemes. In
other words, if a diphthong replaced a monophthong
(or vice versa), the distance would always include an
insertion or a deletion, and the feature error would
be greater than a full phoneme. To rectify this, we
treated diphthongs as individual phonemes (as they are
in ARPAbet), adding new entries in the feature table
for />eI/, / >oU/, />OI/, / >aU/, and />aI/ (the vowels in "bay",
"bow/beau", "boy", "bow/bough", and "buy", respec-
tively), and new feature values to capture their move-
ment. These all emphasize the first of their two compo-
nent vowels (Ladefoged and Johnson, 2015), so when
a feature has the new value [+−feature] (present to-
ward absent) we consider it between [+feature] and
[0feature], while [−+feature] (absent toward present)
is between [0feature and [−feature]. The five diph-
thongs and their novel features are highlighted in Ta-
ble 4 All combinations of feature changes and their
costs are shown in Table 5. introduced two new sym-
bols to capture how a diphthong’s features moved be-
tween its components.

B More Details on Data Preparation
B.1 More on Data Preparation
Approximately one third of the total number of in-
cluded responses (n=3291) consisted of BNT-SF first
responses (n=1074), defined as single-word first com-
plete attempts according to the scoring guidelines of the
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P p + − − − − − − − − − + − − − 0 0 0 − − 0 0 0 0 0

B b + − − − − − − − + − + − − − 0 0 0 − − 0 0 0 0 0

T t + − − − − − − − − − − − − + + − − − − 0 0 0 0 0

D d + − − − − − − − + − − − − + + − − − − 0 0 0 0 0

K k + − − − − − − − − − − − − − 0 0 0 − + + − 0 0 0

G g + − − − − − − − + − − − − − 0 0 0 − + + − 0 0 0

CH
>
tS + + − − − − − − − − − − − + − + + − − 0 0 0 0 0

JH
>
dZ + + − − − − − − + − − − − + − + + − − 0 0 0 0 0

F f + + + − − − − − − − + − + − 0 0 0 − − 0 0 0 0 0

V v + + + − − − − − + − + − + − 0 0 0 − − 0 0 0 0 0

TH T + + + − − − − − − − − − − + + + − − − 0 0 0 0 0

DH D + + + − − − − − + − − − − + + + − − − 0 0 0 0 0

S s + + + − − − − − − − − − − + + − + − − 0 0 0 0 0

Z z + + + − − − − − + − − − − + + − + − − 0 0 0 0 0

SH S + + + − − − − − − − − − − + − + + − − 0 0 0 0 0

ZH Z + + + − − − − − + − − − − + − + + − − 0 0 0 0 0

HH h − + + − − − − − − + − − − − 0 0 0 − − 0 0 0 0 0

M m + 0 − + − − − + + − + − − − 0 0 0 − − 0 0 0 0 0

N n + 0 − + − − − + + − − − − + + − − − − 0 0 0 0 0

NG N + 0 − + − − − + + − − − − − 0 0 0 − + + − 0 0 0

L l + 0 + + + − − − + − − − − + + − − + − 0 0 0 0 0

DX R + 0 + + + − + − + − − − − + + − − − − 0 0 0 0 0

Y j − 0 + + + − − − + − − − − − 0 0 0 − + + − + − +

W w − 0 + + + − − − + − + + − − 0 0 0 − + + − − + +

R r − 0 + + + − − − + − − − − + − + − − − 0 0 0 0 0

ER Ç, Ä − 0 + + + + − − + − − − − + − + − − − 0 0 0 0 0

IY i − 0 + + + + − − + − − − − − 0 0 0 − + + − + − +

IH I − 0 + + + + − − + − − − − − 0 0 0 − + + − + − −
UW u − 0 + + + + − − + − + + − − 0 0 0 − + + − − + +

UH U − 0 + + + + − − + − + + − − 0 0 0 − + + − − + −

EH E − 0 + + + + − − + − − − − − 0 0 0 − + − − + − −
EY >eI − 0 + + + + − − + − − − − − 0 0 0 − + −+ − + − +−

AH 2, @ − 0 + + + + − − + − − − − − 0 0 0 − + − − − + −
AO O − 0 + + + + − − + − + + − − 0 0 0 − + − − − + −
OW >oU − 0 + + + + − − + − + + − − 0 0 0 − + −+ − − + +−

OY >OI − 0 + + + + − − + − + +− − − 0 0 0 − + −+ − −+ +− −

AE æ − 0 + + + + − − + − − − − − 0 0 0 − + − + + − 0

AW >aU − 0 + + + + − − + − − −+ − − 0 0 0 − + −+ +− − −+ 0

AY >aI − 0 + + + + − − + − − − − − 0 0 0 − + −+ +− −+ − 0

AA A − 0 + + + + − − + − − − − − 0 0 0 − + − + − + 0

Table 6: The 40 phonemes in this ASR system in ARPAbet and IPA, and their associated phonological fea-
tures. Features align with Hayes (2009), with the exception of diphthong handling, which are treated as individual
phonemes here (using special symbols −+and +−to describe their movement).

53



Split Mild Moderate Severe Very Severe

Hours
Train 0.85 (32.8%) 1.39 (53.4%) 0.33 (12.5%) 0.03 (1.0%)
Validation 0.11 (31.5%) 0.20 (56.3%) 0.04 (12.1%) 0.00 (0.0%)
Test 0.17 (28.2%) 0.32 (55.0%) 0.08 (13.9%) 0.02 (2.6%)

Segments
Train 1073 (49.3%) 893 (41.0%) 187 (8.6%) 20 (0.9%)
Validation 121 (37.2%) 170 (52.3%) 34 (10.4%) 0 (0.0%)
Test 262 (41.9%) 275 (44.0%) 67 (10.7%) 20 (3.2%)

Speakers
Train 33 (44.5%) 32 (43.2%) 8 (10.8%) 1 (1.3%)
Validation 4 (36.3%) 6 (54.5%) 1 (9.0%) 0 (0.0%)
Test 8 (36.3%) 10 (45.4%) 3 (13.6%) 1 (4.5%)

Table 7: Detailed breakdown of the data illustrating the attempt to balance aphasia severity across each split. The
balance is show for each of hours of audio, number of segments, and number of speakers.

IPA Example ARPAbet

/p/ “pat” P
/b/ “bat” B
/t/ “ten” T
/d/ “den” D
/k/ “coat” K
/g/ “goat” G
/R/ “butter” (allophone of /t/, /d/) DX
/P/ “cotton” (allophone of /t/) (removed)

/
>
tS/ “church” CH

/
>
dZ/ “judge” JH

/f/ “fan” F
/v/ “van” V
/T/ “thin” (voiceless) TH
/D/ “then” (voiced) DH
/s/ “see” S
/z/ “zoo” Z
/S/ “shoe” SH
/Z/ “occasion” ZH
/h/ “hat” HH

/n/ “nose” N
/N/ “sing” NG
/m/ “man” M

IPA Example ARPAbet

/w/ “win” W
/j/ “yes” Y
/r/ “red” R
/l/ “late” L

/Ç/ “heard” (stressed)
}

ER
/Ä/ “perhaps” (unstressed)

/i/ “she” IY
/I/ “fit” IH
/u/ “boot” UW
/U/ “wood” UH

/>eI/ “state” EY
/E/ “red” EH
/ >oU/ “vote” OW
/>OI/ “boy” OY
/O/ “dawn” AO
/2/ “but” (stressed)

}
AH

/@/ “alone” (unstressed)

/A/ “not” AA
/æ/ “cat” AE
/>aI/ “kite” AY
/ >aU/ “cow” AW

Table 8: A list of International Phonemic Alphabet (IPA) notations used by our laboratory and their ARPAbet
mappings for ASR, with examples.

PNT. For about a quarter of BNT-SF responses (n =
155), first complete attempts were segmented to also
contain surrounding connected speech when phonemic
boundaries between words were blurred. BNT-SF re-
sponses that overlapped with examiner speech as well
as responses labeled as non-naming attempts (e.g., de-
scriptions of the target, whispered responses, etc.) were
excluded.

Approximately two thirds of the response data con-
sisted of VNT first responses (n = 2217), defined as
any response from the moment following picture stimu-

lus presentation and a first examiner prompt to the mo-
ment preceding a second examiner prompt and/or the
administration of the next picture stimulus. Nonver-
bal cues from the examiner, such as gestures indicating
the target verb, were treated as second prompts if they
occurred. Examiner speech that overlapped with a re-
sponse was excluded, and, if possible, exactly one seg-
ment of participant speech was retained per test item.
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B.2 Audio Preprocessing
When we extracted audio-only segments from the full
TalkBank session videos, we applied pre-processing
steps using ffmpeg. To remove high-energy, low-
frequency noise, we used a high-pass filter, rolling off
the audio signal below 100Hz (at a rate of 12 dB per oc-
tave). Then, we applied adaptive limiting to the audio
in two phases. First, we used a applied a filter designed
to achieve broadcast-standard loudness normalization
(EBU R128), dynamically adjusting to an integrated
loudness of –23dB. Second, to remove large peaks (e.g.
when a microphone was bumped) we applied a look-
ahead limiter set to prevent the signal from exceeding
–6dB. Finally, we downsampled and downmixed to a
monaural 16KHz (discarding sounds over 8KHz, typi-
cal for ASR) and extracted each segment to individual
WAV files.

B.3 Transcription Procedures
Phonemic transcriptions were broad with conventions
originally developed by our laboratory for the purposes
of use with a computer algorithm. For this project, we
aimed to apply previously developed conventions in a
way that captured some degree of phonetic detail if and
when phonemic boundaries were crossed. To this end,
research assistants received training from a licensed
speech-language pathologist on some typical coartic-
ulation processes and dialectical patterns observed in
the participant sample, namely those that could be rep-
resented using broad phonemic notation.

B.4 Transcript Pre-Processing for ASR
For ASR purposes, the IPA transcripts were converted
to ARPAbet. The full mapping of IPA to ARPAbet
symbols is shown in Table 8. Similar to conventional
ASR preparation (Lopes and Perdigao, 2011b), some
phonemes were combined or removed: /@/ and /2/ be-
came AH, /Ç/ and /Ä/ became ER, and glottal stops (/P/)
were removed from the transcripts. We used a spe-
cial symbol SPN for instances where transcribers noted
unintelligible words or speech noises (e.g. laughing,
coughing).

C More on baseline model training
The model was fine-tuned for 12,000 total iterations
(401 epochs), linearly ramping up to a learning rate of
5 × 10−5 over the first 4000 iterations. For the first
2000 iterations, we froze all but the newly-initialized
weights, priming only the output layer. For the fi-
nal model, we restored the model to the point when
it showed the minimum PER on the validation set, at
5964 iterations (200 epochs). We used a maximum
batch size of 6.4 million frames of audio (400 seconds).
Figure 2 shows the progression of the model’s loss over
the course of training.
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Figure 2: CTC loss over number of updates for the
baseline model (at 30 updates per epoch). The red line
is loss computed for the train set, and the blue line is
loss computed for the test metric.
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Abstract
Aphasia is a language disorder that affects millions of adults worldwide annually; it is most commonly caused by strokes or
neurodegenerative diseases. Anomia, or word finding difficulty, is a prominent symptom of aphasia, which is often diagnosed
through confrontation naming tasks. In the clinical setting, identification of correctness in responses to these naming tasks
is useful for diagnosis, but currently is a labor-intensive process. This year’s Post-Stroke Speech Transcription Challenge
provides an opportunity to explore ways of automating this process. In this work, we focus on Task B of the challenge, i.e.
identification of response correctness. We study whether a simple aggregation of using the 1-best automatic speech recognition
(ASR) output and acoustic features could help predict response correctness. This was motivated by the hypothesis that acoustic
features could provide complementary information to the (imperfect) ASR transcripts. We trained several classifiers using
various sets of acoustic features standard in speech processing literature in an attempt to improve over the 1-best ASR baseline.
Results indicated that our approach to using the acoustic features did not beat the simple baseline, at least on this challenge
dataset. This suggests that ASR robustness still plays a significant role in the correctness detection task, which has yet to
benefit from acoustic features.

Keywords: anomia, psst challenge, stroke, aphasia, automatic speech recognition

1. Introduction
Aphasia is a language disorder that affects 2–4 million
people annually just in the US alone.1 Aphasia most
commonly occurs after a stroke or head injury, or can
be acquired slowly from growing brain tumors or neu-
rological diseases.2 Patients with aphasia suffer diffi-
culty in communication, which can manifest as various
forms of language impairments, including both com-
prehension and expression.
One of the most prominent symptoms of aphasia is
anomia, or word finding difficulty. Specifically, apha-
sia patients with anomia might make word production
errors that are semantic (e.g. “dog” for the target “cat”),
phonological (e.g. “tat” for the target “cat”), both, or
even unrelated (e.g. “chair” for the target “cat”). These
errors are typically diagnosed in the clinical setting
through confrontation naming tasks, where the patient
is presented with hundreds of items to identify/name.
The resulting error profiles are then analyzed by pro-
fessionals to provide overall assessment. Understand-
ing these errors is therefore critical in diagnosis as well
development of treatment plans.
However, current approaches for anomia test assess-
ments are labor intensive for clinicians, especially with
a large number of patients, each completing a large
set of tests. Further, speech recognition for atypical
speech, such as that produced by aphasia patients, is
especially challenging, since most state-of-the-art auto-
matic speech recognizers (ASR) were trained on clean

1https://www.aphasiaaccess.org/
white-papers/

2https://www.nidcd.nih.gov/health/
aphasia

(and often read) speech in controlled environments.
Recently, self-supervised speech representation ap-
proaches (Liu et al., 2020a; Liu et al., 2020b; Baevski
et al., 2020), commonly learned from raw audio, have
shown promising results on multiple tasks. Their utility
has been evaluated on a range of spoken language pro-
cessing tasks, from word/phoneme recognition to emo-
tion and sentiment analysis (Yang et al., 2021; Shon et
al., 2021). The natural question is then whether these
systems can be adapted to aphasic speech, especially
when the aphasia data is recorded in conditions of-
ten much different from the pretrained ASR data. In
this work, however, we take a more incremental ap-
proach in assessing the possibility of detecting anomia
with a simple combination of pretrained ASR output
and acoustic features. This approach is inspired by the
earlier works showing the utility of prosody (i.e. how
something is said vs. what is said) in aiding spoken
language understanding systems, both when applied to
hand transcripts and ASR transcripts (Kahn and Osten-
dorf, 2012; Marin and Ostendorf, 2014; Tran et al.,
2019; Tran and Ostendorf, 2021). In particular, we
focus on Task B: correctness prediction of naming re-
sponses in the Post-Stroke Speech Transcription Chal-
lenge (PSST) 2022. We aim to answer the following
questions:

• Using a pretrained ASR system, can correctness
prediction be improved using acoustic features?

• Are there salient differences in the acoustic pat-
terns of correct vs. incorrect naming responses?

In answering these questions, we hope to understand
whether such a simple and low-cost system (i.e. not
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requiring additional aphasia-specific data and annota-
tions) helps predict response correctness, or whether it
is worth investing more effort in improving ASR for
the domain of aphasic speech and language disorders
in general.

2. Related Work
Many researchers have explored the potential of using
speech for the diagnosis of language disorders. For ex-
ample, Roark et al. (2011) showed that both lexical and
acoustic signals can help detect mild cognitive impair-
ment (MCI). In particular, noun and verb counts, syn-
tactic complexity (as measured by Yngve score (Yn-
gve, 1960)), pause durations and pause rates seemed
to be most useful. For Primary Progressive Aphasia
(PPA) detection and subtype classification, Fraser et al.
(2013; Fraser et al. (2014) also found that syntactic
complexity features were among the most useful. In
addition, while acoustic features were not as useful in
differentiating PPA from control, they were important
in classification of PPA’s subtypes.
In an investigation to push towards a fully automated
diagnosis pipeline, Zhou et al. (2016) compared using
hand-transcribed speech conversations vs. ASR outputs
to detect Alzheimer’s disease in participants. Not sur-
prisingly, they found that accuracy is higher using per-
fect transcripts, but also identified key features that
have distinguishing power in both gold and ASR tran-
scripts, such as word length and frequency. In addition,
the authors observed that accuracies can vary within a
narrow band of word error rates (WER), i.e. ASR tran-
scripts with the same low WER can contain drastically
different information. For predicting aphasia quotient
(AQ), Le et al. (2018) trained a speech recognition
system on AphasiaBank (MacWhinney et al., 2011)
and achieved a new recognition benchmark for ASR
in aphasic speech, in addition to obtaining higher accu-
racy on AQ prediction.
The research so far has largely been limited by ASR
quality, as aphasic speech proves to be a challenge.
However, to the best of our knowledge, little has been
explored on whether acoustic features are informative
in aiding correctness prediction on top of ASR tran-
scripts.

3. Data and Metrics
The dataset we use is provided by the PSST Challenge
2022 organizers (Gale et al., 2022). In particular, the
dataset is a subset of AphasiaBank (MacWhinney et al.,
2011), a database of multimedia interactions in clinical
settings for the study of aphasia. For the PSST chal-
lenge, the subset includes responses from the Boston
Naming Test – Short Form (BNT) and the Verb Nam-
ing Test (VNT). In addition to the audio and metadata
from AphasiaBank, Gale et al. (2022) provided hu-
man phone-level annotations, as well as the correctness
label for the naming responses (i.e. whether the utter-
ance was considered correct by clinicians). The dataset

is well-balanced with approximately 50%:50% split of
correct vs. incorrect labels (binary classes), both in the
training and validation set. The train/validation/test
splits were predefined by the challenge organizers.
Overall dataset statistics is shown in Table 1.

Split # Utterances PER FER

Train 2298 4.0% 2.4%
Validation 341 22.6% 10.6%
Test 652 n/a n/a

Table 1: Dataset Statistics for the PSST Challenge

For ASR, we use the pretrained system provided by
Gale et al. (2022), and obtained phone transcripts from
this off-the-shelf ASR. The phone error rate (PER) and
feature error rate (FER) are also reported for each set.
PER is a standard metric in ASR research (i.e. %
phone recognition errors out of reference phones); FER
is a metric provided by the challenge organizers that
emphasizes evaluation of errors regarding distinctive
phone features (i.e. putting more value on transcripts
that sound correct as opposed to strict comparison with
phone representations).
For correctness prediction, we use standard evaluation
metrics for binary classification, i.e. F1 score (in addi-
tion to reporting precision and recall), as instructed by
the organizers (Gale et al., 2022).

4. Methods
4.1. Acoustic Features
Inspired by previous works exploring acoustic features
for aphasia classification, we extracted several feature
sets reported in literature to be generally useful in
speech analysis.

• Librosa (McFee et al., 2015) feature set: we
extract the pitch contour for each utterance us-
ing librosa’s implementation of the pYIN algo-
rithm (Mauch and Dixon, 2014; de Cheveigné
and Kawahara, 2002). This gives us the esti-
mated pitch contour, as well as voice activity de-
tection per frame. To summarize the pitch con-
tour and voicing characteristics for the whole ut-
terance, we compute the voice activity rate (ac-
tive rate) for each utterance, which we consider
the proxy for pause characteristics of the utter-
ance. Pause features have been shown to be useful
in acoustic analysis of speech disorders, e.g. as in
(Roark et al., 2011; Le et al., 2018). Additionally,
we hypothesize that pauses are important indica-
tors of speech fluency, i.e. aphasic speech might
be less fluent than healthy speech due communi-
cation difficulties reflected by hesitations and self-
corrections.

To potentially alleviate the loss of acoustic infor-
mation in summarizing features for the whole ut-
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terance, we also estimate the polynomial fit coef-
ficients of the pitch contour. We used a 5th order
polynomial fit, resulting in a six dimensional fea-
ture vector for each utterance, i.e. the coefficients
[a5, a4, a3, a2, a1, a0].

