
Proceedings of the OSACT 2022 Workshop @LREC2022, pages 214–217
Marseille, 20 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

214

aiXplain at Arabic Hate Speech 2022: An Ensemble Based Approach to
Detecting Offensive Tweets

Salaheddin Alzu’bi, Thiago Castro Ferreira , Lucas Pavanelli, Mohamed Al-Badrashiny
aiXplain Inc.

Los Gatos, CA
(salah.alzubi, thiago, lucas.pavanelli, mohamed)@aixplain.com

Abstract
Abusive speech on online platforms has a detrimental effect on users’ mental health. This warrants the need for innovative
solutions that automatically moderate content, especially on online platforms such as Twitter where a user’s anonymity
is loosely controlled. This paper outlines aiXplain Inc.’s ensemble based approach to detecting offensive speech in the
Arabic language based on OSACT5’s shared sub-task A. Additionally, this paper highlights multiple challenges that may
hinder progress on detecting abusive speech and provides potential avenues and techniques that may lead to significant progress.

Keywords: Offensive Language Detection, Arabic Shared Task, Abusive Language Detection

1. Introduction
The presence of abusive speech in online communities
poses a detrimental effect to many users’ mental
health. This is particularly apparent in interactive
platforms such as Twitter, where a user’s anonymity
is loosely moderated. This phenomenon warrants
the need for models that automatically detect and
handle abusive language; while solutions to this
problem in the English language have been proposed,
there is room for improvement for the Arabic language.

This paper presents aiXplain Inc.’s ensemble based ap-
proach to detecting offensive speech in Arabic for the
OSACT5 shared sub-task A (Hassan et al., 2020). In
particular, this paper outlines the individual approaches
that were used in tackling this task and offers a final
system architecture based on a combination of these
models. Additionally, this paper offers insights into
the challenging aspects of classifying offensive speech
in Arabic and potential future directions that may bear
fruit in tackling this problem.

2. Data & Task Description
In this section, we provide an overview of the data and
a description of the sub-tasks available.

2.1. Data
The dataset provided for OSCAT5 Arabic hate speech
task consists of 12698 annotated tweets that serve as
the largest annotated database for the Arabic com-
munity. Each tweet is independently judged by 3
annotators that assign the following labels to them:
offensive/not-offensive; hate-speech/not-hate-speech;
type of hate-speech: race, religion, ideology, disabil-
ity, social class, and gender; additionally, each tweet
is labeled as vulgar/not-vulgar and violent/not-violent.
The dataset is split into a training set, development set
and testing set with the following distribution:

Train Development Test
8887 1270 2541

Table 1: OSACT5 Arabic Hate Speech Data Distribu-
tion

It is worth emphasizing that the dataset is heavily im-
balanced for both available sub-tasks, with the sec-
ond & third sub-tasks (hate speech classification) being
more severe than the first.

Subtask Label 0 (%) Label 1 (%)
A 65 35
B 90 10

Table 2: Subtask Label Distribution

2.2. Shared Sub-tasks
This section provides an overview of the three different
sub-tasks that are available. We would like to empha-
size the fact that our submission involves participation
in Subtask A only.

2.2.1. Subtask A: Offensive Speech Detection
The first subtask involves detecting whether a tweet
contains offensive speech or not. Offensive speech is
defined as any kind of implicit or explicit insults or at-
tacks against individuals or groups.

2.2.2. Subtask B: Hate Speech Detection
The second sub-task involves detecting hate speech.
Hate speech is defined as any kind of implicit or ex-
plicit speech that targets an individual’s, or groups’,
race, religion, ideology, disability, social class, or gen-
der.

2.2.3. Subtask C: Hate Speech Detection
The third sub-task is the same as the second sub-task,
however, the problem is posed as a multi-class classifi-
cation problem. The primary aim of this sub-task is to



215

perform fine-grained classification of tweets that con-
tain hate-speech into one of the six classes mentioned
in the section above.

3. Approach
This section includes the primary approach we used to
achieve the best results. Our approach consists of three
main steps: Augmentation, Pre-processing and passing
the data through an ensemble1.

