
Proceedings of ParlaCLARIN III @ LREC2022 pages 35–38
Marseille, 20 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

35

Error Correction Environment for the Polish Parliamentary Corpus

Maciej Ogrodniczuk, Michał Rudolf, Beata Wójtowicz, Sonia Janicka

Institute of Computer Science, Polish Academy of Sciences
Warsaw, Poland

maciej.ogrodniczuk@ipipan.waw.pl, michal@rudolf.waw.pl,
beata.wojtowicz@ipipan.waw.pl, s.janicka@student.uw.edu.pl

Abstract
The paper introduces the environment for detecting and correcting various kinds of errors in the Polish Parliamentary Corpus.
After performing a language model-based error detection experiment which resulted in too many false positives, a simpler
rule-based method was introduced and is currently used in the process of manual verification of corpus texts. The paper
presents types of errors detected in the corpus, the workflow of the correction process and the tools newly implemented for
this purpose. To facilitate comparison of a target corpus XML file with its usually graphical PDF source, a new mechanism for
inserting PDF page markers into XML was developed and is used for displaying a single source page corresponding to a given
place in the resulting XML directly in the error correction environment.

Keywords: parliamentary data, error correction, Polish

1. Introduction
The Polish Parliamentary Corpus1 (Ogrodniczuk,
2018; Ogrodniczuk and Nitoń, 2020) contains proceed-
ings of the Polish parliament from the last 100 years of
its modern history, currently of over 800M tokens. The
process of adding data to the XML corpus has been
heterogeneous, ranging from almost-direct inclusion of
newest born-digital data already available in clean for-
mats (such as HTML) to tedious correction of automat-
ically OCR-ed image-based PDF files containing older
materials (before 1990).
Even though the latter have already been manually ver-
ified by human proof-readers at the time of their OCR,
the process still resulted in many problems of various
types, including structural errors (such as retained un-
necessary header information) or typographical errors
(e.g. corresponding to words present in dictionary but
invalid in the given context). This motivated another
correction round in a new environment, developed es-
pecially for detection and correction of errors in the
corpus. Below we describe the process of analysing
corpus texts, present the correction environment and
various add-ons improving the proofreading work.

2. Error Candidate Detection
Two experiments have been carried out before the de-
cision was made about the target method of error can-
didate detection in the corpus. Since precision of error
detection seems to be the most important factor of such
task, two models were tested. The language model-
based, intended to verify how the newest transformer
models for Polish can cope with a straightforward task
requiring considerable precision, was compared to a
simple rule-based model, long known for its precision.

1Pol. Korpus Dyskursu Parlamentarnego, see clip.
ipipan.waw.pl/PPC.

2.1. Language Model-Based Error
Candidate Detection

Language models have been successfully used for
OCR post-correction for Polish e.g. at PolEval 2021
(Kobyliński et al., 2021)2. One of the submitted solu-
tions, ranked second best (Wróbel, 2021), was tested
in an experiment to find error candidates in the Pol-
ish Parliamentary Corpus. The solution was based
on a sequence to sequence model using T5 architec-
ture (Raffel et al., 2020) and a publicly available PLT5
LARGE language model for Polish3. Unfortunately,
even though the model was successful in discover-
ing and correcting such cases as two words glued to-
gether, missing or excessive spaces and several types of
grammatical errors, the number of false positives (most
likely caused by a different training domain) rendered
its use impractical.

2.2. Rule-Based Error Candidate Detection
To eliminate excessive false positives, a rule-based so-
lution was implemented. It consists of several modules
intended to detect various classes of errors.

Structural errors are mostly merged enumerations
or speaker names treated as normal text, leading to as-
signing utterances to a wrong speaker. In some cases
supposed speaker labels are in fact standard text.

Comments and metadata were marked in original
texts with simple brackets (e.g. Thank you. (Applause)
which led to many conversion errors as sometimes the
brackets were also used in the text, usually containing
numbers or statistics, for example (about 98%). This

2See also http://2021.poleval.pl/tasks/
task3.