• The Geneva Minimalistic Acoustic Parameter Set
(GeMAPS) for Voice Research and Affective
Computing (Eyben et al., 2010): We extract the
low-level descriptors as recommended in (Eyben
et al., 2010); this gave us 18 features that cover
different pitch, energy, and spectral balance char-
acteristics of the speech utterances. Detailed de-
scriptions for each feature can be found in Eyben
et al. (2010). For each feature in this set, we com-
pute the mean and standard deviation of each ut-
terance.

In addition to acoustic features, we explore potentially
using ASR scores for the utterances as a proxy of how
confident the speech recognizer was. We hypothe-
size that lower confidences could potentially indicate
anomalies in the speech patterns and thus could inform
correctness in the naming task. For this, we use the
min, max, mean, median, and standard deviation of the
softmax normalized logit scores generated by the pre-
trained ASR system. Specifically, the logit scores were
first normalized to sum up to 1 before the sufficient
statistics calculations.3 We did not excluded silent or
pad tokens in this work (a possible future tweak), and
this was only a simple way to assess the global ASR
confidence for each utterance.
To select the potentially most useful features for dis-
criminating between correct and incorrect responses,
we perform a t-test for each feature between the correct
and incorrect samples in the training data. Features that
have statistically significant differences (p < 0.001,
using Bonferroni correction) in correct vs. incorrect
samples are the following (henceforth referred to as
CoreFeats):

• max logit: max value of the (normalized) logit
scores in each utterance

• mean logit: mean value of the (normalized) logit
scores in each utterance

• mean Loudness sma3 (GeMAPS feature): mean
value of loudness in each utterance, i.e. mean es-
timate of perceived signal intensity from an audi-
tory spectrum

• sd Loudness sma3 (GeMAPS feature): standard
deviation of loudness in each utterance

• mean spectralFlux sma3 (GeMAPS feature):
mean value of spectral flux in each utterance,

3Raw “logit scores” are a bit of a misnomer since they are
usually not normalized to sum up to 1 for general purposes,
e.g. in inference.

i.e. the mean difference of the spectra of two
consecutive frames

• sd spectralFlux sma3 (GeMAPS feature): stan-
dard deviation of spectral flux in each utterance

Interestingly, none of the librosa features were signif-
icantly different between correct and incorrect sam-
ples. This is surprising since previous work has shown
pauses are a useful indicator, but the feature active rate
is not among CoreFeats according to our selection
heuristics.

4.2. Classifiers
Our baseline model is a simple string matching proce-
dure as implemented by Gale et al. (2022), i.e. we use
the 1-best ASR output and run the program to evalu-
ate whether the transcript is found among acceptable
pronunciations. This baseline output also is chosen to
be our “base” feature, i.e. a binary feature indicating
whether a correct pronunciation is found in the ASR
transcripts.
We experimented with all acoustic features listed in
Section 4.1. In particular, our classifiers were trained
on all the subsets of features listed, as well as those se-
lected through the statistical significance test above, i.e.
CoreFeats.
We explored two types of standard classifiers, since
the dataset is relatively small: logistic regression (LR)
and support vector machine (SVM). Hyperparameter
search included the regularization coefficient C ∈
[10−4, 10−3, ..., 104] for both LR and SVM, and we ad-
ditionally experimented with both linear and RBF ker-
nels for the SVM. We use cross validation with 5 folds
in the training set to select the hyperparameters. Our
models were implemented using the Scikit-learn toolkit
(Pedregosa et al., 2011).

5. Results and Discussion
The baseline model (using string match on 1-best ASR
output) turned out to be a very strong baseline. All
our configurations without using this baseline (i.e. us-
ing only acoustic features) yielded very poor results,
often comparable to random guessing (F1 ≈ 0.5). Re-
sults from experiments with all different combinations
of {Librosa, GeMAPS, logit} features as described in
Section 4.1 all showed similarly poor performances.
Using only CoreFeats did slightly better than random,
but combining CoreFeats with the baseline indicator
does not beat simply using the baseline. In fact, the pre-
dicted outputs from Baseline and Baseline+CoreFeats
were identical.
Table 2 shows the best results with SVM (linear kernel,
C = 0.01).
On the final test set, our best-performing classifier
(Baseline+CoreFeats) obtained F1 score = 0.89 (pre-
cision = 0.93, recall = 0.86) and accuracy = 0.90. This
result is similar to those on the validation set, likely
thanks to similarly balanced data distributions.
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Model Precision Recall F1

Baseline 0.92 0.81 0.86
CoreFeats only 0.64 0.59 0.61
Baseline+CoreFeats 0.92 0.81 0.86

Table 2: Results of Classification on the Validation Set

To diagnose our results, we looked specifically at the
set of samples where the results from our CoreFeats-
only classifier differ from those using Baseline. Our
motivation is to see whether particularly difficult sam-
ples, i.e. those Baseline got wrong, had any indicators
that the acoustic features might have identified.
In both training and validation sets, using only
CoreFeats (without baseline) performed better on the
VNT set compared to BNT. Specifically, out of 1467
utterances in the training set where CoreFeats obtained
correct predictions, 1023 are from VNT while 444
are from BNT. Similarly for the validation set, out of
214 correct predictions by CoreFeats, twice as many
are from VNT than BNT (143 vs. 71). This pat-
tern persists even when looking into the subset where
CoreFeats managed to predict correctly those Base-
line predicted incorrectly. In the validation set, while
CoreFeats performed better than Baseline for only 15
utterances, only 2 are from BNT while the rest are from
VNT. Anecdotally (from listening to a few samples),
we observed that the BNT task involves isolated word
naming while VNT elicits potentially longer, more
sentence-like speech to include the verb being tested.
We hypothesize that this is where acoustic features are
likely more useful, as these longer speech samples ex-
hibit more diverse prosodic phenomena easier to model
by acoustic features (Tran, 2020).
Figures 1 and 2 show the histograms of subset of sam-
ples where the outputs of Baseline and CoreFeats clas-
sifiers differ. In the training set, it appears that acoustic
features could potentially help identify additional true
positives (correct naming responses). However, the
majority of instances are correctly classified by Base-
line, so it is not obvious that acoustic features could
help in a significant way.
The similar analysis on the validation set shows a
slightly different trend: here Baseline misses more in-
correct responses, i.e. it failed to identify utterances
with incorrect pronunciations/reading. Arguably this
is the more interesting case where acoustic features
should help: for example, while there might be a good
string match between the ASR transcript and the true
transcript, the acoustic characteristics of the utterance
might help flag these as incorrect responses to help re-
duce misdiagnosis. However, again, the majority of
cases are still correctly classified using Baseline.
This difference in behavior between the training and
validations sets, coupled with the large difference in

Figure 1: Distribution of samples where Baseline
predictions are different from CoreFeats predictions;
Training set.

Figure 2: Distribution of samples where Baseline pre-
dictions are different from CoreFeats predictions; Vali-
dation set.

PER and FER as shown in Table 1, suggests that the
pretrained ASR system might have overfitted on the
training set.

6. Potential Next Directions
Our first attempt at a simple system to classify cor-
rectness of naming responses in anomia diagnosis has
yielded negative results so far. Specifically, the chal-
lenge seems to be two-fold: (1) acoustic feature selec-
tion and (2) over-reliance on robust ASR.
Regarding acoustic feature selection, it is largely un-
clear how to select the best set of features, despite a
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large amount of study dedicated to this area. Using
acoustic features in this setting is also difficult both
from the modeling (how to aggregate frame-level fea-
tures to the utterance level representation) and the data
quality (which features are robust to recording noise,
dialects, age, etc.) perspectives. The dataset in this
challenge is quite small, and the acoustic feature space
is large. Perhaps redoing this feature analysis on a
larger aphasia dataset might yield a different result.
Regarding ASR systems, the difference in both classi-
fication results and FER/PER between the training and
validation sets highlights the difficulty in domain adap-
tation. One experiment we would have liked to try is to
use several off-the-shelf pretrained ASR systems and
devise heuristics for ensembling the results. For exam-
ple, in addition to a Baseline as in this work, we could
look at the differences in prediction and confidences of
various ASR systems, and use these differences as an-
other proxy the transcription quality.
Overall, from this small study, it appears that the ro-
bustness of ASR plays a more important role than
acoustic feature exploration.

7. Conclusion
In this work, we focus on Task B: Correctness Evalua-
tion of the PSST Challenge 2022. Our goal was to in-
vestigate whether using acoustic features in addition to
ASR transcripts would improve correctness prediction.
The motivation was that if acoustic features helped, this
augmentation approach would only need a relatively
good pretrained ASR system without further collect-
ing costly annotations or additional data for fine-tuning
ASR. Unfortunately, this was not the case, as our ap-
proach to using acoustic features could not improve
over a simple baseline (string match between 1-best
ASR output and acceptable pronunciations). However,
we did find potential indicators of acoustic feature use-
fulness in tasks eliciting longer speech. Specifically,
using acoustic features obtained better results in the
verb naming test (VNT) than in the isolated noun nam-
ing test (BNT), likely because the former elicits longer,
more sentence-like utterances.
Our results suggest that ASR robustness still plays crit-
ical role in this task, and that it is worth investing more
effort in improving ASR for the domain of aphasic
speech and language disorders in general.
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Abstract
As part of the PSST challenge, we explore how data augmentations, data sources, and model size affect phoneme transcription
accuracy on speech produced by individuals with aphasia. We evaluate model performance in terms of feature error rate
(FER) and phoneme error rate (PER). We find that data augmentations techniques, such as pitch shift, improve model
performance. Additionally, increasing the size of the model decreases FER and PER. Our experiments also show that adding
manually-transcribed speech from non-aphasic speakers (TIMIT) improves performance when Room Impulse Response is
used to augment the data. The best performing model combines aphasic and non-aphasic data and has a 21.0% PER and a
9.2% FER, a relative improvement of 9.8% compared to the baseline model on the primary outcome measurement. We show
that data augmentation, larger model size, and additional non-aphasic data sources can be helpful in improving automatic
phoneme recognition models for people with aphasia.

Keywords: aphasia, phoneme transcription, wav2vec 2.0, speech, phonemes, data augmentation, speech data augmen-
tation

1. Introduction
Aphasia is a dysfunction of the ability to understand
or produce language caused by damage to brain re-
gions used for speech (Damasio, 1992). A common,
broad distinction made in classifying different forms of
aphasia is between fluent and non-fluent aphasia (Fey-
ereisen et al., 1991). While those with fluent aphasias,
such as Wernicke’s aphasia, are typically able to pro-
duce syntactically and phonetically well-formed utter-
ances, non-fluent aphasias such as Broca’s aphasia and
transcortical motor aphasia are characterized by diffi-
culties in selecting and ordering phonemes and forming
syntactically complex utterances. However, while most
clinicians use fluency classifications in their diagnoses,
the distinction is not well-defined (Gordon, 1998), and
there is evidence that even so-called fluent aphasias in-
volve errors in phoneme production (Blumstein et al.,
1980; Kurowski and Blumstein, 2016; Vijayan and
Gandour, 1995; Holloman and Drummond, 1991), pos-
sibly as a result of impaired acoustic-phonological con-
trol (Robson et al., 2012).
This phenomenon of inserting, deleting or substituting
phonemes is known as phonemic paraphasia. Exam-
ples of this based on a related yet distinct clinical pop-
ulation with similar symptomatology include lat for
bat, or dake for drake. The errors are concentrated
on nouns and verbs, and occur evenly on vowels, sin-
gle consonants, and consonant clusters (Dalton et al.,
2018). For consonants, erroneous productions most
commonly differ from the target phoneme by a sin-
gle phonetic feature, though errors containing multiple
phonetic feature differences occur as well. Substitution
errors occur more commonly than insertion or deletion

* Equal contribution.

errors. These unintended phoneme substitutions are be-
lieved to be caused by a cascading activation of a target
and a competitor phonetic segment with a speech out-
put showing properties of both the target and competi-
tor phonemes (Kurowski and Blumstein, 2016).

Several studies have shown that reliable phonemic an-
notation can be beneficial in the diagnosis of apha-
sia, and its distinction from acquired apraxia of
speech (Cunningham et al., 2016), with phoneme dis-
tortion error rates being lower for patients with phone-
mic paraphasia. Error profiles can also be used as
an indicator for the possibility of remediation of these
phonological errors, as individuals displaying phono-
logical errors display less improvement than individ-
uals displaying motoric errors on a repetition train-
ing task (Buchwald et al., 2017). Finally, phonemic
transcriptions are an important component in the de-
velopment of individualized intervention plans for pa-
tients with aphasia (Abel et al., 2007). The ability
to automatically transcribe the speech of aphasic pa-
tients would allow for a richer profile of data for each
individual with less burden on the clinician. Auto-
matic speech recognition (ASR) has been proposed as
a valuable tool for developing effective speech ther-
apy interventions (Jamal et al., 2017), but achieving
robust, high-accuracy ASR for aphasic speech remains
a challenge. Conventional ASR systems struggle with
aphasic speech because of the irregularities of aphasic
speech, so aphasiatic ASR systems needs to be trained
specifically on aphasic speech.

In this paper we explore how speech data augmenta-
tions, data sources and model parameters can be opti-
mized to create a robust, high accuracy phoneme tran-
scription model for aphasic speech. We hope to give
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the reader an intuition about the steps involved in the
creation of such a model with the aim of describing our
work in such detail that it can be easily reproduced.

1.1. Phoneme Feature Vectors
The goal of the Post-Stroke Speech Transcription
(PSST) challenge is to create accurate automatic tran-
scriptions of phonemes produced by speakers with
aphasia. To this end, we use phonemic feature vectors
in order to more precisely quantify the degree to which
a produced phoneme differs from a target phoneme. A
phoneme feature vector maps phonemes to their articu-
latory correlates (Chomsky and Halle, 1968). The fea-
tures correspond to aspects such as vocal tract cavity
configurations, place and manner of articulation, glot-
tal states of sounds, and tongue body positions. A
value of [+] for a given feature indicates that the fea-
ture is present, [-] indicates that it is absent, and [0]
indicates that a phoneme is unmarked with respect to
that feature (i.e., the feature is not relevant for defin-
ing the phoneme). For example, the consonant /f/ is
[- voice] while the consonant /v/ is [+ voice]. Fea-
ture error rate (FER) allows for a more fine-grained
analysis of errors in aphasic speech, penalizing errors
that sound more similar to the target less severely, in
contrast to phoneme error rate (PER), which does not
indicate how dissimilar a produced phoneme is from
a target phoneme and treats all incorrect productions
equally.

1.2. Models for Aphasia Prediction
Recently, Self Supervised Learning (SSL) has attracted
a lot of interest in all data modalities because of the
high cost of annotation of data; models like BERT (De-
vlin et al., 2019), SimCLR (Chen et al., 2020b) have
shown the ability to learn in a self supervised setting,
either by predicting the next token or by contrastive
learning. SSL is especially useful in the audio modal-
ity, mainly because of the presence of an abundance
of unannotated audio data on the internet. With re-
cent advances in deep learning, architectures like Hu-
BERT (Hsu et al., 2021) and wav2vec 2.0 (Baevski et
al., 2020) have shown results on par with supervised
learning methods while reducing the overhead of gath-
ering annotated data. In this work, we explore wav2vec
2.0 Base and Large models with various data augmen-
tation methodologies to transfer the speech recognition
knowledge of the pre-trained model to speech gener-
ated by a person with aphasia.

1.3. Data Augmentation
Many deep learning pipelines incorporate data aug-
mentation as an important technique to achieve state-
of-the-art results (Chen et al., 2020a). It is known to
improve generalisation and learn translation invariance,
which is useful for the models to learn the underlying
structure of data instead of specific aspects of the train-
ing samples, resulting in better performance (Worrall
et al., 2017). It has shown-state-of-the-art results in
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Figure 1: A sample from PSST dataset

different modalities such as images (Krizhevsky et al.,
2012) and text (Feng et al., 2021). Data augmentation
has also been applied successfully in the audio modal-
ity, resulting in major improvement in speech classifi-
cation and speech recognition (Tak et al., 2022). In this
paper we augment the audio data in the waveform do-
main, giving us more training samples while maintain-
ing the i.i.d assumption of the empirical data samples.

2. Data
2.1. Datasets
In our experiments we explored how combining and
augmenting data could help improve our predictions.
We explored how training on the PSST, TIMIT, and
Common Voice datasets affected model performance.
Data statistics are summarised in Table 1.

2.1.1. PSST
The PSST challenge dataset consists of a subset of the
AphasiaBank data (MacWhinney et al., 2011) anno-
tated with manually transcribed phonemes and made
available through the python package psst-data (Gale et
al., 2022). The data consists of 2298 utterances in the
training dataset, 341 utterances in the validation dataset
and 652 utterances in the test dataset. A sample from
the dataset is visualised in Figure 1. Speakers with sev-
eral different types of aphasia, as categorized by the
Western Aphasia Battery (WAB) (Risser and Spreen,
1985), were represented in the training dataset. Of
the 73 speakers, 26 had anomic aphasia, 18 had con-
duction aphasia, 18 had Broca’s aphasia, 8 had Wer-
nicke’s aphasia, 2 had transcortical motor aphasia, and
one speaker was classified as not aphasic based on their
WAB results.

2.1.2. TIMIT
TIMIT (Garofolo et al., 1993) is the most commonly
used dataset for phoneme recognition, as it is one of
the few datasets available with phoneme labels (Lopes
and Perdigao, 2011). Although TIMIT, like the PSST
data, uses a phoneme set based on ARPAbet, it is based
on a revised version. While, for the most part, there is a
simple mapping to the version of ARPAbet used in the
PSST data, there are three items1 that do not map ex-
actly. To avoid introducing imprecision into the train-
ing data, we elected to choose only segments that did

1dx (flap), nx (nasal flap), and q (glottal stop).
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Figure 2: Effect of data augmentation in the waveform

not include these three items; as the number of seg-
ments was quite low, we also drew from the test set. In
total, 1414 segments were used (1016 from train, 398
from test)2.

2.1.3. Common Voice
Common Voice is a crowdsourced dataset of speakers
of different languages. We used a subset of the En-
glish Common Voice with automatically added ARPA-
phonemes using the open source python g2p package.3

Dataset Number of
segments

Manually
transcribed

Audio
(mins.)

PSST 2298 Yes 166
TIMIT 1414 Yes 64
Common Voice 15777 No 1559

Table 1: Dataset overview

2.2. Data Augmentation
We used the open source audiomentations library4 to
augment the PSST data as well as other datasets used
in training. In our data augmentation we strove both
to augment the available samples of the PSST Dataset
to increase their number still keeping the dataset bal-
anced and similar to the original PSST dataset, and to
induce the noisy artefacts of PSST dataset into TIMIT.
Figure 2 shows the effect of different type of waveform
augmentation on the waveform of a sample audio and
Figure 3 shows the effect of the same sample in the mel
spectrogram domain.

2A list of IDs used, along with a fine-tuned model, is
included in https://huggingface.co/jimregan/
psst-partial-timit.

3https://pypi.org/project/g2p-en/
4https://github.com/iver56/
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Figure 3: Effect of data augmentation in mel spectrogram

2.2.1. Gaussian noise
Though seemingly paradoxical, adding noise to the
data acts as regularization and improves generaliza-
tion (Bishop, 1995). Gaussian noise is a common
data augmentation: at each time a datapoint is exposed
to the model a stochastic noise sampled from a stan-
dard Gaussian N (0, 1) is added to it making it differ-
ent. Noise amplitude σ is a hyperparameter uniformly
distributed over the range σ ∼ U(0.005, 0.015). The
newly generated samples after augmentation can be
represented as:

x(t) = x(t) + σ ×N (0, 1)

The effect of this data augmentation is visible in Fig-
ure 2a for the waveform and Figure 3a for the mel spec-
trogram.