3.1. Preprocessing
This section discusses the pre-processing techniques
that we apply on tweets. Our pre-processing technique
involves dealing with text and emojis separately.

3.1.1. Textual Pre-processing
For the textual part of the tweet, we apply the following
transformations sequentially on each tweet:

1. Remove URLs and mentions

2. Remove diacritics and tatweel

3. Remove punctuation

This simple approach ensures that the data remains
faithful to the original distribution while removing
noisy signals in the tweet.

3.1.2. Emoji Pre-processing
(Mubarak et al., 2022) show that emoji’s provide in-
valuable information to detect a tweet’s sentiment.
Since most models are not directly trained to handle
tweets, we translate emojis in a tweet to Arabic us-
ing (Junczys-Dowmunt et al., 2018) English to Arabic
model.For some emojis, we infer their intended mean-
ing (from how they are usually used in the region’s con-
text) and provide their translation using our expertise
in the Arabic language and the colloquial dialect used.
Additionally, we extract the relevant emojis from each
tweet and use a classifier to predict their sentiment indi-
vidually. These predictions are used as additional high-
level features to other classifiers.

3.2. Data Augmentation
Since deep-learning models such as BERT (Devlin et
al., 2018) are data hungry, a large amount of data from
each class is required for any significant learning to oc-
cur. This section outlines the two methods that were
used to augment the offensive dataset.

3.2.1. Semi-Supervised Learning
We use recent developments in semi-supervised learn-
ing to augment the classes with less support (in
this case: offensive class). We fine-tune a pre-
trained AraBERTv0.2-Twitter-base (Antoun et al.,
2020) model on detecting offensive speech; this model
is then used to classify a large set of tweets that have
been scraped from external sources. We select the
tweets that the model predicts as offensive with high
confidence.

1https://github.com/aixplain/arabic-hate-speech

3.2.2. Contextual Augmentation based on
Semantic Similarity

We use the Python package NLPAug (Ma, 2019) to
augment the tweets. This technique consists of feeding
surrounding words to AraBERTv0.2-Twitter-base (An-
toun et al., 2020) to find out a semantically similar word
that is suitable for augmentation. We run this augmen-
tation for every offensive example, randomly substitut-
ing 30% of the words with the similar one and, thus,
generating a new example. We apply this technique
till we double the number of examples in the offensive
class making the class distribution balanced. Based on
our empirical observations, we have found that chang-
ing around 2-3 words in a tweet preserves the overall
meaning whilst adding capturing a broader spectrum
of the negative sentiment.

3.3. System Overview
This section provides a detailed overview of the ap-
proach that we use to make the final predictions on
tweets. Our system’s architecture involves feeding the
predictions of an ensemble of classifiers combined with
relative high-level features to a final meta-learner yield-
ing a binary label of ”OFF” to represent offensive or
”NOT OFF” to represent unoffensive speech.
Each of the classifiers in the ensemble consist of a final
linear layer the following pre-trained model as a back-
bone:

• AraBERTv0.2-Twitter-large (Antoun et al., 2020)

• Mazajak 250M CBOW pre-trained embeddings
(Abu Farha and Magdy, 2019)

• Character level N-gram + word level N-gram TF-
IDF embeddings (Takase et al., 2019)

• MUSE (Conneau et al., 2017)

Additionally, we use our Emoji model to extract addi-
tional high level features from each tweet.
The predictions from the aforementioned models are
then concatenated into a final vector which is fed into
either a final XGBoost model or a linear layer to pro-
duce the final binary prediction.

3.4. Models
This section contains an overview of the models that
we use as part of our ensemble.

3.4.1. AraBERTv0.2-Twitter-large
AraBERTv0.2-Twitter (Antoun et al., 2020) is a pre-
trained transformer model that is based on Google’s
BERT (Devlin et al., 2018) model. Similar to BERT the
model is pre-trained on an MLM task using a collection
of 60M arabic tweets. This particular model contains
emojis as part of its vocabulary making it suitable for
this task. We use HuggingFace’s API to fine-tune our
model using Adam (Kingma and Ba, 2014) optimizer
and a learning rate of 1e-5.