3https://huggingface.co/allegro/
plt5-large

clip.ipipan.waw.pl/PPC
clip.ipipan.waw.pl/PPC
http://2021.poleval.pl/tasks/task3
http://2021.poleval.pl/tasks/task3
https://huggingface.co/allegro/plt5-large
https://huggingface.co/allegro/plt5-large


36

Figure 1: Interface of the error correction environment: replacement suggestion for a spaced-out word

problem was solved by adding the rules concerning
common comment phrases.

Punctuation errors made a separate category with
many subclasses such as wrong or unmatched quota-
tion marks or brackets, wrong types of hyphenation
(minuses vs. n- or m-dashes etc.), excessively hyphen-
ated words etc.

Broken or unfinished paragraphs mostly resulted
from conversion errors but could also denote missing
content.

Misspellings resulting in out-of-vocabulary strings
were also quite common, particularly in older ses-
sions which were often printed on low-quality paper.
Such cases are detected using Morfeusz 2 (Kieraś and
Woliński, 2017), the most efficient morphological anal-
yser for Polish. Due to a high number of proper names,
this step was limited to lowercase tokens4.

Common OCR errors or typos corresponding to
highly improbable in-dictionary words were also de-
tected with a set of special rules. This included
low-frequency words having a high-frequency ortho-
graphic neighbour, e.g. glosowanie (glossing) instead
of głosowanie (voting) or rare grammatical cases, e.g.
sytemu (satiated DAT) instead of systemu (system GEN)
or tyko (beanpole VOC) instead of tylko (only).

Other types of errors included missing or redundant
spaces, remains of non-textual elements such as tables
or footnotes (which were to be removed from the pro-
ceedings), characters outside the common character set
or spaced-out words.

4Different spelling conventions used in pre-war texts may
also result in false positives (since corpus creators decided
to retain the original spelling from the official parliamentary
proceedings). For the correction process it means that the
proofreaders have to consult the rules prevailing at the time
of the sitting.

3. Error Correction Process
Annotations produced by the rule-based system were
distributed to human proofreaders in a newly imple-
mented Web-based error correction environment5. Af-
ter logging in and selecting a text allocated for ver-
ification, they were supposed to read the text in the
left/center pane (see Figure 1), consult the list of de-
tected potential errors displayed in the right pane and
correct or discard them. Apart from resolving hinted
problems the proofreaders were also asked to assign
speeches to speakers, distinguish the speeches from
extra-textual events, mark the opening and closure of
the sitting, correct annotations of misidentified com-
ments, mark undelivered speeches etc.
The following three-step procedure was used, starting
from the most to the least important issues:

1. correcting the structure of the text (distinguishing
between speaker information, comments and spo-
ken text, divided into paragraphs); errors in this
layer can disrupt search results for large blocks of
text so they are the most painful

2. correcting the structure of the sentence (typos,
punctuation errors, hyphenation etc.): these types
of errors can spoil the analysis of the sentence and
cause misinterpretation of ambiguous words

3. checking the consistency of the corrections
throughout the text; obviously different terms of
office had different stenographers and slightly dif-
ferent conventions; some of them change even
within a single sitting.

The interface of the error correction environment offers
several functions facilitating the task such as opening
the source PDF, adding general comments to the docu-
ment or searching for a phrase or a certain identifier in

5https://korektor.rudolf.waw.pl, autho-
rized access only.

https://korektor.rudolf.waw.pl


37

the document. Sections of text selected for correction
are marked in colour.
After clicking the highlighted text, a pop-up may ap-
pear with a correction suggestion (see the dark box in
Figure 1). The proofreader might select to accept the
proposed change or discard it. Even when there is no
suggestion available, the proofreader may edit the con-
tent in place or change the structure of the text using
one of the buttons (under the yellow box in Figure 1):

• Zwykły (Plain), i.e. the content of the speech
• Komentarz (Comment), used for fragments which

relate to non-textual events, such as the begin-
ning/end of the meeting, applause etc.

• Mówca (Speaker), marks a given passage as an
identifier of the person speaking (usually their
name and position)

• Złączony z poprzednim (Merged with previous
paragraph), joins the current paragraph with the
preceding one into a single, continuous text

• Usunięty (Deleted), deletes the paragraph.
Changes can be cancelled by clicking on the back ar-
row icon that appears to the right of the modified para-
graphs.
The right pane provides a list of all automatically de-
tected errors in the document. Clicking an item dis-
plays its corresponding paragraph in the center pane.
Once the error has been corrected, the line is marked
with a tick. Suggestions can also be ignored.
Apart from just looking at suggestions, the proofread-
ers were instructed to read the whole text and correct
erroneous words, typos, spelling mistakes, unnecessary
punctuation marks and other similar issues not detected
by the rule-based system. When not certain, they were
supposed to refer to the original text in the PDF file
(using the integrated mechanism for locating a given
text in a PDF document, see Section 5.) and keep the
original spelling.

