
Proceedings of the OSACT 2022 Workshop @LREC2022, pages 154–161
Marseille, 20 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

154

TCE∗ at Qur’an QA 2022:
Arabic Language Question Answering Over Holy Qur’an Using a

Post-Processed Ensemble of BERT-based Models

Mohammed ElKomy, Amany M. Sarhan
Computer and Control Engineering Department, Faculty of Engineering, Tanta University.

{mohammed.a.elkomy, amany sarhan}@f-eng.tanta.edu.eg

Abstract
In recent years, we witnessed great progress in different tasks of natural language understanding using machine learning.
Question answering is one of these tasks which is used by search engines and social media platforms for improved user
experience. Arabic is the language of the Holy Qur’an; the sacred text for 1.8 billion people across the world. Arabic is a
challenging language for Natural Language Processing (NLP) due to its complex structures. In this article, we describe our
attempts at OSACT5 Qur’an QA 2022 Shared Task, which is a question answering challenge on the Holy Qur’an in Arabic.
We propose an ensemble learning model based on Arabic variants of BERT models. In addition, we perform post-processing
to enhance the model predictions. Our system achieves a Partial Reciprocal Rank (pRR) score of 56.6% on the official test set.

Keywords: Natural Language Processing, Extractive Question Answering, Holy Qur’an Computational Linguistics, Arabic
SharedTask, Ensemble Bert

1. Introduction

Nowadays, the web and social media are integral parts
of our modern digital life as they are the main sources
of the unprecedented amounts of data we have. Thanks
to the breakthrough in deep learning, search engines
are no longer restricted to keyword matching; instead,
they are currently able to understand queries in natural
language and satisfy the intended information need of
users. Question Answering (QA) is an essential task
in information retrieval which is forming the basis for
the new frontier of search engines. Plenty of studies
on question answering systems has been performed on
English and other languages. However, very few at-
tempts have addressed the problem of Arabic question
answering (Alwaneen et al., 2022).
Arabic NLP research in question answering is partic-
ularly challenging due to the scarcity of resources and
the lack of processing tools available for Arabic. Ara-
bic language, as well, has some unique characteristics
by being a highly inflectional and derivational language
with complex morphological structures (Abdelnasser
et al., 2014). The Holy Qur’an is the sacred text for
Muslims around the globe and it is the main source for
teachings and legislation in Islam (Malhas and Elsayed,
2020), there are 114 chapters in Qur’an corresponding
to 6,236 verses, every verse consists of a sequence of
words in Classical Arabic (CA) dating back to 1400
years ago.
This paper describes our proposed solutions for
OSACT5 Qur’an QA 2022 shared task. The shared
task introduced QRCD (The Qur’anic Reading Com-
prehension Dataset), which is a dataset for extractive
question answering. First, we experimented with a va-
riety of Arabic pre-trained Bidirectional Encoder Rep-
resentations from Transformers (BERT) models, then

we implemented an Ensemble approach to get more
robust results from a mixture of experts (MOEs). Af-
ter that, we propose some post-processing operations
to enhance the quality of answers according to the of-
ficial evaluation measures. The task is evaluated as a
ranking task according to the Partial Reciprocal Rank
(pRR) metric.
The rest of this paper is organized as follows. In section
2, we describe the related work, in section 3, we out-
line the dataset details and official evaluation measures,
in section 4, we explain the system design and the im-
plementation details, in section 5, we report the system
evaluation results, and finally section 6 concludes the
paper. 1 2 *

2. Related Work
Question answering systems have been an active point
of research in recent years, particularly for highly-
resourced languages such as English. (Rajpurkar et
al., 2016) introduced SQuAD1.0 dataset which is a
widely used dataset for question answering in English.
To tackle the data scarcity in Arabic NLP, (Mozan-
nar et al., 2019) presented Arabic Reading Compre-
hension Dataset (ARCD) which consists of 1,395 ques-
tions posed by crowdworkers. Moreover, (Mozannar
et al., 2019) automatically translated SQuAD1.0 using
google translation services. Only a little attention has
been paid to question answering on Qur’an. (Abdel-

1The source code and trained models are available at
https://github.com/mohammed-elkomy/quran-qa.