2.2.2. Time stretch
Time stretch is a data augmentation where the audio file
is either sped up or slowed down without affecting the
pitch. In theory this would improve generalization by
making the model more independent of speaking rate.
Generally γ is the stretch factor, if γ > 1 then the speed
of the audio is increased and if γ < 1 then the speed
of the audio is reduced. The stretch factor is uniformly
distributed over γ ∼ U(0.8, 1.25). The augmentation
results of this transformation on the original waveform
can be seen in Figure 2c for the waveform and in Fig-
ure 3c for the mel spectrogram.

2.2.3. Pitch shift
We use pitch shift to vary the pitch of the signal. This
improves generalization by helping learn a latent space
independent of fundamental frequency. Pitch shift
modifies the pitch of the audio sample either by raising
or lowering the pitch while keeping the duration of the
audio unchanged (Salamon and Bello, 2017). It is, in
some ways, an inverse of the time stretch augmentation.
We shifted individual samples by n semitones without
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changing the tempo where n ∼ U(−4, 4). Figure 2b
and Figure 3b visualise the effect of this transforma-
tion in both the waveform and the mel spectrogram.

2.2.4. Voice Conversion
We used the official open source implementation5

of (Chou et al., 2019) to do one-shot voice conver-
sion of audio files to improve the variability in data and
make the data more speaker independent. They use a
Variational Auto Encoder (Kingma and Welling, 2013)
as a generative model with two encoders, where one is
a context encoder while the other is a speaker encoder,
with the use of Instance Normalization (IN) (Ulyanov
et al., 2016) and Adaptive Instance Normalization
(AdaIN) (Huang and Belongie, 2017) they synthesise
the text conditioned on the target speaker representa-
tion. In our experiments, for all of the audio files of
each speaker, the target audio file was chosen at ran-
dom from all other speakers and was augmented to their
speaker characteristics. This gave us varied samples of
the same utterance but with different speaker character-
istics. Since this method looks for voiced segments in
the mel domain, output from these are shorter than oth-
ers, but for visualisation only we have padded it with
Gaussian noise to make it visually similar to 2.2.1. This
padding was not used while training the model. The ef-
fect of this can be seen in both the waveform Figure 2d
and the mel spectrogram Figure 3d.

2.2.5. Room Impulse Response
Room Impulse Response (RIR) augmentation is a tech-
nique for simulating room acoustics (Habets, 2006) by
adding artificial reverberation. Given the variability
in the acoustics of the recording environments of the
AphasiaBank dataset, RIR might make it possible to
bridge the acoustic gap when using othe datasets. The
audiomentations library uses a wave-based technique,
where recordings with the reverberance qualities of a
particular room have been isolated and applied to the
input using a convolution operation. We used two sets
of publicly available impulse responses: EchoThief6

and the MIT McDermott dataset7, from which a record-
ing is selected at random for application to the utter-
ance.

2.3. Data Processing
All data was processed to work with the fairseq (Ott et
al., 2019) framework in order to standardize the train-
ing process.

2.4. Model Architecture
For training we chose to fine-tune wav2vec 2.0. We ex-
perimented with Base and Large model. Although later

5https://github.com/jjery2243542/
adaptive_voice_conversion

6http://tulrich.com/recording/ir_
capture/

7https://mcdermottlab.mit.edu/Reverb/
IR_Survey.html

wav2vec 2.0
Model Base Large

Transformer blocks 12 24
Attention heads 8 16
Model dimension 768 1024
Inner dimension 3072 4096

Table 2: wav2vec 2.0 model variants and hyperparam-
eters.

models like Large (LV-60k) has shown better results we
wanted to focus our experiments on data augmentations
and how they affect model performance.

2.4.1. Wav2vec 2.0
wav2vec 2.0 (W2V2) is an architecture proposed in
Baevski et al. (2020) that uses self-supervision in the
audio domain to create audio vectors that can be used
in training. The model consists of a multi-layer con-
volution feature encoder that takes as input raw audio
and outputs latent speech representations. These latent
representations are then fed to a Transformer to build
representations that has the ability to capture informa-
tion from the whole length of the sequence. This is
done through a masking function in the audio domain.
For our training, we chose to focus on the wav2vec 2.0
base model and the wav2vec 2.0 large model, to make
a comparison of how model size affects and interacts
with other techniques used while training. The model
hyperparameters are mentioned in Table 2.

2.4.2. Fine-tuning
Pre-trained base models are fine-tuned for phoneme
(and speech) recognition by adding a linear projection
on top of the model, used to classify into the number of
tokens found in the phoneme vocabulary (42).

2.4.3. Language Model
Language modelling refers to the use of various statisti-
cal and probabilistic methods to estimate the probabil-
ity of a sequence of words. Formally, we can formulate
the task of language modelling as

p(x1, . . . , xt) = p(x1).p(x2|x1). . . . .p(xt|x<t)

=

i=t∑

i=1

p(xi|xi−1, . . . , x1)

where xi are the tokens in a sentence.

2.5. Evaluation
2.5.1. Phoneme Error Rate
Phoneme error rate is the number of phoneme errors
(edits, insertions, and substitutions) divided by the
number of phonemes in the reference transcript, cal-
culated using the Levenshtein distance (Levenshtein,
1966).
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PER = 100 ∗ #Edits

#Phones

2.5.2. Feature Error Rate
Feature error rate is the number of phoneme feature er-
rors where phonemes which differ by fewer features
are considered more correct. Transcribed phonemes
are converted into phoneme feature vectors in order to
calculate the feature error rate using the Levenshtein
distance.

FER = 100 ∗ #Edits

#Features

3. Experiment
In order to improve reproducibility we kept the hyper-
parameters constant using the same parameters as those
used in the psst-baseline training. 8 We trained in a
warm state manner with 4000 warm updates keeping
learning rate at 5e-05 using the Adam optimizer to train
the model.
Table 3 contains a summary of the best performing
models.

3.1. Base Models
Two pre-trained wav2vec 2.0 models were used as base
models for all experiments: “wav2vec 2.0 Base” and
“wav2vec 2.0 Large” are the “No finetuning” versions
of the models, as found in the fairseq GitHub reposi-
tory9.

3.2. PSST Augmentations
We augmented the PSST dataset with augmentations
defined in Section 2.2. We used Gaussian noise as a
data augmentation for the base model and pitch shift
and time stretch independently as augmentations for
two large models. There was a 50% probability of the
data being augmented, with the augmented dataset dou-
bling in size compared to the non-augmented data with
on average 25% augmented data, 25% overlapped data
and 50% consisting of the original data.

3.3. PSST with Augmented TIMIT
As speech recognition models can often be sensitive to
differences in acoustic conditions; it is not automati-
cally the case that additional data will lead to an im-
provement when there is a difference in recording con-
ditions. Because of the mismatch of recording con-
ditions between TIMIT, which was recorded in clean
conditions, and the PSST data, which was not, we ex-
perimented with augmenting the TIMIT data alone, to
attempt to artificially match the PSST data. As well
as Gaussian noise, pitch shift, and time stretch, we
also added RIR to match the dry, studio conditions of
TIMIT to PSST.

8https://github.com/PSST-Challenge/
psstbaseline

9https://github.com/pytorch/fairseq/
tree/main/examples/wav2vec/

3.4. Language Model
To explore the effect of the language model, we aug-
mented the transcription data of the combined PSST
and TIMIT datasets with the CMU Pronouncing Dic-
tionary (CMUdict)10, across configurations of 4-, 5-,
and 6-gram models11. We used two versions of the
PSST+TIMIT data: unmodified, and with silence to-
kens removed (and the spoken noise token, in the case
of PSST); to emulate the silence between words with
CMUdict, we used the unmodified entries, entries with
a silence token added at the start, added at the end,
and added at both start and end, with an additional “all
silences” configuration which combined all configura-
tions.

4. Results
The results of our experiments are summarised in Ta-
ble 3 and Figure 4. While evaluating on the PSST val-
idation dataset we found improved scores for several
techniques.
While some training heuristics–such as adding an n-
gram language model and using data augmentation
such as Voice Cloning, Gaussian Noise and Time-
stretch–had results comparable to the baseline trained
on PSST dataset with wav2vec 2.0 (FER: 10.2, PER:
22.2), other configurations lead to improved results.
The wav2vec 2.0 large model trained on the PSST data
had a relative improvement of 5.86% for PER (20.9 vs
22.2) and 3.92% for FER (9.8 vs 10.2).
The wav2vec 2.0 large model trained on the PSST data
with pitch shift improved the scores by 4.5% for PER
(21.2 vs 22.2) and 6.86% for FER (9.5 vs 10.2).
The wav2vec 2.0 large model trained on the PSST data
with pitch shift + TIMIT improved the scores by 4.5%
for PER (21.2 vs 22.2) and 7.3% for FER (9.7 vs 10.2).
The wav2vec 2.0 base model trained on the PSST data
+ TIMIT with RIR achieved the best score of the var-
ious combinations of augmentations described in sec-
tion 3.3, improving the scores by 1.8% for PER (21.8
vs 22.2) and 5.88% for FER (9.6 vs 10.2).
The wav2vec 2.0 large model trained on the PSST data
+ TIMIT with RIR achieved the best overall score, im-
proving the results by 5.41% for PER (21.0 vs 22.2)
and 9.8% for FER (9.2 vs 10.2).
As part of our experiments we also reproduced the
baseline model. Our reproduced baseline had lower
scores than the PSST Baseline by 1.96% for PER (10.4
vs 10.2) and 4.05% for FER (23.1 vs 22.2). The differ-
ence could be caused by initial weight randomization.
We choose to compare all our models to the original
baseline model.

10https://github.com/cmusphinx/cmudict
116 is the maximum number of n-grams supported by the

default configuration of the language model library used by
the PSST Challenge scripts.
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Name Data Model FER PER
PSST Baseline PSST Base 10.2% 22.2%
Reproduced Baseline PSST Base 10.4% 23.1%
Common Voice Common Voice phonemes Base 61.8% 91.6%
Baseline + TIMIT RIR PSST Partial TIMIT with RIR Base 9.6% 21.8%
Gaussian Noise (DA) PSST with Gaussian Noise Base 9.9% 22.9%
W2V2 Large PSST Large 9.8% 20.9%
W2V2 Large Voice Clone PSST + Voice clone Large 10.3% 22.7%
W2V2 Large Time-Stretch PSST Time Stretch Large 10.0% 21.2%
W2V2 Large Pitch-Shift PSST Pitch Shift Large 9.5% 21.2%
W2V2 Pitch-Shift + TIMIT RIR PSST Pitch Shift + TIMIT RIR Large 9.7% 21.2%
W2V2 Large + TIMIT RIR PSST + TIMIT RIR Large 9.2% 21.0%

Table 3: Experimentation results with different combinations of model and augmentations

Furthermore, we evaluated training on Common Voice
and TIMIT without PSST, finding that these models
were not successful at aphasic phoneme recognition
without fine-tuning on aphasic speech. We also con-
tinued fine-tuning Common Voice on PSST with poor
results. The poor results on Common Voice could be
related to the automatic phoneme transcriptions which
might not have been comparable to manually tran-
scribed phonemes.
Several models showed improvements in PER without
improvements in FER. One hypothesis is that this is
due to the manner of calculation of FER versus PER
per phoneme, PER has a binary outcome whereas FER
is averaged over 20 features hence leading to less vari-
ation in the score for FER.

4.1. Language Models
The best performing language model, 5-gram with si-
lences removed from PSST and TIMIT, but with CMU-
dict data with silence tokens added at the end, achieved
PER of 22.1%, compared with the baseline of PSST
and nonaugmented TIMIT without a language model
(PER 22.5%). No difference in FER was observed with
any language model configuration. A plot of the results
of this language model and a selection of the results
from section 3.3 can be viewed in figure 4.

4.2. Model Availability
The models are available for download on Hugging-
face12.

5. Discussion
In this paper, we looked at the challenges of the cur-
rent Automatic Speech Recognition (ASR) techniques
for the low-resource task of aphasic phoneme recogni-
tion, and devised heuristics for improving the phoneme
transcriptions.
Training with a larger baseline model was one of the
most straightforward ways to improve performance. In
general, all the models trained with wav2vec 2.0 Large
outperformed similar models trained with wav2vec

12https://huggingface.co/birgermoell
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Figure 4: Sample results of TIMIT augmentation
and language model experiments, using Gaussian
Noise (GN), Time Stretch (TS), Pitch Shift (PS), and
Room Impulse Response (RIR). LM results are on
PSST/TIMIT with silences removed, augmented with
CMUdict with appended silence tokens. Results to the
left of the vertical line represent improvements in FER,
while results below the horizontal line represent im-
provements in PER.

2.0 Base. This is in line with the current trend in
deep learning, where larger self-supervised transformer
models outperform the state of the art by keeping archi-
tecture similar while increasing model size. However,
training on larger models has several drawbacks, one
being increased training and inference time, another
being the need for specialised GPUs that might be ex-
pensive to acquire or use. If computation is a bottle-
neck, it might be sensible to start by training a smaller
model with different parameters and later train a larger
model after good parameters have been found that im-
prove performance.
Data augmentations on PSST was another technique
that improved the performance. Pitch shift was the
most useful augmentation technique when outside data
sources were not used, with models using pitch shift
showing good results especially on FER. Pitch shift
transformation could be viewed as a transformation of
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the vocal tract length and vocal fold of the speaker,
which could help the model to generalise the differ-
ence between phonemic features and make the model
more speaker independent. Given more time, experi-
ences with pitch shift parameters might have the poten-
tial to improve accuracy further, in line with previous
research (Salamon and Bello, 2017).
While working with data augmentation it is important
that the underlying structure of the data is preserved,
i.e., data augmentation should aim to help the model
learn by augmenting features in the dataset, but not
change the features so much that the underlying signal
in the data gets corrupted. Voice cloning was an exper-
iment where the data augmentation might have failed
in this regard and the augmented samples had, in gen-
eral, a lower pitch than the originals. When working
with data augmentation, we believe that an inspection
of the augmented data itself is a good first step in de-
termining if the data will be useful for training. Here,
common sense reasoning by a person knowledgeable
in the field should suffice. If the data sounds reason-
able, it has the potential to be helpful for improving
model performance. This might seem obvious, but in
the paradigm of large training sets and large models we
still want to emphasize the importance of keeping a hu-
man in the loop.
A limitation in our work is the small size of the PSST
dataset and the modest improvements we made com-
pared to the baseline. The small dataset size makes it
harder to determine how well our models have gener-
alised. When working with deep learning models it is
always hard to determine how parameters interact and
we think it is sensible to view this work as a way to
understand data augmentation in the aphasic phoneme
domain rather than seeing it as a recipe for achieving
state of the art.
An interesting scientific question is: to what degree
do aphasic phonemic speech models improve by train-
ing on different data sources consisting of non-aphasic
speech?
We found that training a model only on Common Voice
or TIMIT was not sufficient to get a working model.
This shows that at least in our experiment some part
of the data needs to be aphasic. Furthermore, we con-
tinued fine-tuning on PSST from the model trained on
Common Voice with limited results. This might be be-
cause Common Voice was automatically transcribed,
but it may be related to the order of training.
In our experiment we found that the best performing
model trained on TIMIT + PSST is close in perfor-
mance to the best performing model trained only on
PSST data. Here, data augmentations on TIMIT using
RIR to make the data sound similar to PSST clearly
helped performance by bringing the datasets more into
alignment.
In theory, a similarly performing model that is trained
on both aphasic and non-aphasic speech is preferable,
as it has the potential to generalise better. Since our

best performing model uses both aphasic and non-
aphasic speech, a fair conclusion is that non-aphasic
speech prepared in the proper format is a data source
augmentation worth exploring when working with
aphasic data.
A well-functioning phonetic and feature error predic-
tion model for aphasia appears a promising way for-
ward in order to build automated electronic tools for
aphasia recovery.
Improved understanding of aphasia through automated
tools for testing might also help determine which indi-
viduals are most helped by specific interventions.

6. Conclusion
In conclusion, our paper has shown that data augmen-
tation, larger model size and additional non-aphasic
data sources can be helpful in improving automatic
phoneme recognition models for people with aphasia.
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A. Experimental details
A.1. TIMIT augmentations
Table 4 contains the results of the augmentations using
the 64 minutes of TIMIT (see subsection 2.1.2, above).
The name of the augmentation in the table corresponds
with the branch name of the git repository13.

Augmentation FER PER
unaugmented 10.2% 22.5%
gaussian 10.0% 22.1%
pitchshift 9.6% 22.9%
rir 9.6% 21.8%
timestretch 10.1% 22.8%
gaussian-rir 10.0% 23.4%
pitchshift-gaussian 9.9% 22.9%
pitchshift-rir 9.9% 22.8%
timestretch-gaussian 10.2% 22.8%
timestretch-pitchshift 9.8% 22.0%
timestretch-rir 9.7% 22.2%
pitchshift-gaussian-rir 10.1% 23.5%
timestretch-gaussian-rir 9.7% 22.3%
timestretch-pitchshift-gaussian 10.2% 22.9%
timestretch-pitchshift-rir 10.2% 22.5%
timestretch-pitchshift-gaussian-rir 10.9% 24.1%

Table 4: Results of combining various augmentations
of TIMIT with the unaugmented PSST data.

A.2. Language model experiments
Table 5 contains the results of all permutations of
the experiments with language models (see subsec-
tion 2.4.3, above). The models are contained in the

13https://huggingface.co/jimregan/
psst-partial-timit

same git repository as the TIMIT augmentations; the
README accompanying the repository contains a
mapping of branches to the experiment.

n-gram FER PER
Baseline + TIMIT – 10.2% 22.5%

All silences
4 10.5% 23.0%
5 10.5% 22.6%
6 10.3% 22.3%

No silences
4 10.3% 22.6%
5 10.2% 22.2%
6 10.2% 22.4%

PSST and TIMIT without silence

CMUdict-end
4 10.3% 22.6%
5 10.2% 22.1%
6 10.2% 22.3%

CMUdict-start
4 10.4% 22.6%
5 10.3% 22.4%
6 10.3% 22.3%

CMUdict-both
4 10.4% 22.7%
5 10.4% 22.3%
6 10.3% 22.3%

Unmodified PSST and TIMIT

Unmodified CMUdict
4 10.3% 22.8%
5 10.3% 22.4%
6 10.2% 22.4%

CMUdict-end
4 10.3% 22.7%
5 10.2% 22.2%
6 10.2% 22.3%

CMUdict-start
4 10.5% 22.8%
5 10.4% 22.5%
6 10.3% 22.4%

CMUdict-both
4 10.5% 22.8%
5 10.4% 22.4%
6 10.4% 22.4%

Table 5: Results of different language model configu-
rations.
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Abstract
We employ the method of fine-tuning wav2vec2.0 for recognition of phonemes in aphasic speech. Our effort focuses on
data augmentation, by supplementing data from both in-domain and out-of-domain datasets for training. We found that
although a modest amount of out-of-domain data may be helpful, the performance of the model degrades significantly when
the amount of out-of-domain data is much larger than in-domain data. Our hypothesis is that fine-tuning wav2vec2.0 with
a CTC loss not only learns bottom-up acoustic properties but also top-down constraints. Therefore, out-of-domain data
augmentation is likely to degrade performance if there is a language model mismatch between “in” and “out” domains.
For in-domain audio without ground truth labels, we found that it is beneficial to exclude samples with less confident
pseudo labels. Our final model achieves 16.7% PER (phoneme error rate) on the validation set, without using a language
model for decoding. The result represents a relative error reduction of 14% over the baseline model trained without data aug-
mentation. Finally, we found that “canonicalized” phonemes are much easier to recognize than manually transcribed phonemes.