216

3.4.2. Mazajak Pre-trained Embeddings
Mazajak embeddings (Abu Farha and Magdy, 2019)
are the largest available embeddings for the arabic lan-
gauge trained on 250M tweets. Mazajak embeddings
were created by training a Continuous Bag-of-Words
(CBOW) model to yield a 300-dimensional contextual
vector for each word in the corpus. In our model, we
use the mazajak embeddings for each word and ap-
ply average pooling to produce a final 300-dimensional
vector that is fed into a linear layer to give a prediction.

3.4.3. Character + Word level N-gram TF-IDF
Embeddings

In this model, we combine the tri-gram character level
tf-idf embeddings of tweets with the bi-gram word
level tf-idf embeddigs. We believe that lexical level
features such as character level and word level embed-
dings add an extra dimension to the learning of our en-
semble classifier.

3.4.4. MUSE
This model utilizes the word embeddings provided
by FAIR’s Multilingual Universal Sentence Encoder
(Conneau et al., 2017). Given a tweet, we feed the
pre-processed data to MUSE to generate a 512 word
embedding vector; this vector is then fed into a logistic
regression layer to provide a final prediction.

3.4.5. Emoji Score
Emoji score is the model we use to extract additional
high-level features from the emoji’s present in a tweet.
In particular, we assign a score to each emoji based on
how many times it is used in offensive tweets and how
many times it is present in non-offensive ones. For each
tweet, we aggregate the emoji-score of each emoji into
a final score representing the emoji-score.

An additional approach we experimented with involved
a bag-of-words model that calculated the offensiveness
of a tweet based on the emoji scores in a tweet.

4. Model Evaluation

This section presents and discusses the performance of
our models on the development set. We also present the
final evaluation scores on the test set provided.

4.1. Dev Set Results

The development set is used as a benchmark for our
model’s generalization performance on unseen data;
the table below shows the performance of each indi-
vidual model and different combinations of the models
on the most common metrics used to evaluate binary
classification.

Model P R Macro F1

Char-tfidf 0.79 0.72 0.74
Word-tfidf 0.75 0.65 0.66
Emoji 0.68 0.56 0.54
Muse 0.73 0.69 0.7
Emoji-Score 0.68 0.55 0.51
AraBERT 0.84 0.83 0.84
Mazajak 0.73 0.64 0.64
Char+word+MUSE 0.79 0.74 0.75
Char+word+MUSE +Emoji 0.79 0.76 0.77
Ensemble of Boldface Models 0.86 0.85 0.85

Table 3: Evaluation of different models on the Preci-
sion (P), Recall (R) and Macro F1-Score binary classi-
fication performance metrics

4.1.1. Results Discussion
The results above show that AraBERT outperforms all
the other models by a large margin. We believe that
this is due to the fact that AraBERT was specifically
trained on a large number of tweets that captured the
datas underlying distribution. A surprising result is
the poor performance of the Mazajak pre-trained em-
beddings as they are also trained on 250M tweets, yet
the Mazajak embeddings did not seem to represent the
tweets in a successful manner. We believe that this
may be due to a couple of reasons: (1) the underly-
ing distribution of the data (in this case, the differ-
ent dialects) is different from the distribution that the
Mazajak model was trained on. (2) The pre-processing
steps that the authors used are different from the steps
that we used leading to a large discrepancy in the per-
formance. Other models such as TF-IDF and MUSE
show promise but are not up to par with the best re-
sult of AraBERT. Under the aforementioned, the final
result which involves ensembling multiple models and
high-level features only pushes the final result by .02
f1 points; this indicates that apart from AraBERT, the
other feature extraction methods are either insignificant
or provide weak signals to the final prediction.

4.1.2. Error Analysis
This section highlights some of the examples that our
best model gets wrong and provides some insight as to
why the model may be behaving the way it is.

Figure 1: Examples the best model confidently mis-
classifies

The above results show that our best model struggles



217

to classify examples with no emojis; this supports the
claim that language agnostic indicators such as emo-
jis provide valuable insights to the models’ predictions.
The model also seems to fail to recognize offensive
tweets that when placed in context count as offensive
such as example (3).