2To enable fair comparison among the teams, the or-
ganizers only considered 238 examples for the official
test-split results and excluded 36 samples due to being
very similar to public splits.

*Tanta Computer Engineering

https://github.com/mohammed-elkomy/quran-qa


155

nasser et al., 2014) proposed a Support Vector Ma-
chine (SVM) question answering system with hand-
crafted features to extract answers from both Qur’an
and its interpretation books (Tafseer). Recent work by
(Malhas and Elsayed, 2020) introduced AyaTEC as the
first fully reusable test collection for Arabic QA on
the Holy Qur’an where questions are posed in Mod-
ern Standard Arabic (MSA) and their corresponding
answers are qur’anic verses in CA.

3. Dataset and Task Description
In this section, we describe QRCD (The Qur’anic
Reading Comprehension Dataset), the problem defini-
tion and official evaluation metrics of the Qur’an QA
2022 shared task of answering questions on the holy
Qur’an (Malhas et al., 2022b).

3.1. Dataset Details
The Qur’anic Reading Comprehension Dataset
(QRCD) (Malhas et al., 2022a) is the first large
scale question answering dataset on the holy Qur’an
text. It was introduced as a part of the Qur’an QA
2022 Shared Task for question answering (Malhas
et al., 2022a). The dataset consists of 1,093 tuples
of question-passage pairs that are coupled with
their extractive answers to constitute 1,337 question-
passage-answer triplets. The question-passage pairs
are split into training, development and testing sets
as shown in Table 1. The dataset follows the same
format as the commonly used reading comprehension
dataset SQuAD1.0 (Rajpurkar et al., 2016). However,
QRCD is quite different in terms of size as it is much
smaller than SQuAD1.0 which contains 100k unique
pairs/questions. In addition, unlike SQuAD, the
QCRD contains a small number of unique questions,
each of which is repeated multiple times with different
passage and answer pairs. As shown in Table 1, the
number of unique questions in QRCD is much lower
than the number of question-passage pairs. This
poses an additional challenge for learning a question
answering system which should be able to predict
different answers to the same question under different
passage contexts.

XXXXXXXXXXAspect
Split Train Dev Test

Question-passage pairs 710 109 2742

Unique questions 118 17 34

Table 1: Number of question-passage pairs and number
of unique questions in each split of QRCD dataset.

The QRCD dataset draws its inspiration from the prior
work AyaTEC by reformulating the test collection into
an extractive question answering task (Malhas et al.,
2022a). Each sample in QRCD is a question-passage-
answer triplet which comprises a question in MSA, a

passage taken from the Holy Qur’an 3 that spans one or
more consecutive verses, and an answer to the question
extracted from the passage. Figure 1 demonstrates an
example from the QRCD dataset4.

3.2. Qur’an QA Shared Task Description
The Qur’an QA 2022 shared task (Malhas et al., 2022a)
aims to develop models for extractive question answer-
ing on the holy Qur’an passages. Given a Qura’nic
passage and a question, the solution to the shared task
should extract the answer to the question from the in-
put passage. The answer always exists as a span within
the given passage. Questions could be either factoid or
non-factoid. Solutions to the shared task are required
to extract any correct answer to the input question from
the context passage even when the passage has more
than one answer.

3.3. Task Evaluation Measures
This question answering task is evaluated as a rank-
ing task. The QA system will return up to 5 poten-
tial answers ranked from the best to the worst accord-
ing to their probability of correctness. The task eval-
uation measure produces a higher score when the cor-
rect answer is ranked at a higher position. When the
correct answer is predicted among the 5 potential an-
swers but it is at a lower rank, then the evaluation score
is discounted. The task adopts the partial Reciprocal
Rank (pRR) (Malhas and Elsayed, 2020) as the official
evaluation metric. Partial Reciprocal Rank (pRR) is
a variant of the Reciprocal Rank (RR) evaluation met-
ric which is a commonly used metric for ranking tasks.
Unlike Reciprocal Rank (RR), the partial Reciprocal
Rank (pRR) will give credit to systems that predict an-
swers with a partial inexact matching with the correct
answer. Equation 1 formally describes the pRR metric
evaluation for a ranked list of answers A, where mrk is
the partial matching score for the returned answer at the
kth rank, as k is taken to be equal to the rank position of
the first answer with a non-zero matching score. More
details can be found at (Malhas and Elsayed, 2020)
5.2.