Keywords: wav2vec2.0, aphasia, phoneme recognition, data augmentation

1. Introduction
The diagnosis of post-stroke language disorders,
namely aphasia, depends on recognizing phonemes in
speech. For example, reduced activation of lexical-
semantic representations in aphasia may result in pro-
ducing “dog” for the target word “cat”, while reduced
activation of phonological representations may result
in producing “dog” for the target word “log” (Foygel
and Dell, 2000). The primary task of the Post-Stroke
Speech Transcription (PSST) Challenge (Task A) is to
develop an automatic phoneme recognition system that
accurately identifies the phonemes produced by sub-
jects with aphasia. The phonemes they actually pro-
duce may differ in important ways from the words they
intended to produce. This paper describes our effort for
the task.
Recognizing phonemes in aphasic speech is a challeng-
ing task for both human judges and computers. Differ-
ent types of aphasia are associated with different types
of linguistic symptoms (Wilson et al., 2010). Problems
such as disfluencies, mispronunciations, and articula-
tion deficits create interesting challenges for automatic
phoneme recognition. In addition, limitations in data
availability introduce additional challenges. State-of-
the-art models tend to be more effective when there is
plenty of in-domain data with ground-truth labels (with
little room for inter-annotator disagreements).
This paper fine-tunes wav2vec2.0 for Task A of the
PSST Challenge. For recognition of speech from
healthy speakers, the wav2vec2.0 model has recently
achieved impressive results. But how well does this
approach transfer to speech from the PSST challenge?
Our effort focuses on data augmentation, by supple-
menting data from both in-domain and out-of-domain

datasets for training. We found that modest amounts of
out-of-domain data can improve performance, but too
much of a good thing is not necessarily a good thing.
In particular, performance degrades significantly when
there is much more out-of-domain data than in-domain
data.
Datasets vary in many respects. Some are in-domain
and some are out-of-domain. Some come with bet-
ter ground truth labels than others. Different annota-
tion methods are used by different researchers. Some
datasets do not provide ground truth labels.
When there are no ground truth labels, we use pseudo-
labels. That is, use predictions from a trained model as
if they are gold labels. Iterating the self-training pro-
cess leads to improve performance, especially when
utterances with low confidence are removed from the
self-training process.
Less is more. That is, we found that data augmenta-
tion can be helpful, but not if there is too much out-
of-domain data relative to in-domain data, or if there
are too many pseudo-labels of dubious quality. Our fi-
nal model achieves 16.7% PER (phoneme error rate) on
the validation set, without using a language model. The
result represents a relative error reduction of 14% over
the baseline model trained without data augmentation.

2. Previous Work
2.1. Finetuning wav2vec2.0 for ASR
Wav2vec2.0 (Baevski et al., 2020) is a Transformer-
based framework for self-supervised learning of speech
representations from raw audio data. The speech sig-
nal is processed by a multilayer convolutional network
to obtain latent features at every 25 ms, which are
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then fed into vector quantization and Transformer net-
works. The contextualized representations from pre-
trained wav2vec2.0 capture a rich amount of infor-
mation about speech, demonstrated by probing exper-
iments showing that the representations can perform
well on a wide range of tasks (Ma et al., 2021; Shah
et al., 2021).
Pre-trained wav2vec2.0 models can be fine-tuned for
speech recognition with labeled data and a Connection-
ist Temporal Classification (CTC) loss (Graves et al.,
2006). (Baevski et al., 2020) demonstrated that this
approach achieved 1.8% word error rate on the test-
clean set of Librispeech with a Transformer language
model, and 8.3% phone error rate on TIMIT test set
without a language model. (Yi et al., 2020) applied
wav2vec 2.0 to speech recognition in low-resource lan-
guages. The paper reported more then 20% relative
improvements in six languages compared with previ-
ous work. We have conducted experiments of fine-
tuning wav2vec 2.0 with a CTC loss for recognition of
suprasegmentals, including syllables, tones, and pitch
accents (Yuan et al., 2021). Compared to previous stud-
ies, the method achieved 70% error reduction on sylla-
ble detection, 50% error reduction on Mandarin tone
recognition, and 10% error reduction on pitch accent
identification.

2.2. Data Augmentation
Data augmentation is widely used in computer vision
(Shorten and Khoshgoftaar, 2019), NLP (Feng et al.,
2021), time series (Wen et al., 2020), as well as in
speech (Mena et al., 2021). Very briefly, data aug-
mentation methods can be categorized into four differ-
ent groups: data perturbation, transfer learning, semi-
supervised training and generative synthesis. Without
loss of generality, let (x, y) ∈ D be the input feature
and corresponding label of a data sample from training
set D. Data perturbation does not introduce new data
sources, but rather modifies the original x. Common
perturbations include adding noise, random cut / crop /
rotation / substitution, mixing, etc. Transfer learning
based techniques try to bring new dataset D̂ to expand
D. Although there could be a domain shift, transfer
learning methods compensate this by constructing pro-
jections from one domain to the other (e.g. adaptors).
Semi-supervised training solves the problem that part
of the y are not gold labels (e.g. closed captions) or
even unlabeled. This helps when bringing new data in
the same domain but lacking of gold labels. Genera-
tive synthesis aims to create new data samples (x′, y′)
that is from the same distribution of D. It relies on a
generative model such as Generative Adversarial Net-
work (GAN) (Goodfellow et al., 2014), trained on D
or external data sources. We review some popular ap-
proaches for speech recognition, from the above 4 dif-
ferent categories.
Data Perturbation: Vocal Tract Length Perturbation
(VTLP) (Jaitly and Hinton, 2013) changes each utter-

ance through a warping procedure. (Thai et al., 2019)
tries to alter the pitch and speaking rate of the original
speech. In (Park et al., 2019), SpecAugment is pro-
posed to mask part of the log mel spectrogram. Mixup
technique (Zhang et al., 2018) is adopted in (Meng et
al., 2021) to weighted sum the utterances as the aug-
mented speech.
Transfer Learning (out-of-domain data adaption):
The recent popularity of pretrain - fine-tune pipelines
largely encourage domain adaption. (Hsu et al., 2021)
suggests that combining data, both in-domain and out-
of-domain, could improve generalization ability dur-
ing wav2vec2.0 pretraining. This is also verified in an
even larger setting (Chan et al., 2021), bigger model
and more data. An interesting work in (Fainberg et
al., 2016) uses adults’ speech to enhance the children’s
speech recognition, via the out-of-domain stochastic
feature mapping (SPF) (Cui et al., 2015) technique.
Semi-supervised Training (bootstraping): This
method relies on some seed labeled data for initial
supervised training, then generates pseudo labels for
other noisy or unlabeled data. The pseudo labels are
used to further reinforce the model. This can be done
in multiple rounds, and the model can be adjusted
using the seed data again (consistency regularization
(Xie et al., 2020)) between those rounds. This proce-
dure is termed as bootstraping or self-training in NLP
(Yarowsky, 1995), computer vision (Reed et al., 2014)
and speech (Punjabi et al., 2019; Chen et al., 2020).
Generative Synthesis: Rather than a simple combi-
nation of existing data, generative models learn joint
distribution of p(x, y) and sample from it. Variational
Autoencoding Wasserstein GAN (VAW-GAN) is used
in (Hsu et al., 2017) to build a voice conversion sys-
tem. Thanks to recent advance of text-to-speech (TTS)
systems, a line of works including (Laptev et al., 2020;
Rossenbach et al., 2020; Rosenberg et al., 2019), lever-
age a popular TTS backbone model, Tacotron (Wang
et al., 2017), to synthesize new training data. (Tjandra
et al., 2017) named such TTS-ASR loop as “machine
speech chain mechanism”.
Note that the PSST challenge targets the recognition of
post-stroke speech. This speech introduces new chal-
lenges, as well as opportunities to apply the literature
on data augmentation (Geng et al., 2022; Jin et al.,
2021; Vachhani et al., 2018) to new scenarios.

2.3. Is More Data Always Better?
In classic machine learning, when the number of data
samples N , is less than model capacity (often measured
by the number of parameters |θ|), the model tends to
overfit due to the bias-variance trade-off (Hastie et al.,
2009). However, deep learning models often have a
huge amount of parameters that is more than enough
to overfit even random labels (Zhang et al., 2021), but
such overfitting phenomenon is not commonly seen.
(Belkin et al., 2019) noticed a “double descent” curve,
where test loss first becomes worse, then gets better and

72



better, as the model capacity increases. In (Nakkiran et
al., 2021), the authors analyzes double descent curve
in deep learning models such as CNNs and Transform-
ers. In particular, they found that within a critical re-
gion (the model size falls in a certain range), increas-
ing training data size does not help on testing. But be-
yond this region (either under-parameterized or over-
parameterized cases), more data yields better test per-
formance. (d’Ascoli et al., 2020) even found a “trip-
ple descent” phenomenon, and established a connec-
tion between model size |θ|, training data size N , and
feature dimension d. An asymptotic analysis in (Li et
al., 2020) proves that infinite amount of data with infi-
nite dimension could hurt least square estimators’ per-
formance.
Rather than simply adding more data, the model could
benefit more from improving quality of the added data.
For example, analyzing and compensating the domain
shift is shown to be very effective in (Gong et al.,
2021). In this work, we demonstrate that augment-
ing from the same domain can significantly improve
the PSST recognition results. On the contrary, if aug-
menting from a different domain, more data may hurt
the model’s performance.

3. Phone Recognition on TIMIT,
Librispeech, and PSST

3.1. Datasets and labels
3.1.1. PSST
The dataset of the PSST challenge (Gale, R., Flee-
gle, M., Bedrick, S. and Fergadiotis, G., 2022) con-
sists of audio recordings and phonemic transcriptions
of people with post-stroke aphasia. The audio data was
sourced from the AphasiaBank database (Macwhinney,
B., Fromm, D., Forbes, M. and Holland, A., 2011),
from which utterances were selected, segmented, and
transcribed by experts at Portland Allied Laborato-
ries for Aphasia Technologies (PALAT). The training
set contains 2,298 utterances, a total of 2.8 hours of
speech. The validation set contains 341 utterances. Ad-
ditional 652 audio-only utterances were provided for
testing, and the results need to be submitted to the or-
ganizers for evaluation.
The dataset has 42 labels, including 39 phonemes from
the CMU pronouncing dictionary1, plus /DX/ for flaps,
<sil> for long pauses, and <spn> for vocal noises.
Excluding <sil> and <spn>, which will be filtered out
from evaluation, the size of the label inventory is 40.

3.1.2. TIMIT
TIMIT (Garofolo, J., et al., 1993) has been used as
a benchmark dataset for a number of tasks, includ-
ing phoneme recognition. The corpus contains speech
from 630 speakers from different dialect regions of
American English, each speaking 10 phonetically bal-
anced sentences. The 6,300 utterances were manually

1https://github.com/cmusphinx/cmudict

Table 1: Librispeech Splits

Split Source Utterances Hours
Train train-clean + 281k 960

train-other
Validation dev-clean 2703

Test test-clean 2620

segmented and transcribed at the phone level. Follow-
ing the literature (Lee and Hon, 1989), the 61 phone
labels in the dataset were grouped into 39 categories,
representing 38 phonemes plus pause. Compared to
PSST, the phoneme /ZH/ does not appear in TIMIT.
The corpus also contains a pronouncing dictionary, in
which every word has only one canonical pronuncia-
tion. Using this dictionary, we generated “canonical”
labels for every utterance by simply mapping words
into canonical phonemes. The inventory of canonical
labels is the same as the inventory of transcribed labels,
except for flap, /DX/. Flaps are common in transcrip-
tions (of American English), even though they do not
appear in the dictionary.
The TIMIT corpus provides a standard split for training
and testing. The training set contains 4,620 utterances
(3.9 hours of speech). The remaining 1,680 utterances
are in the test set. In our experiments below, we use the
test set for validation.

3.1.3. Librispeech
Librispeech (Panayotov, V., Chen, G., Povey, D. and
Khudanpur, S., 2015) is a benchmark dataset for En-
glish ASR. The corpus is derived from English au-
diobooks and contains 1000 hours of speech. Unlike
TIMIT, LibriSpeech is not phonemically transcribed.
It is standard practice to infer canonicalized phonemes.
We used g2p-en2 to convert words into phonemes. The
inventory of g2p-en phonemes is the same as those in
PSST except for flap, /DX/. Librispeech, when pro-
cessed by g2p-en, has no flaps.
Librispeech contains subsets called train-clean, train-
other, dev-clean, and test-clean. We use train-clean,
train-other for training, dev-clean for validation, and
test-clean for testing, as reported in Table 1.
.

3.2. PER Within and Across Datasets
We started with the pre-trained model: wav2vec-vox-
new.pt, a large wav2vec2.0 model trained on the Libri-
Light corpus of more than 60k hours of unlabeled
speech. We added a linear projection layer to the top
of the base model to output phoneme label tokens. The
three datasets in Table 2 were used for fine-tuning. The
first 10k updates apply to the projection layer, but not
the base model. Updates after the first 10k are applied
to both the projection layer as well as the Transformer

2https://pypi.org/project/g2p-en/
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Table 2: Phoneme error rate (PER) and trigram per-
plexity (per), computed over canonicalized (C) and
transcribed (T) phonemes in validation set.

Dataset C-PER T-PER C-per T-per
TIMIT 1.37% 7.29% 10.9 13.2

Librispeech 1.05% NA 11.1 NA
PSST NA 19.4% NA 10.3

in the base model. Fine-tuning uses a CTC loss. There
is a limit of 800k max tokens, which corresponds to
50 seconds of speech at 16k samples per second. The
learning rate was 10−5. The metric of unit error rate on
the validation set was used to determine the total num-
ber of updates. We used fairseq3 for our experiments.
PER is reported in Table 2 for C-phonemes (canoni-
calized) and T-phonemes (transcribed). Note that C-
PER ≪ T-PER. The comparison between C-PER and
T-PER is easier to make in TIMIT where the gold
standard provides both C-phonemes and T-phonemes.
These comparisons are more challenging for the other
two datasets, where we have one type of phonemes but
not the other, and consequently, four cells are NA (not
available) in Table 2.
Note that C-PER in Librispeech is relatively close to
the C-PER for TIMIT, at about 1% (We also evaluated
the Librispeech model on the test set, and the C-PER is
1.12%). The T-PER in PSST and TIMIT are well above
1%. The large differences between C-PER and T-PER
are left as an intriguing topic for future research.
Why are T-phonemes so much more difficult than C-
phonemes? It is possible that human transcriptions
introduce inconsistencies that complicate predictions.
Another hypothesis attributes the difference to fine-
tuning. It is possible that fine-tuning is learning not
only bottom-up acoustic properties of phonemes and
contexts (coarticulation), but also top-down constraints
(language model). To test this hypothesis, we trained a
phoneme trigram language model on the train set, and
computed the perplexity of the model on the validation
set. As reported in Table 2, the perplexity is larger for
transcribed phonemes (T-per > C-per), which may ex-
plain in part why recognition of transcribed phonemes
is more difficult for wav2vec2.0.
The phone error rate (T-PER) is much higher for PSST.
The perplexity of the phoneme language model is, how-
ever, similar for PSST, TIMIT and Librispeech. There-
fore, it is unlikely that the poor T-PER performance
is due to a particular distribution of phonemes in the
dataset. In our opinion, factors such as data spar-
sity, recording conditions, acoustic characteristics of
phonemes, and label quality are more likely contrib-
utors to the T-PER performance.
We also evaluated the models in a cross-dataset man-
ner. A model trained on one dataset is evaluated on

3https://github.com/pytorch/fairseq

Table 3: Within- and across-dataset PER (within-
dataset: validation error; across-dataset: test error.)

TIMIT Librispeech PSST
TIMIT 1.37% 8.48% 39.3%

Librispeech 8.20% 1.05% 34.8%
PSST 14.5% 14.0% 19.4%

Table 4: T-PER for out-of-domain data augmentation.
The last column shows performance on PSST (valida-
tion split). 3.9 hours of TIMIT (or Librispeech) is bet-
ter than too much (100+ hours) or too little (none).

Training data T-PER
In-Domain TIMIT Librispeech PSST

PSST None None 19.4%
PSST 3.9 hours None 18.0%
PSST None 960 hours 30.0%
PSST None 100 hours 21.6%
PSST None 3.9 hours 18.7%

the other datasets (the validation set is used for evalu-
ation). For TIMIT, the model of canonical phonemes
was used. The results are listed in Table 3.
Clearly, the models do not transfer well across datasets.
The PER of the Librispeech model, for example, is
34.8% on PSST, which is much higher than its within-
dataset PER of 1.05%.
Another interesting comparison is along the bottom
row of Table 3. Note that 14.5 < 19.4% and 14.0 <
19.4%. In other words, the PSST model performed bet-
ter on TIMIT and Librispeech than on PSST itself.

4. Out-of-Domain Data Augmentation
In this experiment, we supplemented the training
data of PSST with training data from TIMIT and
Librispeech. For Librispeech, we started with the
unabridged training set of 960 hours, but after receiv-
ing disappointing results, we repeated the experiment
with two smaller samples of 100 hours and 3.9 hours,
as shown in Table 4. The choice of 3.9 hours in the
last experiment (bottom row of Table 4) was chosen to
make the size of the TIMIT training set.
A modest amount of data augmentation is better than
too much or too little. That is, the performance of the
model was slightly improved when trained with addi-
tional data from TIMIT and 3.9 hours of Librispeech.
The error rate was decreased from 19.4% of no data
augmentation to 18.0% and 18.7%, respectively. On
the other hand, the model trained with additional data
from the entire train set of Librispeech was signifi-
cantly degraded with phoneme error rate of 30.0%.
To understand why using more data from Librispeech
degrades the model’s performance, we plot the contex-
tualized representations of the validation samples from
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Figure 1: Contextualized representations of PSST
validation samples from models trained on different
amount of out-of-domain augmentation data, compared
with no augmentation (psst).

different models in Figure 1. The contextualized rep-
resentations were extracted at all frames predicted as a
phoneme but not <blank> (i.e., a special token used in
CTC). These representations have 1024 dimensions. To
make them easier to visualize, we used PCA to project
the 1024 dimensions down to 2 dimensions in Figure 1.
Figure 1 shows that psst (green points) and psst3.9 (red
points) occupy similar regions of the plot, in contrast
with the three other cases: 960, psst100 psst960. The
green points have no training data from Librispeech,
and the red points have 3.9 hours. The other points
have 100+ hours of Librispeech. Augmenting the train-
ing data with too much data from Librispeech shifts the
representations away from the green and red points.
As discussed above, the contextualized representations
form a finetuned wav2vec2.0 may contain language
model information besides phonetic properties. The
shift of the representations by out-of-domain data may
suggest a mismatch in language model between ”in”
and ”out” domains. To test this hypothesis, we trained
a phoneme trigram language model for each amount of
augmentation data, and computed the perplexity of the
model on the validation set of PSST. The results are
shown in Figure 2.
Figure 2 shows that perplexity increases from left to
right. The large differences in perplexity indicate large
differences in domains. The language model for Lib-
rispeech is very different from the language model for
PSST. Increases in perplexity tend to degrade perfor-
mance (in terms of PER). That is, adding too much data
from Librispeech tends to increase PER.
However, psst3.9 is an important exception. In this
case, adding 3.9 hours of out-of-domain data increases
perplexity by a modest amount. However, PER moves
in the opposite direction. We susspect that improve-
ments in phonetic representations are large enough to
more than compensate for the modest increase in per-
plexity. Thus, adding 3.9 hours of Librispeech is better

Figure 2: Perplexity of phoneme trigram language
model is highly correlated with PER on the validation
set of PSST, although language model is not used for
decoding.