4.2. Test Set Results
The table below shows our model’s final result on the
test set. The final models that were submitted involved
using different meta-learners as the final classification
layer. For the first submission, we use a auto-sklearn to
select the best estimators; for the second submission,
we use a linear layer as the classification layer.

Model Acc P R Macro F1

1 0.864 0.852 0.847 0.849
2 0.858 0.845 0.84 0.843
Baseline 0.651 0.325 0.5 0.394

Table 4: Accuracy (Acc), Precision (P), Recall (R) and
Macro F1-Score of Our Best Models on the Test Set

These results are in line with the results achieved in the
development phase. This shows that our best model is
able to generalize well to unseen tweets from the same
distribution.

5. Challenges & Future Directions
The biggest challenge we faced when attempting to de-
tect offensive tweets was normalizing the dialect of the
tweets. Most of the available pre-trained models or pre-
processing libraries are trained on MSA or a particular
Arabic dialect making a unified approach difficult. This
limited our ability to extract relevant features from the
tweets in a useful manner; for example, POS tags and
NER. This lead us to look for relevant signals in emojis
as they are, to a large extent, language agnostic. We be-
lieve that exploring emoji’s and their relevance to clas-
sifying offensive speech in tweets can provide valuable
signals to the overall prediction.

6. Bibliographical References
Abu Farha, I. and Magdy, W. (2019). Mazajak: An

online Arabic sentiment analyser. In Proceedings
of the Fourth Arabic Natural Language Processing
Workshop, pages 192–198, Florence, Italy, August.
Association for Computational Linguistics.

Antoun, W., Baly, F., and Hajj, H. (2020). Arabert:
Transformer-based model for arabic language un-
derstanding. In LREC 2020 Workshop Language
Resources and Evaluation Conference 11–16 May
2020, page 9.

Conneau, A., Lample, G., Ranzato, M., Denoyer, L.,
and Jégou, H. (2017). Word translation without par-
allel data. arXiv preprint arXiv:1710.04087.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova,
K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding.

Hassan, S., Samih, Y., Mubarak, H., Abdelali, A.,
Rashed, A., and Chowdhury, S. A. (2020). ALT
submission for OSACT shared task on offensive lan-
guage detection. In Proceedings of the 4th Work-
shop on Open-Source Arabic Corpora and Process-
ing Tools, with a Shared Task on Offensive Language
Detection, pages 61–65, Marseille, France, May. Eu-
ropean Language Resource Association.

Junczys-Dowmunt, M., Grundkiewicz, R., Dwojak, T.,
Hoang, H., Heafield, K., Neckermann, T., Seide, F.,
Germann, U., Fikri Aji, A., Bogoychev, N., Martins,
A. F. T., and Birch, A. (2018). Marian: Fast neu-
ral machine translation in C++. In Proceedings of
ACL 2018, System Demonstrations, pages 116–121,
Melbourne, Australia, July. Association for Compu-
tational Linguistics.

Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization.

Ma, E. (2019). Nlp augmentation.
https://github.com/makcedward/nlpaug.

Mubarak, H., Hassan, S., and Chowdhury, S. A.
(2022). Emojis as anchors to detect arabic offensive
language and hate speech.

Takase, S., Suzuki, J., and Nagata, M. (2019). Char-
acter n-gram embeddings to improve rnn language
models.


	Introduction
	Data & Task Description
	Data
	Shared Sub-tasks
	Subtask A: Offensive Speech Detection
	Subtask B: Hate Speech Detection
	Subtask C: Hate Speech Detection


	Approach
	Preprocessing
	Textual Pre-processing
	Emoji Pre-processing

	Data Augmentation
	Semi-Supervised Learning
	Contextual Augmentation based on Semantic Similarity

	System Overview
	Models
	AraBERTv0.2-Twitter-large
	Mazajak Pre-trained Embeddings
	Character + Word level N-gram TF-IDF Embeddings
	MUSE
	Emoji Score


	Model Evaluation
	Dev Set Results
	Results Discussion
	Error Analysis

	Test Set Results

	Challenges & Future Directions
	Bibliographical References