4. Inserting Page Markers into XML
In some cases the correction process requires looking
into the graphical PDF source. Without knowing which
page to look on, it might pose an enormous difficulty
to locate the exact occurrence of the word on phrase
in a multi-page, non-searchable document. This situ-
ation motivated a sub-project based on the assumption
that the results of any (even considerably dirty) OCR
could be, with a reasonable accuracy, compared with
the clean XML text to insert page boundary markers.
In order to perform OCR, the PDF files needed to be
converted into JPG format first. Then, the open source
optical character recognition engine Tesseract6 (Smith,
2007) was used to extract strings consisting of last five
words of each page, which identified this page bound-
ary. Those identifiers were subsequently stored in a list
covering all the pages in a given document.

6https://github.com/tesseract-ocr/
tesseract

At this point, the actual procedure of inserting page
boundary markers could start and each string on the
list was searched for in the corresponding XML TEI
file. In order to counteract possible errors resulting
from imprecise text recognition, the search was fuzzy
and allowed for the Levenshtein distance of six be-
tween the extracted string and the XML TEI file. When
the given string was found, a page boundary marker
with the page number was inserted, and the next string
was searched for, starting where the previous one was
found.

The XML TEI files in the Polish Parliamentary Cor-
pus omit some parts of the original PDF files, such as
tables or indices, and sometimes include blank pages.
This had to be taken into account in order to maintain
correct page numeration, and was successfully imple-
mented. Moreover, pages in the PDF files frequently
end with word breaks marked with a hyphen. The goal
of the project was to avoid splitting words with the
markers and insert them either before or after the words
in question. Therefore, the need to establish whether a
page ended with a whole or split word arose. In this
respect, the OCR results turned out to be unreliable,
as the hyphens often remained undetected in the recog-
nized text. Therefore, the text in XML TEI files needed
to be examined and the index to insert page boundary
marker adjusted. As a result, the markers were effec-
tively inserted following the word partially relegated to
the next page in the PDF files.

The results of inserting page boundary markers proved
satisfactory in the case of documents consisting of long
chunks of text. The quality of OCR performed by
Tesseract generally sufficed to detect the appropriate
spot for page boundary markers. Occasional problems
occurred for files of worse quality, but such an issue
arising on one page did not prevent the next marker
from being inserted correctly.

The following issues, however, remained unresolved:

Extremely short paragraphs In the Polish Parlia-
mentary Corpus, the text spoken by each person is lo-
cated in a different tag. Consequently, in the case of
a page ending with an extremely short paragraph (e.g.
a one-word statement preceded by a statement made
by another person), the string identifying page bound-
ary consists of words belonging to two different tags;
it may also include the elements classified as a tag at-
tribute in an XML TEI file rather than its content (e.g.
the name of the person speaking). As the strings identi-
fying page boundaries were searched for inside one tag
at a time, in such particular cases markers with page
numbers could not be inserted.

Repetitive phrases Another problem was posed by
documents with numerous repetitive phrases, such as
names of decrees or laws. Such files, however, were
limited in length and number, and presumably do not
amount to a high percentage in the whole corpus.

https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract


38

5. Current Findings
The process of correcting errors in the corpus has been
running for several months now so we can try to ana-
lyze its effectiveness. First of all, Table 1 presents the
number of errors of various categories discovered in the
subset of the corpus already assigned to proofreaders.
It contains the proceedings of Sejm (lower house), with
2898 texts dated between 1919 and 2019. The vast ma-
jority of errors are related to punctuation which may
result from different typing conventions (of quotation
marks or brackers) but also OCR problems (hyphen-
ation). However, the most important (from the per-
spective of corpus users) are structural errors, resulting
in assigning utterances to wrong speakers or treating
comments as spoken data.