(in terms of PER) than too much (100+ hours) and too
little (none).

5. In-Domain Data Augmentation

5.1. Extracting Utterances from
AphasiaBank

The PSST dataset was derived from AphasiaBank. In
this experiment we extracted 48,937 utterances (47
hours) from aphasia subjects in AphasiaBank, exclud-
ing recording sessions that include samples in the test
set. Because only word transcription is available, we
tried two methods to use these utterances for phoneme
recognition. The first method is to use audio only for
semi-supervised training. The second method is to ob-
tain phoneme labels from word transcription through
forced alignment.
In the first method we used the model trained on the
train set of PSST to predict phonemes (i.e., pseudo la-
bels). For each utterance, we also computed a confi-
dence/probability score by averaging the probabilities
of 1-best hypothesis at frames where the prediction is
a phoneme but not <blank>. The distribution of the
probability scores are shown in Figure 3. The proba-
bility score will be used to either select utterances or
weight a CTC loss, as described below.
In the second method, we employed the Penn Phonet-
ics Lab Forced Aligner (P2FA) to do forced alignment
(Yuan and Liberman, 2008). More than half of the ex-
tracted utterances cannot be easily aligned because the
transcription contains OOVs (out-of-vocabulary), e.g.,
”xxx”. Only utterances with “clean” word transcription,
22,836 out of 48.937, were aligned to get phoneme la-
bels for training.

75



utterances

Probability

Fr
eq
ue
nc
y

0.2 0.4 0.6 0.8 1.0

0
50
0

10
00

15
00

20
00

25
00

Figure 3: Distribution of AphasiaBank-utterance prob-
ability scores from a model trained on PSST.

5.2. Filtering on Confidence and
Weighted/Unweighted CTC Loss

To use predicted phonemes or pseudo labels, we define
a threshold to select utterances for which the model has
more confidence in its prediction. We experimented
with five thresholds: 0, 0.7, 0.8, 0.9, and 0.95. When
the threshold is 0, all utterances are selected. Higher
thresholds filter out more utterances with less confi-
dence. The selected utterances were added to the PSST
training set in one of two conditions: (1) weighted or
(2) unweighted. The unweighted condition uses stan-
dard CTC loss. This condition treats AphasiaBank ut-
terances equally with utterances in the PSST training
set. In contrast, the weighted condition uses Eq. (1) to
compute CTC loss in the fine-tuning process.

LCTC =
1

|B|
∑

(x,y,s)∈B
−s logP (y|x) (1)

Eq. (1) computes CTC loss, LCTC, for a batch of B sam-
ples. Each sample consists of input frames, x, and a
label, y, with a probability score, s. When training on
pseudo-labels, y is a pseudo-label and s is a score from
the system, where 0 ≤ s ≤ 1. When training on ground
truth labels from PSST, y is a label from the gold stan-
dard, and s = 1.

5.3. Results
Table 5 reports results on the validation set of PSST
for a number of thresholds, with and without weight-
ing. The last row reports results for forced alignment
(FA). Data augmentation improves over the baseline in
all conditions, with an absolute error reduction between
1.3% and 2.1%. Weighting is helpful when the thresh-
old is small, but the differences between weighted CTC
and unweighted CTC diminish for larger thresholds.
PER performance improves if we exclude “bad” utter-
ances (or downweight them). PER is 18.1% for all ut-
terances, and reduces to 17.3% with a threshold of 0.9.
This threshold selects 18k (of 48k) utterances.

Table 5: PER of in-domain data augmentation using
different thresholds and CTC weighting. Baseline PER
is 19.4%, and FA (forced alignment) PER is 17.9%.

Threshold Utterances Unweighted Weighted
CTC CTC

0 48,497 18.1% 18.0%
0.7 42,816 17.9% 17.4%
0.8 35,096 17.4% -
0.9 18,296 17.3% 17.4%
0.95 6488 17.9% -
FA 22,836 17.9% -

Table 6: PER at each iteration of data augmentation,
with the number of selected utterances in parentheses.

Iteration Unweighted CTC Weighted CTC
1 17.3% 17.4%

(18,296) (42,816)
2 16.9% 16.9%

(28,188) (43,793)
3 16.7% 16.8%

(33,554) (46,223)

5.3.1. Results with Iteration
After a new model was trained with data augmentation,
we used it to predict phonemes for utterances extracted
from AphasiaBank. The predictions and probability
scores are different from predictions without data aug-
mentation. We use the new predictions and scores to
select a new set of utterances. We iterated this proce-
dure until no further improvement could be made. Ta-
ble 6 reports results for a number of thresholds, with
and without CTC weighting. The Table shows that our
best model achieved 16.7% phone error rate on the val-
idation set of PSST, representing a relative error reduc-
tion of 14% over the baseline model trained without
data augmentation.
Figure 4 shows contextualized representations (2-D
PCA projections) of the best model red and the base-
line model green. Note that the red and green points
occupy similar regions of the plot, unlike models of
out-of-domain augmentation shown in Figure 1.

6. Conclusions
Fine-tuning wav2vec2.0 with a CTC loss not only
learns bottom-up acoustic properties but also top-down
constraints. In the task of phoneme recognition, a
phoneme language model is implicitly learned from
fine-tuning and represented in a fine-tuned model.
Therefore, for the method of fine-tuning wav2vec2.0,
out-of-domain data augmentation is likely to degrade
performance if there is a language-model mismatch be-
tween ”in” and ”out” domains. Our study confirms this

76



Figure 4: Contextualized representations of PSST vali-
dation samples from models trained with (psstAphasia)
and without (psst) in-domain data augmentation.

hypothesis. We found that although a modest amount
of out-of-domain data helps phoneme recognition from
speakers with aphasia, too much out-of-domain data
will degrade performance. Visualizations showed that
out-of-domain data augmentation shifts the space of
representations learned from fine-tuning away from the
corresponding space for a baseline model. Visualiza-
tions also showed that in-domain data augmentation
does not shift the space as much as out-of-domain data
augmentation.

It is difficult to obtain large quantities of speech with
phonemic transcriptions from subjects with aphasia.
We extracted audio utterances from AphasiaBank and
generated predictions (pseudo labels) from a baseline
model, and used this resource for in-domain data aug-
mentation. We found that excluding utterances with
less confident predictions can lead to a better perfor-
mance of the model. Therefore, for both out-of-domain
and in-domain data augmentation, we found scenarios
where “less is more”.

We iterated the procedure of in-domain data augmenta-
tion by training a new model and updating predictions
and confidence scores with the new model, until con-
vergence. Our final model achieved 16.7% phone error
rate on the PSST validation set, without using a lan-
guage model for decoding. This result represents a rel-
ative error reduction of 14% over the baseline model
trained without data augmentation. The results on the
test set were submitted to the challenge for evaluation.

Finally, we found that with the method of fine-tuning
wav2vec2.0 “canonicalized” phonemes are much eas-
ier to recognize than manually transcribed phonemes.
On TIMIT, the phoneme error rate was 1.37% and
7.29% respectively for the two types of labels. On
Librispeech, the phoneme error rate of “canonicalized”
phonemes reached as low as 1.05%. This is an intrigu-
ing result. More research is needed, from both linguis-
tics and machine learning, to fully understand it.
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Abstract
Eating disorders (EDs) constitute a widespread group of mental illnesses affecting the everyday life of many individuals in
all age groups. One of the main difficulties in the diagnosis and treatment of these disorders is the interpersonal variability
of symptoms and the variety of underlying psychological states that are not considered in traditional approaches. In order to
gain a better understanding of these disorders, many studies have collected data from social media and analysed them from a
computational perspective, but the resulting dataset were very limited and task-specific. Aiming to address this shortage by
providing a dataset that could be easily adapted to different tasks, we built a corpus collecting ED-related and ED-unrelated
comments from Reddit focusing on a limited number of topics (fitness, nutrition, etc.). To validate the effectiveness of the
dataset, we evaluated the performance of two classifiers in distinguishing between ED-related and unrelated comments. The
high-level accuracy of both classifiers indicates that ED-related texts are separable from texts on similar topics that do not
address EDs. For explorative purposes, we also carried out a linguistic analysis of word class dominance in ED-related texts,
whose results are consistent with the findings of psychological research on EDs.

Keywords: Corpus Linguistics, Text Classification, Eating Disorders

1. Introduction and motivation

The term Eating Disorders (EDs) groups a number
of mental illnesses characterized by abnormal or dis-
turbed eating habits that have an adverse effect on both
mental and physical health. Despite the commonality
of these health issues that constitute one of the preva-
lent types of psychological disorders nowadays, EDs
are still underdiagnosed and interventions are often-
times ineffective because traditional “one-size-fits-all”
approaches in treatment do not allow to target the spe-
cific psychological variables for each individual (Zhou
et al., 2020). The self-protective nature of EDs rep-
resents an additional obstacle for researchers that are
willing to investigate deeper the factors that promote
EDs, because people suffering from these disorders are
not likely to communicate their experiences and emo-
tions with physicians and doctors (Zhou et al., 2020).
However, the increasing engagement of social media
users in health-related conversations and discussions
(Lenhart et al., 2010) could constitute a potential so-
lution to such problems. Indeed, given the community-
building nature of social media, individuals with an
ED tend to engage more and more openly in discourse
about their disorders with users sharing similar expe-
riences (Kenny et al., 2020), thus making available
large amount of ED-related linguistic data. As a conse-
quence, applying data mining techniques to extract and
analyse data from social media has become a popular
methodological approach in health care research. So
far, however, the investigations that where conducted
involving EDs led to the collection of small datasets
created ad hoc for single studies. Besides not being
representative and therefore not allowing to generalise
the observed trends, the small size of such datasets con-
stitutes also an issue for the implementation of machine

learning approaches. Given the need for a larger collec-
tion of ED-related data, in this paper we present an En-
glish corpus of ED-related posts extracted from Reddit.
The aim of this work is to create a dataset that can be
used for different purposes, from linguistic and content
analysis of ED-related discourse in order to gain crucial
insights into the factors that can motivate and trigger
EDs behaviours, to the development of classifiers that
could detect ED-relevant contents on social media. The
paper is organized as follows: Section 2 describes the
related works; Section 3 is devoted to the dataset cre-
ation process; Section 4 presents some statistics on the
dataset; Section 5 shows our evaluation of the dataset
based on a machine learning approach and a short lin-
guistic analysis; finally Section 6 presents our conclu-
sions and future directions of the work.

2. Related work
The extraction and analysis of health-related data from
social networks is now a well-established methodol-
ogy in different areas of healthcare research (Mullany
et al., 2015) The main advantage of electronic com-
munication is that it allows to discuss medical con-
cerns in a less direct way, making users feel less vul-
nerable and thus allowing them to express their opin-
ions and emotions more openly (Suler, 2004). This is
particularly true for people (especially teenagers and
adolescents) suffering from EDs. Indeed, researchers
have observed that, due to a desire for anonymity, a
significant portion of information seeking and discus-
sion with respect to EDs takes place on the Internet
and through social media (Oh et al., 2013). For this
reason, recently many studies in the field of psychol-
ogy and medicine have investigated EDs adopting a
corpus-based approach to analyse linguistic data ex-
tracted from social media (Lukač and others, 2011;
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Malson et al., 2011; Leonidas and Dos Santos, 2014;
Hunt and Harvey, 2015; Mullany et al., 2015). In par-
ticular, the analysis of ED-related forums using linguis-
tic inquiry tools such as term frequency analysis, part of
speech (POS) analysis and sentiment analysis allowed
to uncover some specific linguistic properties that char-
acterize ED-related discourse and that could be useful
for clinicians to understand the underlying needs and
emotions of individuals suffering from these disorders
(Oh et al., 2013). All previous works, however, share a
relevant limitation: the linguistic analyses were carried
out on small datasets created ad hoc for single studies
and they were often focused on a limited number of
keywords. This is the case, for example, for Bohrer’s
work (Bohrer et al., 2020), that analysed online ED-
related forums targeting the process of recovery; but
also for McCaig and colleagues’ works (McCaig et al.,
2018; McCaig et al., 2019; McCaig et al., 2020), whose
thematic analysis of ED-related forums was centred on
calorie counting apps and fitness tracking technology;
as well as for Moessner’s study (Moessner et al., 2018),
that focused on identifying topics related to social sup-
port in EDs treatment. Besides reducing the general-
izability of the observed trends to the population, the
small dataset size does not allow to implement machine
learning algorithms for ED-relevant contents identifica-
tion and recognition tasks. So far, there has been only
a single attempt to develop a machine learning-based
classifier to identify tweets related to EDs (Zhou et al.,
2020). In this case the authors did manage to collect a
quite large dataset, but the nature of the texts they col-
lected, that are short, often convoluted and difficult to
analyse because of the presence of hashtags and abbre-
viations, does not allow to adapt the dataset to different
tasks, thus limiting its applications.

3. Methods
Our goal was to create a corpus on EDs that could
be used for various types of analyses, being at the
same time easily adaptable for different machine learn-
ing tasks. In order to accomplish this, we focused on
the American social news website and forum Reddit,
a discussion website where registered members submit
contents such as links, text posts, images, and videos,
which are then voted up or down by other members.
Registrations is free and posts are organized by sub-
ject into user-created boards called ”communities” or
”subreddits”, which cover a wide variety of topics and
can be accessed via keyword search. The reason why
we selected this platform is twofold: on the one hand,
not imposing any limitation in the length of the posts,
Reddit makes available longer and more complex texts
(compared for example with the largely investigated
Twitter, where the maximum length of a post is 280
characters); on the other hand, the discussion-oriented
nature of the website also naturally leads to more ar-
ticulated and linguistically rich comments. For these
reasons, the type of linguistic data that can be extracted

from Reddit appears to be suitable for the task at hand,
that is building a multi-purpose corpus on EDs. In-
deed, it has been shown that performance of NLP meth-
ods increase with the length of the documents being
analyzed (Curiskis et al., 2020). In addition, as sug-
gested by Shen & Rudzicz (2017), the lenght of Red-
dit’s posts, together with the website organization, con-
stitute a ”considerable potential for sophisticated meth-
ods of feature extraction as well as qualitative analysis”
(Shen and Rudzicz, 2017, pag.63).

3.1. Keyword-based search on Reddit
In order to get access to the relevant comments we per-
formed a keyword-based search using the Python Red-
dit API Wrapper1 (PRAW), a Python package that al-
lows for simple access to Reddit’s API2. As keywords
we used the list of names of the most prevalent EDs
that was obtained from a dedicated website3. For each
ED name we obtained the related subreddits titles and
collected all the posts classified under each subreddit
(see Table 1 for the complete list). Each text was then
annotated according to the ED it describes using an
abbreviation of the corresponding ED name (ex. BU
for Bulimia). The abbreviations are reported below
the ED names in the first column of Table 1. Given
that we aimed to build a corpus that could be used for
EDs classification purposes, we needed to collect an
equally extensive sample of EDs-unrelated comments
that would constitute the negative class. Following
the same procedure that was described above, we per-
formed a keyword-based search on Reddit, and we ex-
tracted all the posts classified under each subreddit re-
lated to the keywords. One of the most common ways
of building negative class dataset is via random selec-
tion, however, in this case the comments were extracted
starting from a list of manually selected keywords that
refer to frequently occurring topics in EDs discourse
(i.e. food, fitness). In doing so, we could hypothe-
size that the main feature(s) distinguishing the positive
class (ED-related posts) from the negative class (ED-
unrelated posts) are exactly the features that character-
ize EDs discourse. Table 2 reports the list of selected
topics, the corresponding subreddit titles and the num-
ber of posts extracted for each subreddit.

3.2. Comments selection and cleaning
In the cleaning step we cleared each comment from
emoticons, hyperlinks and hashtags, but we did not re-
move punctuation marks because they have often been
shown to provide a crucial contribution for understand-
ing the psychological state of the speaker (Say and Ak-
man, 1996; Oh et al., 2013). In order to standardise
the texts and to maximize the quantity and quality of
linguistic information, we replaced contractions (i.e.

1https://github.com/praw-dev/praw
2https://www.reddit.com/dev/api
3https://www.freedeatingdisorders.org/patient-family-

support/types-of-eating-disorders/
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ED names subreddit titles posts

Eating
Disorder(s)
ED

EatingDisorders’,
’eating disorders’,
’EatingDisorderHope’,
’edsupport’,
’EDAnonymous’,
’EdAnonymousAdults’,
’EDRecovery public’,
’EDRecovery’

5089

Anorexia
AN

’AnorexiaNervosa’,
’AnorexiaRecovery’,
’ProAnaBuddies’,
’anorexiaflareuphelp’

3957

Bulimia
BU

’bulimia’,’
BulimiaAndAnaSupport’ 685

Binge Eating
BE

’BingeEatingDisorder’,
’bingeeating’ 811

Purging
PU ’PurgingDisorder’ 6

Not Otherwise
Specified
NOS

’NotOtherwiseSpecified’,
’Ednos 23

Table 1: List of ED-related word included in the search,
corresponding subreddit titles and total number of posts
retrieved for each subreddit

don’t), abbreviations and slang forms (i.e. asap), and
medical acronyms (i.e. AN) with the corresponding ex-
tended forms (respectively: do not, as soon as possi-
ble and Anorexia Nervosa). Finally, given the already
discussed potential of longer texts for both quantitative
and qualitative analysis (see Section 3), we decided to
exclude from the cleaned dataset comments that were
shorter than the maximum length of a tweet (280 char.).

4. Corpus statistics
In this section we highlight some additional statistics
regarding CorEDs. These statistics refer to the total
number of posts that were collected, the total number
of words and the average post length for each of the two
datasets. As shown in Table 3, the ED-related dataset
contains 7662 posts (more than 1.4 million of words)
whose average length is 194 words, while in the ED-
unrelated dataset there are 6538 posts (around 1.2 mil-
lion of words) whose average length is 184 words. The
whole corpus contains 14200 posts for a total of almost
2.7 million of words and is available for research pur-
poses on request from the corresponding author [CS].

5. Experiments and Results
In this section we describe, the different experiments
we carried out to test the validity of the datasets. In
particular, we trained two machine learning classifiers
and compared their performances. We also performed
a short linguistic analysis of the datasets by identifying
the dominant word classes.

Common
EDs topics subreddit titles posts

Nutrition

’nutrition’,
’EatCheapAndHealthy’,
’ketogains’,
’SportNutrition’,
’EatingHealthy’,
’EatHealthy’,
’intuitiveeating’

2332

Food
’HealthFoodChat’,
’FitnessFood’,
’Macrofoodients’

17

Fitness

’xxfitness’,
’veganfitness’,
’runmeals’,
’workout’,
’bodyweightfitness’

1833

Diet

’Dietandhealth’,
’diet’,
’ dieting’,
’PlantBasedDiet’,
’Pescetarian’

1351

Table 2: List of frequently occurring topics in EDs dis-
course included in the search, corresponding subreddit
titles and total number of posts retrieved for each sub-
reddit

Dataset ED-rel ED-unrel Total
# of posts 7662 6538 14200
# of words 1 486 325 1 210 495 2 696 820
Av.len. 194 184 189

Table 3: Statistics of the two datasets and of the whole
corpus: total number of posts, total number of words
and average length of posts (in number of words).

5.1. Classification
The two classifiers selected for the task were the Multi-
nomial Naive Bayes (MNB) and the Support Vector
Machine (SVM). Both are well known machine learn-
ing algorithms that have been shown to be accurate
and highly effective in binary classification tasks. The
dataset was split 80% for training and 20% for testing.