pRR(A) =
mrk

k
; k = min {k | mrk > 0} (1)

In addition to the pRR scores, the task evaluation sys-
tem reports other metrics such as the Exact Match
(EM) and F1@1. The EM score is a binary measure
that will be equal to one when the top predicted answer
exactly matches the ground truth answer. The F1@1
metric measures the degree of token overlap between
the top predicted answer and any of the ground truth

3The Holy Qur’an is a very special classical Arabic
text revealed 1,400 years ago, making it extremely chal-
lenging for computational linguistics tasks.

4The verses from the Holy Qur’an in the dataset
come from the simple-clean text style (diacritics re-
moved) from Tanzil Project.

http://tanzil.net/


156

Figure 1: An example of question-passage-answer triplet from QRCD (Malhas et al., 2022a).

answers. Scores computed from individual passage-
question-answer triplets are averaged to compute the
overall score over the entire evaluation dataset.

4. QA System Design
Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019) mod-
els achieve state-of-the-art results in many natural
language understanding problems. Our solution is
an ensemble of BERT based models pre-trained on
Arabic language corpora and fine-tuned on the shared
task dataset. We built an ensemble that merges predic-
tions from individual models. Additionally, we also
designed and implemented a set of post-processing
operations that aim to improve the quality of predicted
answers and boost the task evaluation measure. In
this section, we describe our QA system developed
to solve the Qur’an QA 2022 challenge. First, we
give a brief background on BERT models and their
usage for question answering tasks. Then we provide
an overview of Arabic language BERT models that
we used to build our ensemble. Finally, we provide
the details of our ensemble building approach and
the proposed post-processing operations to improve
predicted answers quality.

4.1. BERT for Question Answering
4.1.1. BERT
BERT models achieve their state-of-the-art perfor-
mance due to a procedure called pre-training which
allows BERT to discover the language structures and
patterns. BERT uses two pre-training tasks, namely
masked language model (MLM) and next sentence pre-
diction (NSP) (Devlin et al., 2019). After that, a second
stage called fine-tuning, which is performed to adapt
the model for a downstream task by making use of the
features learnt during the pre-training phase.

4.1.2. Question Answering using BERT
As mentioned in 4.1.1, the fine-tuning phase takes a
pre-trained model and stacks a randomly-initialized
output layer suitable for a particular downstream task.
For extractive question answering, both the question
and passage are tokenized and packed into a single se-

quence and the output layer is required to give a prob-
ability for the ith token in the passage to be the start
of the answer span Pi using the dot product of a start
vector S and the ith token’s hidden representation Ti

as seen from equation 2, a similar analysis holds for
the end of the answer span with an end vector E. The
score of a candidate’s answer span from the ith token
to the jth token is defined in Equation 3. Answers are
only accepted for j ≥ i since the two probability distri-
butions are independent and not guaranteed to produce
a valid span (Devlin et al., 2019). S and E are trainable
weights and randomly initialized layers stacked on top
of pre-trained BERT. In our case the system is not lim-
ited to just one answer as in SQuAD1.0 (Rajpurkar et
al., 2016), instead, a ranked list of 20 answers is gen-
erated from the model and ranked based on the span
score as in Equation 3.

Pi =
eS·Ti∑
j e

S·Tj
(2)

Spani,j = STi + ETj (3)

4.2. Arabic variants of BERT model
The standard BERT model variants are not pre-trained
on Arabic text which hinders the development of Ara-
bic NLP. Nevertheless, various researchers working on
the Arabic natural language understanding have devel-
oped variants of BERT models that were trained on
Arabic corpora. We made use of those models, which
are discussed later in this section, to build our ensem-
ble.

4.2.1. AraBERT
The work by (Antoun et al., 2020) introduced
AraBERT model which inherits the exact same archi-
tecture from BERT. However, being pre-trained on a
large Arabic corpus of 24GB of text collected from
news articles and Wikipedia dumps. In this work, we
use bert-large-arabertv02 and bert-base-arabertv02
available on the huggingface community (Wolf et al.,
2019).