Structural errors 71 790
unmarked speakers 32 481
enumerations 20 857

Comments and metadata 18 452
Punctuation errors 427 830

wrong quotation marks 314 772
hyphenation errors 102 103
bracket problems 6175
other punctuation problems 4780

Broken or unfinished paragraphs 121 182
Misspellings 113 170
Common OCR errors and typos 3827
Other errors 40 680

spacing problems 24 843
non-textual elements 15 720
spaced-out words 117

All errors 778 479

Table 1: Detected error counts, by class

Table 2 presents the effectiveness of rule-based er-
ror detection measured with proofreader reaction (ac-
cepted vs. ignored system suggestions). The num-
ber is a fraction of all detected errors since only ap-
prox. 30% of the assigned data is currently corrected.
In our opinion the acceptance rate of errors discovered
by the model seems reasonably high.

Accepted suggestions 195 416 87%
Ignored suggestions 28 486 13%

All suggestions 223 902 100%

Table 2: Error detection effectiveness

6. Looking to the Future
The environment was designed to integrate various er-
ror detection and text correction mechanisms so it in-
advertently becomes the main corpus editing tool for

Polish parliamentary data. One direction of its devel-
opment are obviously improvements in the current er-
ror discovery, both in terms of its scope, e.g. to in-
clude detection of incomplete documents (without the
formal end of the meeting) and technical capabilities,
e.g. plugging in new methods of error detection capa-
ble of discovering other types of errors (e.g. syntactic
errors, difficult misspellings etc.)
On the other hand, since the environment already
proved to offer non-technical users the opportunity to
edit corpus texts in a straightforward way, it is planned
to be extended with new functions for adding longer
fragments of text (confirmed to be missing) or marking
up the formal structure of the meeting (agenda items).

Acknowledgements
The work reported here was financed under the 2014–
2020 Smart Development Operational Programme, Pri-
ority IV: Increasing the scientific and research poten-
tial, Measure 4.2: Development of modern research in-
frastructure of the science sector, No. POIR.04.02.00-
00C002/19, “CLARIN — Common Language Re-
sources and Technology Infrastructure“.
We would like to thank Krzysztof Wróbel for his lan-
guage model-based error candidate detection experi-
ment (see Section 2.1.).

Bibliographical References
Kieraś, W. and Woliński, M. (2017). Morfeusz 2 –

analizator i generator fleksyjny dla języka polskiego.
Język Polski, XCVII(1):75–83.

Kobyliński, Ł., Kieraś, W., and Rynkun, S. (2021).
PolEval 2021 Task 3: Post-correction of OCR Re-
sults. In (Ogrodniczuk and Kobyliński, 2021), pages
85–91.

Ogrodniczuk, M. and Kobyliński, Ł., editors. (2021).
Proceedings of the PolEval 2021 Workshop. Institute
of Computer Science, Polish Academy of Sciences.

Ogrodniczuk, M. and Nitoń, B. (2020). New Develop-
ments in the Polish Parliamentary Corpus. In Darja
Fišer, et al., editors, Proceedings of the Second Par-
laCLARIN Workshop, pages 1–4. ELRA.

Ogrodniczuk, M. (2018). Polish Parliamentary Cor-
pus. In Darja Fišer, et al., editors, Proceedings of the
LREC 2018 Workshop ParlaCLARIN: Creating and
Using Parliamentary Corpora, pages 15–19. ELRA.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang,
S., Matena, M., Zhou, Y., Li, W., and Liu, P. J.
(2020). Exploring the Limits of Transfer Learning
with a Unified Text-to-Text Transformer. Journal of
Machine Learning Research, 21(140):1–67.

Smith, R. (2007). An Overview of the Tesseract OCR
Engine. In Proceedings of the 9th International
Conference on Document Analysis and Recognition,
vol. 2, pages 629–633. IEEE Computer Society.

Wróbel, K. (2021). OCR Correction with Encoder-
Decoder Transformer. In (Ogrodniczuk and
Kobyliński, 2021), pages 97–102.


	Introduction
	Error Candidate Detection
	Language Model-Based Error Candidate Detection
	Rule-Based Error Candidate Detection

	Error Correction Process
	Inserting Page Markers into XML
	Current Findings
	Looking to the Future