5.2. Results
In this subsection we report on and discuss the perfor-
mance of the two classifiers on our corpus. In order
to evaluate and compare their results we used the usual
metrics in text classification: Precision (P), Recall (R),
F-score (F1) and Accuracy (Acc). The results achieved
with the two classifiers are reported in Table 4. The
high classification performance of both classifiers indi-
cates that good separation between ED-related and un-
related posts can be obtained by using automatic clas-
sifiers. As can be seen, overall the SVM performed
better than the MNB and this might be due to the fact
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that the nature of the SVM is probabilistic and it takes
into account the interaction between features, while the
MNB is geometric and based on the assumption that the
features are independent. For explorative purposes, we
decided to extract from the MNB the most informative
features that the classifier selected to distinguish be-
tween ED-related and ED-unrelated texts. We reported
in Table 5 the 20 most informative features for the posi-
tive (ED-related) and negative (ED-unrelated) datasets.
Interestingly, many features are shared between the two
datasets, indicating a high level of similarity between
the texts they contain. This is probably due to the fact
that the ED-unrelated dataset was specifically built us-
ing texts covering topics that overlap with those in the
ED-related dataset, such as dieting, fitness and healthy
eating, with the only difference that in the ED-related
texts these topics are discussed from the perspective of
individual suffering from EDs. Indeed, features like
’food’, ’eat/eating’, ’weight’ are shared by the two
datasets, while distinguishing features (highlighted in
bold in Table 5) are strongly ED-related in the positive
dataset (’recovery’, ’binge’, ’help’) and connected to
fitness and fitness dieting in the negative one (’protein’,
’workout’, ’good’).

Classifier P R F1 Acc
MNB 0.91 0.91 0.90 0.904
SVM 0.93 0.93 0.93 0.935

Table 4: Results obtained with the Multinomial Naive
Bayes (MNB) and the Support Vector Machine (SVM),
reported in terms of Precision (P), Recall (R), F-score
(F1) and Accuracy (Acc).

5.3. Identifying dominant word classes in
ED-related text

In order to gain a better understanding of the charac-
teristics of ED-related text, we performed an analysis
to identify the dominant word classes in the ED-related
dataset. The adopted methodology was inspired by the
work of (Mihalcea and Strapparava, 2009), to calcu-
late the saliency (dominance) of a word class in a tar-
get collection of texts (for a precise description of the
methodology see Mihalcea & Strapparava, 2009). The
dominance score obtained with such methodology (Mi-
halcea and Strapparava, 2009) should be interpreted as
follows: if the dominance score takes on a value that is
close to 1 this means that the target word class is simi-
larly distributed in both datasets; if the value is signifi-
cantly higher than 1, then the target word class is dom-
inant in the ED-related dataset; and vice-versa, if the
value is significantly lower than 1, this indicates that
the word class is dominant in the ED-unrelated dataset.
The word classes were extracted from the 2007 version
of the Linguistic Inquiry and Word Count (LIWC) lex-
icon, a resource developed for psycholinguistic analy-
sis that has been largely validated (Pennebaker et al.,
2001). LIWC 2007 includes 4482 words and word

Positive Negative
coefficient feature coefficient feature
-5.9344 eating -5.9675 diet
-5.4386 just -5.9924 like
-5.4889 like -6.0296 eat
-5.5006 feel -6.0308 weight
-5.6289 eat -6.0453 just
-5.6370 weight -6.1417 eating
-5.7025 know -6.2835 food
-5.7844 want -6.2852 body
-5.8613 really -6.3035 day
-5.8731 food -6.3171 protein
-6.0693 time -6.3339 want
-6.1010 recovery -6.3871 feel
-6.1958 body -6.3876 really
-6.2067 going -6.4113 fat
-6.2152 did -6.4349 workout
-6.2329 day -6.4497 have
-6.2649 binge -6.4557 know
-6.2677 help -6.5064 week
-6.2823 think -6.5317 time
-6.3845 does -6.5494 good

Table 5: Most informative features and corresponding
coefficients for the positive (ED-related) and the nega-
tive (ED-unrelated) datasets.

stems grouped into 64 word classes that are considered
relevant for analysing psychological processes. Table 6
and 7 report the top ranked classes for both datasets
along with their dominance score and a few sample
words belonging to the class and also appearing in the
texts. In the direction of a clearer discussion of the
results, we divided the word classes into two groups
using LIWC categories as reference. More specifically,
Table 6 shows the ”standard function words categories”
(Chung and Pennebaker, 2007, pg.344), i.e. function
words, verbs, pronouns, relatives, prepositions etc.,
that are useful to analyse the morphosyntactic structure
of the texts, in other words to analyze how the content
is expressed. On the other hand, Table 7 displays con-
tent and emotion words (Chung and Pennebaker, 2007),
that are needed to analyse the semantics of the texts,
that is to say what the text is about. As we can see,
focusing on the morphosyntactic structure of discourse
(Table 6), ED-related texts appear to be characterized
by the large presence of negations, first-person narra-
tive, extensive use of pronouns and preponderance of
past tense. This is coherent with the literature, as it
has been shown that the use of the first person singu-
lar pronoun (Oh et al., 2013), as well as of negations
(Leis et al., 2019), is often linked to depression, isola-
tion and mental distress, all conditions strongly related
to EDs. In addition, the large use of past tense and/or
reference to the past is also in line with the psycholog-
ical and emotional condition of both people suffering
from EDs, who often use the web to talk about events
in the past that might have triggered the onset of the
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Class Score Sample words
ED-related texts

negate 1.48 no, never
i 1.35 i, mine, my
ppron 1.34 his, our, oneself
pronoun 1.27 this, which
past 1.26 was, were

ED-unrelated texts
you 0.79 you, yours
assent 0.84 absolutely,awesome
quant 0.85 any, less

Table 6: Dominant morphosyntactic word classes in
ED-related and ED-unrelated texts along with sample
words.

disorder, and people recovering or already recovered
who tell their story and share the steps of their healing
process (Wolf et al., 2007). Interestingly, at the con-
tent level (Table 7) we can see that words indicating
personal relationships (family and friends) appear to be
dominant in ED-related texts. This observation does
not conflict with the self-protective nature of EDs and
it can be explained in different ways. In some cases the
comments that we collected were written by people ex-
pressing their concern for a loved one struggling with
an ED, but in most cases the comments are produced
by the people suffering from EDs themselves, who talk
about how the disorder affected their social relation-
ships or, unfortunately just as often, describe what role
their relatives played in the onset of the ED. Other dom-
inant word classes that emerged are those connected to
negative emotions (anx, anger and negemo) and exclu-
sion (excl), that describe emotional and psychological
conditions typically shared by people suffering from
EDs. It is also worth noticing the high dominance score
obtained by the class grouping swear words, that are of-
ten associated either broadly with the ED (ex. “fucking
anorexia”) or more specifically with its symptoms (ex.
“purging is shit”), indicating the “friend and foe” rela-
tionship that pulls individuals towards and against their
ED (Serpell et al., 1999). By contrast, word classes
relating to entertainment (leisure), wealth and income
(money) and positive emotions (posemo) are less likely
to be found in ED-related texts and resulted dominant
in ED-unrelated texts. The high presence of words
related to body parts (body) and work (work) in the
dataset that we collected as negative for the classifica-
tion, is due to the fact that the texts were extracted from
subreddits on fitness, diet and healthy eating, where
one of the main topics of discussion is the workout rou-
tine of users and how exercising benefits the physical
appearance.

6. Conclusions and future directions
In this paper, we have described an English corpus
on EDs, containing comments extracted from Reddit
covering a limited number of topics (diet, healthy eat-
ing, fitness, nutrition etc.). The texts are labeled as

Class Score Sample words
ED-related texts

family 2.10 mum, dad, family
swear 1.98 shit, suck
friend 1.75 friend, roomate
anx 1.75 scared, guilty
anger 1.63 angry, fucked
negemo 1.46 alone, hate
excl 1.26 without, rather

ED-unrelated texts
leisure 0.52 relax, party
work 0.72 duty, hardwork
body 0.75 abdomen, hips
money 0.81 cheap, discount
posemo 0.86 strong, amazing

Table 7: Dominant semantic word classes in ED-
related and ED-unrelated texts along with sample
words.

ED-related or ED-unrelated depending on whether they
were extracted from a subreddit on EDs or not. Within
the ED-related dataset, the texts are further annotated
with an abbreviation referring to the type of ED the text
is about. The corpus contains a total of 14200 com-
ments (2 696 820 words), whose average length is 189
words. Since our aim was to build a corpus that could
be easily adapted to different tasks and used to perform
various types of analysis, while normalizing the text
we did not remove punctuation nor stop words and we
did not add Part-of-Speech (POS) tags. Moreover, in
order to validate the effectiveness of the dataset, we
also proposed a machine learning approach for auto-
matically detecting ED-related comments in texts. Our
preliminary results are promising, as they show that
ED-related texts are separable from texts covering very
similar topics but not addressing EDs. However, given
the complexity of automatic EDs detection and classi-
fication, further experiments need to be carried out to
test the soundness of our dataset on different tasks. Fi-
nally, the linguistic analysis performed to explore the
word classes that characterize ED-related discourse re-
vealed some interesting patterns of word usage –such
as the prevalence of first-person narratives, the predom-
inance of negations and a vocabulary that emphasizes
the sense of exclusion and negative emotions– that are
in line with the related findings in psychology and psy-
chotherapy. As future work we plan to perform more
experiments on the datasets, applying other techniques
and testing different classifiers with the purpose of un-
derstanding how the corpus could be improved and re-
fined. We would also like to extract the most infor-
mative features from the SVM classifier in order to
compare them with those extracted from the MNB. At
the level of linguistic analysis, we would like to im-
plement more fine-grained investigations on the ED-
related texts, in particular trying to better handle the
fact that words in LIWC can exist within more than one
category and can have more than one meaning, which
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could have skewed the current results to some degree.
In conclusion, we consider this corpus as a first attempt
to build a flexible tool that could be used to investi-
gate more extensively possible automatic approaches
to EDs detection and discourse analysis and we look
forward to further work that could address, from a com-
putational perspective, the main issues in diagnosis and
treatment of these pervasive disorders.
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Abstract
An assistive robot that could communicate with dementia patients would have great social benefit. An assistive robot Pepper
has been designed to administer Referential Communication Tasks (RCTs) to human subjects without dementia as a step
towards an agent to administer RCTs to dementia patients, potentially for earlier diagnosis. Currently, Pepper follows a rigid
RCT script, which affects the user experience. We aim to replace Pepper’s RCT script with a dialogue management approach,
to generate more natural interactions with RCT subjects. A Partially Observable Markov Decision Process (POMDP) dialogue
policy will be trained using reinforcement learning, using simulated dialogue partners. This paper describes two RCT datasets
and a methodology for their use in creating a database that the simulators can access for training the POMDP policies.

Keywords: dementia care, referential communication task, dialogue data

1. Introduction
An assistive robot for dementia care that could com-
municate with dementia patients would have great so-
cial benefit, given the high incidence of Alzheimer’s
disease and similar kinds of cognitive decline in the el-
derly (AA, 2020), in combination with the scarcity of
caregivers to provide one-on-one companionship and
assistance (GCOA, 2021). The ultimate goal of our
work is to develop a Partially Observable Markov De-
cision Process (POMDP) policy for an artificial agent
to engage in dialogues with elderly patients at differ-
ent stages of cognitive decline, to provide assistance,
companionship or facilitate early detection. As an ini-
tial step towards our larger goal, we aim to develop a
POMDP policy that can engage in Referential Commu-
nication Tasks (RCTs; see below) with Alzheimer’s pa-
tients. The POMDP dialogue policy will be trained us-
ing Reinforcement learning (RL), which requires many
thousands of training episodes (trial dialogues). RL of
policies for dialogue systems, as well as for robotics
and other applications, typically utilizes simulators in
place of interactions with the real world. This paper de-
scribes two datasets we will harvest to populate a sim-
ulator database for training a variety of RCT dialogue
policies.
Referential Communication Tasks (RCTs), which have
many applications, pertain to referential skills, mean-
ing the way people introduce and refer back to concrete
or abstract objects, and the way they interpret others’
referring expressions. When humans engage in a di-
alogue, they can mention and then refer back to dif-
ferent people, objects, locations, plans, complex ideas,
and so on. Referring expressions are the noun phrase
descriptions, pronouns, and other linguistic devices we
use to indicate what entities we are talking about. RCTs
have been used to study how people choose referen-

Figure 1: Pepper administering an RCT; inset shows
Pepper’s screen in detail. The subject describes one of
the four unfamiliar images that appear in the four cor-
ners. Pepper must infer the correct image from the sub-
ject’s verbal description. For the selected image, iden-
tified in the inset with a blue box around it, the subject
said ”the picture looks like some bent over grass.”

tial expressions, e.g., for navigating a map (HCRC,
1993), or as part of studies of turn-taking behavior
(Hirschberg et al., 2021), complex scene discrimination
(Manuvinakurike et al., 2016), or to identify countries
on the world map (Paetzel et al., 2020). RCTs have
also been used to investigate communication impair-
ments in children (Bishop and Adams, 1991) or de-
mentia patients (Feyereisen et al., 2007). Typically, an
RCT involves a visual stimulus that is fully visible only
to one participant, who must describe it to the other di-
alogue participant in a way that leads to the identifica-
tion of the correct object. RCTs is used to assess the
ability to provide and understand specific information
of both ordinary people and people with dementia in
our experiment.
To illustrate an RCT from one of our two datasets, Fig-
ure 1 shows a Pepper robot administering an RCT to
a subject with no cognitive deficit. Pepper’s screen
presents four unfamiliar images to the subject (see in-
set), while Pepper instructs the subject to provide a ver-
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Scripted Pepper Future POMDP Version
Pepper 1 Pepper shows four images on its screen to Pepper 1 Pepper shows four images on its screen to

the subject, one of which is boxed. the subject, one of which is boxed.
Student 1: There are three lines, there is a triangle, a Student 1: There are three lines, there is a triangle, a

circle and a C at the end of the line. circle and a C at the end of the line.
Pepper 2: Give me a second to figure it out. Pepper 2: Give me a second to figure it out.
Pepper 3: Can you give me more details? Pepper 3: Does it have any other features?
Student 3: It looks like fifteen. Student 3: It looks like fifteen.
Pepper 4: Give me a second to figure it out. Pepper 4: It’s between the two at the top.
Pepper 5: Can you give me more details? Pepper 5: Can you describe it again?
Student 5: One has a triangle at the bottom, five has Student 5: It almost looks like cave art of an animal,

a C at the top and a circle at the bottom. with one round hoof and one triangular hoof.
Pepper 4: Give me a second to figure it out. Pepper 4: Give me a second.
Pepper 5: I think I know the one you are trying to Pepper 5: Got it. Thanks for your patient explanation.

describe. I’m ready for the next one. Let us move on to the next one.

Figure 2: The current scripted version of Pepper administering an RCT, and the envisioned dialogue-enabled
version of Pepper administering an RCT.

bal description of one of the four images. The main
purpose of this first data collection is to study how use
of Pepper to administer an RCT affects subjects’ atti-
tudes about robots and the RCT. For this data collec-
tion, Pepper followed a rigid script, as in Figure 2. In
future work, we aim to carry out a similar RCT where
we replace Pepper’s script with a POMDP dialogue
policy, for more natural interactions with subjects. This
dataset and a second one are described in section 3.
Briefly, the second dataset consists of RCTs adminis-
tered by a human researcher to elderly patients, includ-
ing patients with dementia. We will utilize these two
datasets to construct a database of simulator turns-at-
talk from three populations engaging in similar RCTs:
young individuals with no known cognitive decline, el-
derly patients with no known dementia, and elderly pa-
tients with Alzheimer’s.

POMDP dialogue policies can be used for dialogue
agents where there is a defined goal to achieve during
the dialogue, such as to complete an RCT interview,
and where dialogue states are not fully observable. The
interpretations of the dialogue partners’ intents are only
partially observable from the actual words used, and
any other relevant behavior, given that human language
is highly ambiguous. In reinforcement learning of a
POMDP dialogue policy, a fully trained policy will
choose each next communicative action a given its cur-
rent belief state s, based on its expectation of how an

action taken in a given state progresses the dialogue to-
wards the agent’s goal.

Construction of a simulator for reinforcement learning
of a dialogue policy requires a method to sample
different outcomes (successor states of s) for agent’s
communicative actions a taken in s. For example,
to simulate the way subjects might respond to Pep-
per when Pepper displays the image shown in the
inset of Figure 1, the initial state s would include a
representation of the full display, a set of available
actions for Pepper to choose among {a1, . . . , an},
and candidate simulator responses to each action.
For example, assume we want to test the hypothesis
that a policy could be learned for Pepper to respond
to a dialogue partner who seems to experience a
moment of confusion by selecting an encouragement
utterance (e.g., ”You seem a bit tired, let
me know when you are ready for the
next picture”) instead of immediately moving
to the next RCT item (e.g., ”Okay, let’s do
the next picture”). During the policy training,
the simulator could be designed to choose between
a relevant response, such as the one illustrated in
Figure 1, or a response that suggests a moment of
confusion, such as ”I forgot what I’m supposed to say
now.” Our method for providing a simulated dialogue
partner with this type of functionality involves creation
of a database of response types where the values of the
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attributes of entries in a response table make it possible
to control for different response types, during policy
training.
The remainder of the paper presents related work, de-
scribes the two RCT datasets, and presents our method-
ology for constructing simulated dialogue partners so
that we can train a range of RCT dialogue policies.

2. Related Work
Simulation has been utilized for training dialogue poli-
cies for well over two decades (Schatzmann et al.,
2006) Eckert et al. (1997) proposed a statistical sim-
ulator permitting off-line testing and evaluation in an
automated fashion. Scheffler and Young (2000) pro-
posed a graph-based model which produce a proba-
bilistic simulation of mixed initiative dialogue with
recognition and understanding errors. Georgila et al.
(2005) designed a Markov Model for use with Infor-
mation State Update dialogue systems. Cuayáhuitl et
al. (2005) used a network of hidden Markov mod-
els (HMMs) to predict system and dialogue partner in-
tentions, where a statistical language model predicts
sequences of goals, and the component HMMs pre-
dict sequences of intentions. For robustness to imper-
fect automatic speech recognition, Schatzmann et al.
(2007b) simulated speech recognition errors at random
levels, using generative models that conditioned words
on the sets of dialogue actions expected from peo-
ple, with conditioning probabilities estimated from cor-
pora (Schatzmann et al., 2007b). Later work demon-
strated bootstrapped policy learning in the absence of
domain-specific corpora, using more complex simula-
tors to maintain a dialogue state tuple across simulator
turns, consisting of the dialogue goal plus a stack-based
agenda to track progress towards the goal (Schatzmann
et al., 2007a). Georgila et al. (2010) used simulated
users to train dialogue policies for older adults, even
though older adults have more complex and diverse in-
teraction. Agenda-based simulators are still used, e.g.,
in the movie domain (Li et al., 2016). Asri et al. (2016)
proposed a sequence-to-sequence model in the restau-
rant search domain which takes into account the en-
tire dialogue history. Shah et al. (2018) used end-
to-end neural models to build an agenda-based simu-
lator. Kreyssig et al. (2018) introduced the Neural
User Simulator which trains on corpora to learn how
to generate natural language. Shi et al. (2019) de-
veloped a rule-based simulator in training reinforce-
ment learning based dialog systems. An alternative to
simulation has been explored in incremental dialogue
policy learning in the context of fast-paced dialogue
games (Manuvinakurike et al., 2017).
We have experience training an adaptive POMDP pol-
icy for learning through communication using a sim-
ulated dialogue partner that accesses a multi-modal
database to look up answers to questions about games,
including visual demonstrations of board moves or
ways to win (Zare et al., 2022). We refer to this pol-

(a) Sorting phase. (b) Testing phase.