4.2.2. QARiB
QARiB (Abdelali et al., 2021) is another Arabic BERT
variant pretrained on a mixture of formal and informal



157

Arabic with state-of-the-art support for Arabic dialects
and social media text, (Abdelali et al., 2021) released 5
BERT models to the community pre-trained on corpora
of different sizes.

4.2.3. ARBERT and MARBERT
ARBERT and MARBERT (Abdul-Mageed et al.,
2021) are two Arabic-specific Transformer-based
MLM pre-trained on a widely large Modern Standard
Arabic (MSA) corpus of 61GB of text for the case of
ARBERT, while MARBERT is pre-trained on 128GB
of text focused on both dialectal Arabic (DA) and
MSA.

4.3. Training Details
We fine-tune a set of five Arabic BERT models as men-
tioned in 4.2, namely AraBERT-v02Large

5, AraBERT-
v02Base, QARiBBase, ARBERT and MARBERT 6.
The training objective is to maximize the log-
likelihoods of the correct start and end token posi-
tions (Devlin et al., 2019). For the development phase,
we train BERTBase and BERTLarge for 50 and 65 epochs
respectively, looking for the epoch at which the model
performs best on the validation split. For the test phase,
we train BERTBase and BERTLarge for 32 and 40 respec-
tively. We used a batch size of 8 for BERTLarge and 16
for BERTBase and a learning rate of 2e-5 for all of our
models.

4.4. Span Voting Ensemble
In this work, we build an ensemble from several differ-
ent Arabic BERT models that we discussed earlier in
4.3. The ensemble approach is effective for cancelling
the noise exhibited by individual models through ma-
jority voting among experts. i.e. Mixture of Experts
(MOE). We treat the answer spans as discrete entities.
For each sample, we consider the top 20 predictions
made by each model along with its correctness proba-
bility. For each candidate prediction, we compute the
sum of its associated correctness probabilities from all
models. We formulate the voting process as follows.

αs,e =

M∑
j=0

αj
s,e

Where αs,e represents the summed ensemble correct-
ness probability for the answer span starting at token s
and ending at token e, and αj

s,e represents the correct-
ness probability for the same answer span for the jth

expert of the M experts taken into account.
After that, the set of all possible answers considered
by the ensemble is sorted according to their summed
ensemble correctness probabilities. Finally, the entire
ranked list is post-processed and truncated for only the
top 5 answers to be evaluated by pRR@5.

5A subscript Large and Base refers to the model size.
6ARBERT and MARBERT uses BERTBase architec-

ture.

4.5. Post-processing

By carefully reviewing the answer spans predicted by
the BERT models we fine-tuned, we found some sys-
tematic errors causing sub-optimal predictions. Here
we propose some basic post-processing rules to im-
prove the model predictions. The post-processing
pipeline takes a ranked list of answer spans, it typically
takes at least 20 answer spans from a single model or
the span-voting ensemble. Figure 2 provides an illus-
trative example of the post-processing pipeline. Due to
the limited space, we only consider the top 15 answer
spans from the original system outputs.

4.5.1. Handling Sub-words

Before feeding the input to BERT, it must undergo the
tokenization step. Tokenization is the process of split-
ting a sentence into tokens. For BERT, WordPiece tok-
enizer is commonly used as a subword tokenizer. This
makes the system susceptible to producing an output
with incomplete words like ” ÐPA 	ª Ë @ð H. A

�
Q̄ Ë @ ú




	
¯ð”

which will be penalized by the evaluation process, we
perform a simple post-processing rule to extend or
drop tokens such that we do not have broken words
and this simple rule produces a corresponding output
” 	á�
ÓPA

	
ªË @ð H. A

�
Q̄Ë @ ú




	
¯ð”, for the previously mentioned

example. In Figure 2, we dropped the sub-token ” 	
àð”

at rank 12 which is part of ” 	
àñËA

	
JK
”.

4.5.2. Redundancy Elimination

We analyzed the predictions of a variety of our fine-
tuned models and discovered that most of the answer
spans are highly overlapping with each other, making
the ranked list suboptimal with respect to the pRR met-
ric in 3.3. The rationale behind this is, the pRR metric
only considers the (k+1)th prediction when there is no
overlap with any of the ground-truth answer tokens for
the kth prediction, This implies repeating any of the
words from the kth prediction in the (k+1)th prediction
is suboptimal, which is a common behaviour exhibited
by BERT for QA. Here we present algorithm 1 which
ensures the elimination of span overlap among the an-
swers of a ranked list returned by the system. An il-
lustrative example showing the predictions before and
after the application of this rule is given in Figure 2, the
colours used for highlighting text depict the high over-
lap between unprocessed answers, it clearly shows the
span ” �

é
	
J K
Y ÖÏ @ Éë


B

	
àA¿ A Ó” is common in the first

few unprocessed answers. After applying this rule, the
ranked list after post-processing better covers the text



158

Figure 2: A comprehensive example for post-processing. Here we present the outputs of the system before post-
processing (original outputs) on the right and after post-processing on the left. We used green to highlight the
ground truth answer or parts of it extracted by the system. Words and sub-words marked by red are dropped
according to the rules 4.5.1 and 4.5.3. Other colours used for highlighting text depict the high overlap among the
predictions before post-processing.

in the passage and the pRR score increases from 0.048
to 0.769 after post-processing. Figure 3 shows the dis-
tribution of the per-sample pRR score before and after
post-processing, the percentage of development sam-
ples of the first two bins after post-processing is re-

duced, which means we are less observing completely
wrong answers after post-processing.

4.5.3. Uninformative Answer Removal
In this post-processing rule, we remove the uninfor-
mative answers from the ranked list, We define an



159

Algorithm 1 Redundancy Elimination Algorithm
Input: P , passage text; A, input answers list.
Output: post-processed answers list.
NP ← Number of words in P .
Mseen ← 0NP

▷ Initialized to Zero
▷ The mask used to track seen words

Apost ←: [] ▷ Output Initialized to an empty list

for each a in A do
s← get start-word index of span a.
e← get end-word index of span a.
aseen←Mseen[s:e]

▷ Get seen slice of answer span a
if aseen has any zero then

▷ at least a word is not seen,
▷ marked by 1 in aseen

a unseen of P ← get unseen seqs(aseen,P )
▷ brings unseen contiguous sequences of words.

for each sequnseen in a unseen of P do
▷ sequnseen is a subsequence of words
▷ with aseen consisting of only zeros

sunseen ← start-word index of sequnseen.
eunseen ← end-word index of sequnseen.
seqtext ← text spanned by sequnseen.
Mseen[sunseen: eunseen] = 1

▷ Mark tokens as seen
Apost = Apost ⌣ seqtext

▷ Append this unseen part of answer span a
end for

end if
end for

uninformative answer as having one of the follow-
ing conditions:

1. All of the stemmed answer tokens exist in the
stemmed question tokens, for example, a ques-
tion like ”? Ðñ�¯ 	QË @ �

èQm.
�
�
� ù


ë AÓ” with a complete

answer span predicted by the system ” Ðñ �¯ 	Q Ë @”
is considered an uninformative answer.

2. The whole answer span consists of stop-words,
which can never meet the information need
of a question in QRCD, for example, answer
spans like ” @ 	X @”, ”��
 Ë”, ” Õç�'” are considered
uninformative answers.

Uninformative answers come from two sources,
first, the original output of the BERT model with-
out post-processing and second, the post-processed
outputs after removing redundant tokens as in 4.5.2.
For the example in Figure 2, the answer at rank 1

” AÓ” is rejected due to being uninformative.

4.5.4. Updating the Ranked List
After performing the post-processing pipeline de-
scribed in 4.5.2, 4.5.3 and 4.5.1 in order, we may
end up with a new ranked list with more than 5
answer spans, we only consider the top 5 answer
spans in the post-processed ranked list for the met-
ric evaluation (pRR@5).

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

Original Predictions
Post-processed predictions

Per-sample pRR score

Pe
rc

en
ta

ge
 o

f e
va

l s
pl

it

Figure 3: The post-processing impact on the per-
sample pRR score distribution, for this plot, we
used the ouputs of the models marked with † in
Table 2.

5. Experimental Evaluation
In this section, we report our trained models’ re-
sults along with the official scores and run details
on the Codalab competition.