Figure 3: RCT Stimuli.

icy as 3GA because it has 3-way grounding in world
knowledge, game knowledge, and the discourse con-
text, and it is adaptive. Because the partners answer the
agent’s questions, rather than asking the agent for help
to complete a task, there is no need for an agenda, or an
HMM to predict the dialogue partner’s intentions. Dur-
ing training, we controlled for the completeness of in-
formation in the simulator’s answers, so that the trained
policy could adapt to different individuals who provide
more or less complete information.

3. Two Datasets of RCT Interactions
The two datasets discussed here are from human-robot
RCTs with student participants (HR RCT St), as illus-
trated in Figure 1, and from human-human RCTs with
elderly patients (HH RCT EP). Initially, we will use
the human-robot dataset (HR RCT St) to construct a
simulator for training a dialogue policy πHRI RCT to in-
vest the Pepper robot illustrated in Figure 1 with more
natural dialogue capabilities, and eliminate the rigidity
of a script. The HH RCT EP data dataset will be used
to train a dialogue policy πHRI EP for interaction with
elderly patients. The purpose of this policy is to adapt
to the cognitive state of the patient, analogous to (Yuan
et al., 2021a; Yuan et al., 2021b), as described in sec-
tion 5. Based on insights from these initial policies, we
will later train a dialogue policy πHRI RCT EP that can
administer RCTs to elderly patients with and without
dementia. In short, access to different RCT datasets
provides us with the means to design and populate a
database for multiple simulators.
The human-robot dataset (HR RCT St) was collected
to assess how comfortable humans would be with a
Pepper-based RCT. The data consists of 98 interactions
between Pepper and human subjects, where each RCT
interaction consisted of a sorting phase to help partic-
ipants acclimate to Pepper and orient to the RCT, fol-
lowed by a testing phase. Each interaction was approx-
imately 15-20 minutes in length. The subjects’ audio
was recorded for each interaction. The audio has been
transcribed using automatic speech recognition (ASR),
and will later be manually corrected.1

During an initial sorting phase to familiarize the sub-
jects with the task, Pepper’s screen displayed 12 un-
familiar images to the subject, as in Figure 3a. Pep-

1The HR RCT St dataset can be made public once the
transcriptions have been corrected.
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per would describe one of the images for the subject to
select. The subject had three chances to pick the cor-
rect image, where each next description from Pepper
would have more detail, before Pepper would move on
to the next image. During the testing phase it was Pep-
per’s turn to guess a target image from four that would
be displayed to the subject, as in Figure 3b, with the
subject providing a spoken description. CLIP, a pre-
trained image captioning model (Radford et al., 2021),
was used to compute probabilities for the four images
on the screen, given the subject’s description. If one
image probability was sufficiently high, Pepper would
instruct the subject to move to the next display. Oth-
erwise, Pepper would prompt the subject to give more
details. After three failed tries, Pepper would move to
the next display. The testing phase had 24 trials, with
different target images on each trial.
The human-human (HH RCT EP) dataset comprised
manual transcripts from 12 older adults with mild-
to-moderate AD and 16 cognitively healthy older
adults (Liu et al., 2022).2 The experiment also included
a sorting phase and a testing phase. Each subject’s in-
teraction had an approximate duration of two hours. In
the sorting phase, the subject was given a set of 12 ab-
stract images (Figure 3a) in a random order and the
experimenter was given the same 12 images in a cer-
tain order. The experimenter described each of the 12
images to the subject and the subject rearranged the im-
age cards accordingly. The sorting task was repeated at
least four rounds. If subjects made errors, they repeated
the task up to nine rounds until successfully sorting the
images without errors for two consecutive rounds. Two
experimenters carried out the testing phase together.
One was the same experimenter from the sorting phase
(A), and the other one was a new experimenter (B).
The two experimenters and the subject were all shown
the same four images, three that had been included in
the sorting phase and one new image. For the sub-
ject only, one of the four images was highlighted by a
black box, as in Figure 3b. The subject was instructed
to describe the target image to the knowledgeable ex-
perimenter (A) or the naive experimenter (B). The ap-
pointed experimenter marked the targeted image and
the other experimenter proceeded to the next trial. The
testing phase had 24 trials in a set: 12 trials referred to
the familiar images and 12 trials referred to the unfa-
miliar new images.

4. POMDP Dialogue Policies
A Markov Decision Process (MDP) models an agent’s
step-by-step decision making for situations where each
decision can have different outcomes with different
probabilities. MDPs and their variants simplify the de-
cision making task by adopting the Markov assumption
that each action is conditioned only on the current state,

2The experimental protocol was approved by the Inter-
nal Review Board at UTK under the number: UTK IRB-21-
06631-XM.

not on any prior states. Formally, an MDP is a 5-tuple
< S,A, T,R, s0 >, where S is the set of states, A
is the set of agent actions, T is the transition model
consisting of a probability distribution over successor
states si+1 given an action ai taken in si, R is a re-
ward function for the outcome of each action, and s0 is
the initial state. An MDP dialogue agent’s communica-
tive actions are chosen by a trained policy π that maps
dialogue states to optimal actions. In a Partially Ob-
servable MDP (POMDP), states are not fully observed.
For dialogue policies, S consists of the agent’s belief
states that represent the agent’s uncertain interpreta-
tions of a human dialogue partner’s utterances, A rep-
resents communicative actions available to the agent,
and the reward function R depends on the application.
In our recent work, it is a trade-off between a small
cost per turn and metrics that encourage the agent to
achieve its dialogue goal, such as to learn a board game,
using a measure of the inrease in the total game knowl-
edge (Zare et al., 2022). The turn cost leads to policies
where the agent ends the dialogue when the expected
penalty outweighs the potential gain. This contrasts
with a small turn reward used in (Manuvinakurike et
al., 2017), where the goal was for the agent to find an
image described by the user, and therefore to give the
agent more time. For the RCT task, we will experi-
ment with different reward functions, such as number
of RCT steps completed, and possibly signs of fatigue
from the human subject.
We apply Q-learning to learn the policy. The Bellman
equation shown below illustrates that a Q function from
a state s to the optimal action a sums over the cumu-
lative reward of all possible outcomes s′ of a, where
the cumulative reward is a product of the probability
of each outcome s′ with the sum of the immediate re-
ward R for that action, and the discounted Q function
applied to each successive state, using the discount γ.
The best action is the one with the maximum Q value.

Q(s, a) =
∑

s′

P (s′|s, a)[R(s, a, s′) + γ max
a′

Q(s′, a′)]

The role of a simulated dialogue partner in training a
dialogue policy is to simulate a wide range of partner
turns that might ever occur, so that during training, the
policy can explore many possible communicative ac-
tion choices, to learn a good Q function. The policy
cannot be learned from static transcripts: any one tran-
script represents actual turn sequences that occurred,
rather than all possible turn sequences that might oc-
cur. In contrast, simulator databases can be constructed
by harvesting transcripts.
To illustrate using the πHRIRCT policy, the immediate
reward for a communicative action a taken by Pepper
in state s would be computed after the simulator re-
sponds to the agent, which in turn would contribute to
the discounted cumulative sum for the entire dialogue.
Say we assume that a human subject will tend towards
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more helpful descriptions if Pepper thanks the subject
each time a single description is sufficiently clear for
the CLIP model to disambiguate, and if Pepper ex-
presses confusion otherwise. At every turn exchange,
the reward includes a small penalty to encourage effi-
ciency. After Pepper picks a correct image, there would
be also be a positive reward. The simulator can be used
to train the policy when to use a ”thank you” commu-
nicative action versus a ”confusion” communicative ac-
tion through thousands of trials that use the full array of
images in the experiment. Note that simulator turns do
not need to be identical to turns humans might take, or
even realistic. Ai and Litman (2011) showed that given
a simulator constrained to a range of behaviors, gener-
ating those behaviors randomly leads to better perfor-
mance. Rather, they need representations that human
turns might be mapped to, say by a natural language
understanding module.

5. Simulated Dialogue Partners
The preceding sections have explained how a Pepper
robot can administer an RCT (section 1), described two
datasets of RCT sessions (section 3), and outlined Q-
learning for POMDP dialogue policies to illustrate the
need for simulating many trial dialogues (section 4).
In section 2, we have also seen that a wide range of
simulator architectures have been used, from those that
maintain a stack-based agenda based on the simula-
tor goal for task-oriented systems (Schatzmann et al.,
2007a; Li et al., 2016), use of HMMs to predict se-
quences of dialogue-partner intentions, and turn-by-
turn look-up of response sets for our 3GA agent that
asks questions. Here we put it all together with a dis-
cussion of how to design and populate a database to
simulate dialogue partners for the RCT tasks. We first
present our previous work on a database for simulators
to train an adaptive POMDP that can learn board games
through multi-modal communication with people (Zare
et al., 2022). Then we describe how we will construct
an RCT database by analogy with this prior work.

5.1. The 3GA Simulator Database
We previously developed an adaptive POMDP dialogue
policy called 3GA, for learning board games from peo-
ple through multimodal communication. Figure 4 illus-
trates an excerpt of a 3GA dialogue to learn the Quarto
board game, which is played on a 4-by-4 grid, using 24
pieces in two colors (12 each), differentiated by two
heights, two shapes, and hollow or solid. The 3GA
policy was trained on three n-in-a-row board games,
so it could adapt to the game. It was also trained to
adapt to how informative the dialogue partner’s an-
swers tended to be. A dialogue partner who responds to
questions with ”I don’t know”, or with only partial in-
formation, has lower rates of information sharing. The
fully trained 3GA policy would ask more open-ended
questions (e.g., ”where else can I put this piece?”) with
partners who had high degrees of information sharing.

3GA-Q1 RequestNewWinCondition()
NL: Can you show me an example of a way to win?

A1
3GA-Q2 SameContext(D1), Confirm(translate(col0))
NL: Would it still count if the pieces were placed

down column one instead of column four?
A2 Affirm()
NL: Yeah, it would.

Figure 4: Excerpt of a dialogue where 3GA is learning
Quarto, a 4-in-a-row game, showing the natural lan-
guage (NL) below each MRL expression. These an-
swers are produced by a simulator, but 3GA also com-
municates well with people, using a text-based inter-
face.

With partners who shared less information, 3GA asked
more yes-no questions, as in question 3GA-Q2 in Fig-
ure 4. Our experiments showed that the strategy of
adapting to partner’s information sharing led to more
knowledge gain about a game (Zare et al., 2022).
The dialogue excerpt in Figure 4 shows a sequence
of two questions from the policy (3GA-Q1 and 3GA-
Q2) and the corresponding answers (A1 and A2), the
first of which is a demonstration of a way to win the
Quarto game. To win, four pieces in a row must share
at least one property; here all pieces are tall, repre-
sented as solid colors rather than hashed. Apart from
the first answer (A1), where the dialogue partner dis-
plays a game board to 3GA, each turn from 3GA or
the dialogue partner is shown both in a meaning repre-
sentation language (MRL) that we developed for com-
municating in unambiguous expressions about board
games (e.g., RequestNewWinCondition()), and
in natural language. For natural language understand-
ing and generation, we trained encoder-decoder models
on a corpus of dialogues where the MRL had English
translations. We collected a corpus of 960 dialogues
where students trained in our MRL added colloquial
English translations of all MRL turns to simulated dia-
logues.
During training, the 3GA policy was exposed to any of
the three games, and to different levels of information
sharing.3 A simulator would randomly select the game,
and a level of information sharing. To answer ques-
tions generated by the policy, the simulator accessed
a database. For the simulator to generate responses to
the questions shown in Figure 4, it accessed a static
database that stored all MRL questions associated with
a given game, an exhaustive set of possible MRL an-
swers to each question (including Unknown), and for
each MRL answer, multiple possible translations of the

3We refer the reader to our previous work for further de-
tails.
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Action Script
elicit next description Press record when you are ready.
inform processing description Give me a second to figure it out.
inform understood I think I know the one you are trying to describe.
inform move on Let us move on to the next one.
request more detail Can you give me more details?
end session Thank you for completing the test!

Figure 5: Pepper’s scripted communicative actions.

MRL into English text. Requests for demonstrations
of game boards were indexed with images showing all
possible game boards. In addition, the simulator ac-
cessed a dynamic database in which it stored answers
it had used already within a given dialogue.
Initial versions of 3GA were MDP policies, in which
the entire simulated dialogue would be carried out in
MRL. To train POMDP policies, after the simulator
accessed an MRL answer, it would also randomly se-
lect an English text version. To interpret the English
answer, 3GA utilized an encoder-decoder natural lan-
guage understanding module that produces a probabil-
ity distribution over possible MRLs (see above). The
MRL with the highest probability translation and its
probability would then be used.

5.2. RCT Databases
The preceding section described a database we used for
a simulator to train MDP and POMDP dialogue poli-
cies in which the dialogue policy goal was for the agent
to learn board games from people. To train dialogue
policies for our Pepper robot in RCTs with different
subjects, we will construct an analogous database. As
discussed in section 3, we aim to develop simulators to
train RCT policies with different behaviors. Here we
discuss the database formats required for simulators for
two types of policies.
The current Pepper script for the first dataset described
above (HR RCT St) has the six atomic actions shown
in Figure 5. A POMDP dialogue policy to replace this
script could be trained that could use a natural lan-
guage generation sequence-to-sequence model, as in
our previous work (Zare et al., 2022), to produce al-
ternative verbalizations for the same dialogue action.
The advantage of a policy instead of a script would be
to extend the range of communicative actions, and the
states in which they could be selected, so as to influ-
ence subjects to produce better descriptions. As noted
in an earlier section, subjects could be thanked when
the first description leads Pepper (via the CLIP model)
to pick the correct image. Another way to influence
subjects descriptions would be to replace the single ac-
tion request more detail with a larger range of
actions, given an initial description that is not under-
stood, depending on different dialogue states, such as
different probability distributions from CLIP over the
four possibilities. If two images were equally probable,
Pepper could say That rules two out, but I’m still un-

Difficulty Example
Easy Would you like some tea?
Moderate What would you like to drink?
Difficult What do you think about this tea?

Figure 6: Question difficulty

sure. During training, the input to the simulator would
consist of a representation of the current state of the di-
alogue, and the dialogue action chosen by the policy.
The database for generating the simulator responses
would require tables for each image that contain al-
ternative natural language descriptions harvested from
the previous data collection. We would develop an au-
tomated procedure to sort each set of descriptions by
various criteria, such as length in words and concrete-
ness of the vocabulary, as well as ability of CLIP to
discriminate the image from the various combinations
of other images, so that the simulator could select new
descriptions based on the dialogue state. To continue
our example, if Pepper is confused between two im-
ages, one of which is the target image, the input to the
simulator could include this information, and the sim-
ulator could be designed to produce a description that
is highly ranked as a descriptor of the target and very
improbable as a descriptor of the confounding image.
In our previous work to apply Q-learning for interac-
tions in patients with dementia (Yuan et al., 2021a),
we investigated a simulator to encourage a policy to
adaptively respond to the simulator with easy, moderate
or difficult questions, depending on different simulator
settings to reflect different degrees of dementia. The
simulator could be set to have different rates of pro-
ducing relevant versus irrelevant versus non-responses
to questions from the agent. We found that an adap-
tive policy could be trained to follow up with difficult,
moderate and easy questions. Figure 6 illustrates three
categories of question difficulty. Yes/No questions tend
to be very specific, can be answered in the affirmative,
negative, or unknown. The moderate question is open-
ended, thus more difficult, but elicits a response that
is very concrete. In contrast, the difficult open-ended
question elicits an opinion that requires reflection and
reasoning. The data we collected from the dementia pa-
tients in RCT tasks can be used test whether a similar
policy could be trained that utilizes a database of actual
responses to RCT questions from elderly and dementia
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patients, categorized by relevance, and other properties
of the utterance, such as coherence.

6. Conclusion
The development of artificial agents to interact with de-
mentia patients is a challenging task. Referential com-
munication tasks (RCTs) have been used to assess de-
mentia, but in practice, administering these such tasks
is labor intensive. Our work addresses how to develop
an agent that can administer RCT tasks to human sub-
jects from youthful versus elderly populations, the lat-
ter includes individuals with dementia. Many tech-
niques are available to create simulated dialogue part-
ners that can be used to train MDP and POMDP dia-
logue policies. We have illustrated how two data from
our RCT datasets could be used to train a range of di-
alogue policies to enhance an existing robot that ad-
ministers RCTs using a scripted dialogue, and replace
the script with more naturalistic RCT interviews. Our
future work will test a range of simulators, investigate
policy performance, and ultimately test the trained poli-
cies with humans.
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Abstract 
This paper aims to present a multi-level analysis of spoken language, which is carried out through Praat software for the analysis of 
speech in its prosodic aspects. The main object of analysis is the pathological speech of schizophrenic patients with a focus on pausing 
and its information structure. Spoken data (audio recordings in clinical settings; 4 case studies from CIPPS corpus) has been processed 
to create an implementable layer grid. The grid is an incremental annotation with layers dedicated to silent/sounding detection; 
orthographic transcription with the annotation of different vocal phenomena; Utterance segmentation; Information Units segmentation. 
The theoretical framework we are dealing with is the Language into Act Theory and its pragmatic and empirical studies on spontaneous 
spoken language. The core of the analysis is the study of pauses (signaled in the silent/sounding tier) starting from their automatic 
detection, then manually validated, and their classification based on duration and position inter/intra Turn and Utterance. In this respect, 
an interesting point arises: beyond the expected result of longer pauses in pathological schizophrenic than non-pathological, aside from 
the type of pause, analysis shows that pauses after Utterances are specific to pathological speech when >500 ms.  

 
Keywords: spontaneous speech, segmentation, schizophrenic speech 

1. Introduction 

Our main purpose is to broaden the pragmatic knowledge 
of pathological speech, starting from the observation of the 
prosodic profile of 4 patients with schizophrenia and 
highlighting their atypia in contrast to non-pathological 
speech. This work focuses on a functional and structural 
method, creating a standard to analyze and describe 
pathological spontaneous spoken language. For this reason, 
we present the elaboration of a visual structure of 
segmentation with Praat software (Boersma and Weenink, 
2021), on which it is possible to develop different and 
parallel linguistic levels of analysis for the study of spoken 
language. We organized a layer grid, starting from an early 
distinction between sounding and silent, firstly using an 
automatic script and then manually validating the resulted 
segmentation. Further annotations have been added at 
different levels of analysis that are interconnected and 
allowed cross-layer observation of spoken data. 
In more detail, we report here 4 case studies on 
schizophrenic patients based on the analysis of the Italian 
CIPPS corpus (Dovetto and Gemelli, 2013) compared to 
non-pathological spoken language of the Italian section of 
C-ORAL-ROM corpus (Moneglia, 2005). 
Our theoretical framework is L-AcT, Language into Act 
Theory for the information structure of speech (Cresti, 
2000; Cresti and Moneglia, 2010; Moneglia and Raso, 
2014) in the reference point of pragmatics. In this 
perspective, the speech is naturally divided into linguistic 
units – easily identified by perception – that are called 
utterances. The Utterance1 carries the meaning expressed 
by the speaker, is autonomous and independent (Cresti, 
2000): it must necessarily have an illocutionary force 
(Moneglia and Raso, 2014). Its identification as the 

 
1 In this work, we use Utterance with capital letter because it is 

considered a unit of measurement for speech and segmentation on 

PRAAT. The same applies for Information Units. 
2 The CIPPS corpus results from the collaboration between the 

Scuola Sperimentale per la Formazione alla Psicoterapia (ASL 

linguistic counterpart of a speech act (Austin, 1962; Cresti, 
2000) allows us to make important observations on the 
prosodic characteristics of pathological patients and their 
strategies for the information articulation of speech. 
The analysis of Information Units in schizophrenic speech 
is a continuation of works of Dovetto, Cresti and Rocha 
(2015) and Cresti and Moneglia (2017). 

2. CIPPS Corpus 

The CIPPS Corpus (Corpus of Italian Spoken 
Pathological/Schizophrenic)2 is a collection of psychiatric 
interviews with 4 schizophrenic patients, anonymized with 
the letters A, B, C, and D. They experience different stages 
of the disease: A is in a pre-delusional condition of 
Wahnstimmung without hallucination; B suffers from 
paranoid schizophrenia with unstructured delirium without 
hallucinations; C has paranoid schizophrenia with 
structured delirium and hallucinations; D corresponds to 
the diagnosis of paranoid schizophrenia with delirium. 
The corpus currently consists of 17 hours of recordings in 
an ordinary environment without any elicitation: three 
medical sessions for A (150 min), four sessions for B (238 
min), two sessions for B (128 min), and one session for D 
(28 min). The four subjects are all males from Naples, with 
an age ranging from 35 to 45, and report standard Italian 
speech with some dialect inflections (more consistently 
pronounced in D). The corpus is currently being updated 
with new acquisitions of drug-resistant schizophrenic 
speech, in collaboration with the AOU of Naples Federico 
II3. The project is edited and coordinated by Dovetto and 
dedicated to “Non-standard Dialogic Speech Corpora” 
which also includes an innovative PhD scholarship 
(Dovetto et al., 2021). 

NA1) and CIRASS - Centro Interdipartimentale di Ricerca per 

l’Analisi e la Sintesi dei Segnali of the University of Naples 

“Federico II”. 
3 The contact person for the AOU is Prof. De Bartolomeis. 
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The recording sessions are in the form of dialogues/medical 
interviews between the patients and their doctor, and 
mainly consist of monological excerpts due to the low 
presence of the doctor’s turns.  
The recordings were manually transcribed (the 
transcription is available for the first 10 hours) with 
orthographic criteria based on Savy (2007), then 
implemented in Dovetto and Gemelli (2015) reporting 
different types of phenomena: vocal non-verbal 
phenomena, such as laugh, tough, breath, inspiration, 
tongue click and throat clearing; vocal non-lexical 
phenomena, as vowel or consonant lengthening, 
vocalizations and nasalization; and empty pauses, initially 
divided into small <sp> and large <lp>, then more finely 
classified in relation to specific thresholds. 

3. Methods 

The first step of spoken data processing has been analyzing 
the recording sessions through WinPitch software (Martin, 
2004) for the text-sound alignment, and then through Praat 
software, to identify Utterances and, within them, 
Information Units and their exact prosodic boundaries.  
More specifically, through Praat TextGrids, the audio files 
have been processed with a multi-level analysis, obtaining 
an incremental annotation with one information per tier:  

• silent/sounding detection;  
• Utterance identification with orthographic 

transcription, with the annotation of different 
vocal phenomena;  

• Information Units identification;  
• Tag of Information Units. 

This annotation can be implemented with other and 
potentially unlimited levels, from phonetic and 
phonological phenomena (vowel lengthening, different 
types of vocalizations or nasalizations) to paralinguistic 
annotations (breathing/empty silences; tongue-clicks; 
cough, laugh, throat clearing, etc.). 
After annotating, we differentiated between spontaneous 
speaking and other peculiar parts4 of the clinical sessions, 
such as reading (for patients C and D) or drawing (for 
patient C). 

3.1 Silent detection 

The first tier is named “silences” in addition to a code that 
includes the letter identification of the patient and the 
number of the recording session5. The tier reports a 
distinction between sounding and silent stretch of the 
recordings. The method for the data processing is divided 
into three steps: 

 
4 In the medical interviews, patients (except for patient B) 

sometimes read texts previously written at home and discuss them 
with the doctor. In two cases (C and D), there is a description of a 

drawing; in one case (C), there is a dermatological examination 

describing a physical state, showing body parts to the doctor. 
5 The code consists of PZ, an abbreviation for "patient", plus an 
identification letter for each of the 4 patients (A, B, C, and D) and 

the number of the recording. The second recording of patient D, 

for example, is indicated by the PZD2 code. 
6 The method of spectral subtraction was defined in Boll (1979). 
The variant implemented in Praat is modeled after a script by Ton 

Wempe. 

• noise removal, if necessary; 
• automatic segmentation of the recording sessions 

in sounding and silent segments, with a 
preparatory adjustment of the dedicated Praat 
script based on the minimum intensity value per 
speaker;  

• manual control of the automatic procedure by two 
evaluators. 

To generate denoised audio files, we adopted a Praat tool 
that automatically elaborates a noise profile on the base of 
a selected time range inside the recording, and operates a 
spectral subtraction6.  
Regarding the segmentation in sounding and silent 
segments, the clearer the sound, the more the automatic 
procedure is reliable. However, due to the type of 
recording, the manual operation was still pervasive7. To 
assess the reliability, reproducibility and consistency of the 
segmentation, we carried out an agreement test between 
annotators, resulting in a rate of 0.858. 
After the detection of pauses, we individuated a minimal 
threshold for silence in the value of 150 ms9, according to 
the average duration of stop consonants (cf. Giannini, 
2008; Dovetto and Gemelli 2013), and then we operated 
two different classifications: one on duration and the other 
on position criteria. 
Concerning the duration, we operated a preliminary 
analysis based on the literature (references listed below in 
this paragraph) to identify significant thresholds; then, we 
considered equidistant thresholds in order to observe 
objective differences in the distribution of pauses. For this 
reason, we created two groupings related to intervals with 
different thresholds. In the first, the thresholds are 
distributed according to the following non-regular 
distances: 200 ms (Lea and Kloker, 1975; Duez, 1985); 250 
ms, (Moneglia, 2005; Dovetto et al., 2021); 500 ms 
(Dovetto et al., 2021); 1000 ms and 5000 ms (Dovetto and 
Gemelli, 2013). Lastly, we added a 20000 ms threshold, 
which allowed us to identify very long pauses in patients 
with schizophrenia. In the second, the grouping follows 
regular intervals of duration to evaluate the distribution 
trend of pauses. 
Regarding their position, and according to the literature, 
pauses have been tagged considering inter/intra Turns 
placement, and a further classification was adopted for the 
silences within the same turn (cf. inter-tours and intra-
tours in Dodane and Hirsch, 2018; gaps and pauses in 
Heldner and Edlund, 2010; Fors, 2011). The resulting 
typology distinguishes between: 

• T-pauses: inter Turns pauses; 
• UT-pauses: inter Utterances pauses (inside the 

same Turn); 

7 Only the 11% of boundaries of the automatic detection remains 

unaffected.  
8 The test agreement has been made on a sample of PZD. On the 

base of the silent/sounding detection, we observed the manually 

verified boundaries comparing starting (t-min) and ending (t-max) 

times of silences. We adopted a fluctuation range of 150 ms, based 
on the minimum chosen threshold. 
9 For what concerns pauses under 150 ms, they are unlikely to 

seem relevant in monologues. Note that in Duez (1982) pauses 

were considered significant within the speech flow when <180 
ms. The same threshold has been selected by CMU Open Source 

Speech in speech analysis (https://cmusphinx.github.io/). 
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• IU-pauses: intra Utterances pauses (between 
Information Units inside the same Utterance). 

The observation of the two scales and mainly their 
interaction reveal important details about the behavior of 
pauses in schizophrenics. Among the various possible 
developments of the pauses analysis, there is the 
differentiation between empty silences and silences with 
paralinguistic annotations (cf. respiratoires and non 
respiratoires pauses in Fauth and Trouvain, 2018). 
 

3.2 Utterance identification  

The second tier is labeled “utterances” with the code of the 
patient. It reports the orthographic transcription of the 
speech flow with the annotation of specific vocal 
phenomena; the speech is here segmented into Utterances 
according to L-AcT. 
Based on perception, it is possible to identify terminal 
breaks inside the speech flow that function as boundaries 
of interpretable units of the language. The theoretical 
framework we are dealing with has its core in the 
correspondence between pragmatic and prosodic units in 
speech, based on the empirical observation of linguistic 
corpora and tonal contour analysis (Cresti and Moneglia, 
2010). 
Each Utterance is filled with its transcription. Thanks to 
this, we can observe the presence or the absence of specific 
linguistic characteristics such as disfluency or retracting 
phenomena, and verify their percentage in schizophrenic 
speech Utterances. We can also calculate the number of 
Utterances and their length in terms of word numbers. 
Furthermore, it is possible to measure the stretch of 
speech10 of each patient by correlating this tier to the 
sounding/silent value of the first one.  
The orthographic transcription of the Utterances is 
internally segmented into Information Units, separated 
with non-terminal breaks. 

3.3 Information Units identification  

The third tier is labeled “words” with the code of the 
patient; it is used to segment the transcription of each 
Utterance in the corresponding Information Units 
(Moneglia and Raso, 2014)11. 
Inside Utterances, non-terminal boundaries show the 
information structure of speech underlining different 
strategies of language architecture. With the support of the 

 
10 The stretch of speech includes silent/sounding only intra-turns, 

net of T pauses (see 4.1). 
11 As above (see 1.), the Utterance must necessarily have an 

illocutionary unit (= unit of Comment), the only one that can be 
interpreted as such in isolation. If the illocutionary unit is not 

accompanied by other elements, it is called simple utterance, 

otherwise compound utterance. The Information Units can be 

textual or dialogic. The first ones, of which the illocutionary unit 
is also part, constitute the semantic part of the Utterance, while 

the second ones (AUX = dialogic auxiliary) do not participate in 

the construction of the meaning of an Utterance but perform 

functions for its pragmatic success. 
The textual units, in addition to the Comment, are the Topic (the 

identification domain of the Comment, and generally identified 

by three specific prosodic profiles, of which the most common in 

Italian presents ascending contour on the tonic and descending on 
the post-tonic), the Appendix of Comment and the Appendix of 

Topic (additions, often negligible, with descending or flat 

prosodic configuration, we segmented the Utterances in 
non-autonomous units, i.e. the Information Units. The most 
significant clue to validate this phase is the pitch contour, 
both analyzed with Praat and WinPitch. Non-terminal 
boundaries can occur not only in the presence of pauses, 
but also concurrently with an f0 reset, intensity variations, 
or the change of the voice quality. 
Below the “words” tier, a fourth tier indicates the tag of the 
Information Units according to L-AcT. It is named 
“info.units” together with the code of the patient. This layer 
of annotation allows us to link a word (or a series of words) 
to its pragmatic function, and easily identify the more 
recurring types of Informative Units used by speakers. This 
analysis permits the elaboration of precise statistics for 
schizophrenic speech, also and above all in comparison 
with non-pathological speech. 
Figure 1 shows an example of the multi-level annotation 
described so far. 

 
Figure 1. Example of the multi-level annotation in PZD1 

4. Analysis 

Based on the 3 levels of segmentation it is possible to 
extract data and information about: silent analysis; 
information structure of the language; comparison with 
non-pathological data and its measurements. 
Thanks to the transcription, it is also possible to obtain 
measurements about lexical density, part of speech analysis 
(automatic PoS tagging), verbal/non-verbal utterances; 
disfluencies such as retracting phenomena.  
We will discuss here in-depth data and results of silent 
analysis of CIPPS and its comparison with non-

prosodic profile and low intensity), the Parenthesis (a secondary 

textual level, generally with a lower intensity and higher rate) and 

the Locutive Introducer (which introduces meta-illocutions, the 

most frequent of which is the reported speech). 
The dialogic units, on the other hand, are the Incipit (with short 

duration, high intensity, and variable profile, marks a contrast 

with the previous Utterance or a turn taking), the Conative (with 

short duration, high intensity, and descending profile, has the 
function of pushing the listener to take part in the dialogues, or 

stopping his uncollaborative behavior), the Allocutive (with short 

duration, low intensity and descending profile, identifies the 

interlocutor and establishes social cohesion), the Phatic (with 
short duration, low intensity, variable profile, keeps the 

communication channel open), the Expressive (prosodically 

variable, represents emotional support for the illocution) and the 

Discursive Connector (long duration, medium intensity, and 
variable profile, establishes a bond without contrast between two 

statements or subpatterns). 
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pathological data. All the measurements have been 
calculated on the patients, excluding  the doctor’s speech. 

4.1 Silent analysis 

Pause duration and collocation inside/between turns of 
conversation have been analyzed, thanks to the interaction 
between the different layers of segmentation. Pauses have 
been marked in a dedicated layer as described in 3.1 per 
type and divided into groups based on their durations.  
First of all, it is interesting to notice the relation between 
the duration of pauses (silences) and the duration of the 
stretch of speech (silences+soundings inside the turns) per 
patient.  

 Pauses Stretch of speech P/SoS 

A  1582.3 ms 2669.2 ms 59.3% 

B 3158.3 ms 13205.1 ms 23.9% 

C  1381.9 ms 4810.1 ms 28.7% 

D 235.8 ms 908.4 ms 25.9% 

Table 1: Pause/Stretch of Speech 

Data show that A’s behavior stands out from the other 
patients and reflects his effort in communicating and 
keeping the turn (almost 60% “filled” with silences). This 
measurement increases its importance when evaluated in 
comparison with other data (such as non-pathological data) 
because it eliminates the T-pause influence on data, that is 
the most affected by the context in which the 
communication takes place. Even if the percentage of 
silence is exaggeratedly high just for A, there is a stronger 
presence of pauses also in the other patients than in non-
pathological speech (Goldman-Eisler, 1961; Banfi, 1999; 
Heldner and Edlund, 2010). 
Inside the turn, measurements of the four patients show a 
different trend for the two types IU and UT:  

• IU-pauses follow 15.1% of IU and are mostly 
<1000 ms;  

• UT-pauses follow 41.6% of UT and show a 
relevant peak of occurrence in the duration of 500-
1000 ms. 

A unique behavior is observed in patient B concerning UT-
pauses: in his case, the percentage of UT followed by a 
pause raises to 61.1%, strongly influencing the mean 
percentage (35.1% without D’s measurements) and 
prolonging his time of building turns. 
For what concerns T-pauses, they follow 73.9% of T and 
are mostly <1000 ms. In this case, the behavior of patient 

 
12 Preparatory statistical analysis (Kruskal-Wallis and Dunn tests) 

regarding pause duration per type (IU, UT, T) highlight the lack 

of homogeneity in the corpus; the only non-significant difference 
appears in A, C, and D measurements of IU-pauses. The analysis 

has been carried out by Lorenzo Gregori. 

B strongly influences the mean percentage, because 70.9% 
of his silence is made only by T-pauses >1000 ms. 
Moreover, our analysis shows that talking about pauses 
>1000 ms for CIPPS is likely to be reductive; above this 
threshold, we find pauses with duration >5 s or even >20 s. 
For a general overview of the frequency of pauses Table 212 
shows the absolute number and the percentage (in 
brackets): 

 IU Pauses UT Pauses T Pauses 

A  312 (39%) 217 (27%) 273 (34%) 

B 2289 (44%) 2656 (50%) 334 (6%) 

C  739 (42%) 574 (32%) 455 (26%) 

D 159 (40%) 113 (28%) 126 (32%) 

Table 2: Frequency of pauses 

 

4.2 Information structure analysis 

Ongoing analysis shows that the four patients’ speech has 
a clear attitude for simple Utterances; in fact, nearly 50.7% 
of the CIPPS utterances are filled by a single Information 
Unit. More precisely, the percentage differences between 
the four patients are minimal: 54.3% for A, 57.7% for B, 
45.2% for C, and 47.9% for D. Even if in two cases (C and 
D) the speakers produce more compound utterances, their 
number is still low.  
This means that the schizophrenic internal structure of the 
Utterance is usually poor, and the autonomous illocutions 
are mainly not accompanied by other textual or dialogic 
units, as in the following example (where the double slash 
// indicates the terminal boundary, i.e. the perceivable end 
of the utterance): 

(1) PZA1: questa è la domanda // 

 [this is the question//] 

Further analysis will show new characteristics of the 
schizophrenic speech concerning the Information structure 
after completing the annotation of the units following L-
AcT (Moneglia and Raso, 2014). 

4.3 Comparison with non-pathological data 

CIPPs data have been compared with non-pathological 
spoken data collected through previous linguistic analysis 
of spontaneous speech, namely on the Italian section of C-
ORAL-ROM corpus within L-AcT theoretical framework, 
selecting a subset of male speakers13. 

13 The subset was chosen in particular to have gender 

homogeneity with the schizophrenic corpus, where the subjects 

are all males. 
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As already mentioned, the doctor-patient relationship 
conditions the speech properties. More specifically, one of 
the main differences between medical interviews and 
spontaneous dialogues is the turn-taking rate. In 
spontaneous spoken language, the hearer tends to answer 
before the very end of another speaker’s turn, as soon as 
he/she understands the interlocutor’s intent. Non-
pathological conversation often appears to be characterized 
by overlaps, while in psychiatric sessions the doctor limits 
himself to a few backchannels and lets the patient speak. 
To avoid this asymmetry, the distinction between different 
types of pauses results relevant and permits to compare 
only the two sets of IU- and UT-pauses of pathological and 
non-pathological. 
The two plots below (Figures 2 and 3) compare 
schizophrenic and non-pathological speech concerning the 
types of pauses divided by their duration. 
 

Figure 2. CIPPS mean duration of pauses (frequencies) 

 

Figure 3. non-pathological mean duration of pauses 
(frequencies) 

Regarding the Information structure analysis, the presence 
of simple and compound utterances in non-pathological 
speech reveal interesting observations. In fact, the 
percentage of complex utterances in non-pathological 
speech is nearly 68% (see also Cresti and Moneglia, 2005), 
that is greater than in the four patients. 

5. First results 

Even if we are dealing with 4 case studies and the research 
is ongoing, our analysis already revealed interesting and 
coherent pieces of information on schizophrenic speech, 
which immediately suggest the characteristic atypia of this 
type of speech. In fact, the trend of pauses in CIPPS is 
clearly perceived as different from the non-pathological 
speech and, despite the non-homogeneity in data collection, 

highlights a particular mental organization about the 
position, and therefore the function, of pauses within the 
Utterance.  
Expected result, consistent with the literature (among the 
others, see Banfi, 1999), is that pauses of pathological 
schizophrenic speech are generically longer than non-
pathological aside from the type (IU, UT or T). 
A distinction between IU- and UT-pauses can be stated: IU-
pauses match the non-pathological trend for what concerns 
their durations; UT-pauses >500 ms are rather more 
numerous than the non-pathological pauses. More in detail, 
for the control group: with increasing duration i. the 
incidence of IU pauses significantly decreases (from 70% 
with 937 pauses in the range 250-500 ms to 36% with 214 
pauses in the range 1000-5000 ms); ii. the UT pauses 
increase (from 22% to 55% in the two considered ranges). 
Instead, the trend for schizophrenic subjects is different: i. 
IU pauses are quite more than UT pauses for the duration 
between 250 and 500 ms (53% with 1055 IU pauses vs 35% 
with 700 UT pauses); ii. IU pauses significantly decrease 
in the range 500-1000 ms with a clear preponderance of UT 
pauses (57% of UT pauses vs 30% of IU pauses i.e. 1450 
vs 779 occurrences), similarly to the trend between 1000 
and 5000 ms. 
This means that a greater presence of pauses inside the 
Stretch of Speech in CIPPS underlines the difficulty of 
these patients in speech processing. The silence is a 
symptom not only of lexical retrieval (Dovetto and 
Gemelli, 2013), but also of a weak Information structure. 
Finally, we remark that all the observations are made 
thanks to the visual structure of Praat. In fact, the cross 
layers interaction allows an in-depth analysis of 
schizophrenic speech, and it is easily implemented 
according to the linguistic aspect of interest (lexical, 
morphological, etc). 
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