5.1. Development Phase
In this phase, we did not have access to the test
dataset. We trained our models on the training
set as in 4.3 while only saving the best perform-
ing model on the validation split. We observed a
large variation (around ±3%) in the pRR score re-
ported for the same starting checkpoint with differ-
ent seeds, we relate this to the small size of the
validation split. To enable fair comparison, we aver-
age the reported scores for the same model trained
multiple times with different seeds as shown in Ta-
ble 2. For the ensemble method, we considered
15 checkpoints with different seeds for each of
AraBERT-v02Large, AraBERT-v02Base and ARBERT
(marked with † in the table), adding up to 45 ex-
perts, labelled as EnsembleVanilla in Table 2. Af-
ter that, we performed the post-processing step on
the ensemble outputs referred to as EnsemblePOST
in Table 2. Also from the table, QARiBBase and
MARBERT are performing worse on average, be-
cause of being primarily targeted for dialectal Ara-
bic and social media text.



160

Single Models EM (%) F1 (%) pRR (%)
†arabertv02Large 37.2 59.0 61.7
†arabertv02Base 36.5 58.5 60.7
†ARBERT 37.3 58.7 60.9
MARBERT 32.1 51.5 53.9
QARiBBase 25.9 45.3 48.1

Ensemble EM (%) F1 (%) pRR (%)
EnsembleVanilla 39.4 59.4 63.97
EnsemblePOST 38.5 59.4 65.22

Table 2: QRCD development split results, reported metrics for single models are averaged for a number
of model checkpoints trained with different seeds, while for the ensemble case, it is a single instance pro-
duced from combining different checkpoints. EnsembleVanilla refers to combining 45 checkpoints of models
indicated by † (15 for each). EnsemblePOST represents the EnsembleVanilla output after post-processing.

Run ID EM (%) F1 (%) pRR (%)
Ensemblekeep 26.8 48.5 55.7
Ensembleremove 26.8 50.0 56.6

Table 3: Test phase official results on QRCD dataset, Each ensemble reported is a span-voting ensemble
combining all models in Table 4. ”keep” subscript refers to keeping uninformative answer spans as dis-
cussed in 4.5.3, on the other hand, ”remove” subscript points to removing uninformative answer spans.

5.2. Competition Final Testing Phase
During the competition’s final testing phase, we had
access to the test dataset without labels, and par-
ticipants were required to submit at most 3 sub-
missions produced by their proposed systems. We
trained our models on both the training and devel-
opment datasets as in 4.3. The trained models were
combined in an ensemble as discussed in 4.4, then
we performed the post-processing. Table 4 shows
the number of models used as experts for span-
voting ensemble in the test phase. In Table 3, we
outline the official results obtained for our submis-
sions. All of them are ensemble-based due to the
significant variations we observed in the develop-
ment phase. Combining all of the models in Ta-
ble 4 followed by post-processing the output pre-
dictions with uninformative span removal performs
best, this is marked in the table as Ensembleremove.
There is a significant gap between the results in the
development and test phases as in tables 2 and 3 re-
spectively, we relate this to the small size of the val-
idation split against the test split, another reason is
excluding 36 samples from the test split since their
questions were similar to the public splits as indicated
by the organizers in the official test phase results.

6. Conclusion and Future Work
In this work, we leveraged the pre-trained Arabic lan-
guage models to solve the Qur’an QA 2022 Shared
Task. We fine-tuned a variety of BERT models op-
timized for the Arabic language. We proposed some
post-processing operations to enhance the quality of

Models Num
arabertv02Large 16
arabertv02Base 18
ARBERT 17

Table 4: Number of models involved in the final en-
semble of the test phase.

answers aligning with the official measure. Ensemble-
based approaches are effective to produce more ro-
bust predictions. In the future, we will further study
how to incorporate a stacking ensemble approach with
multiple stages to achieve better performance rather
than a voting ensemble as used in this study. We
will also investigate why we observed huge variations
in the reported results by performing extensive cross-
validation.

7. Acknowledgements
We appreciate the efforts and assistance of Dr Moustafa
Alzantot regarding the paper-writing phase, and recom-
mendations during the implementation.

8. Bibliographical References
Abdelali, A., Hassan, S., Mubarak, H., Darwish, K.,

and Samih, Y. (2021). Pre-training bert on arabic
tweets: Practical considerations.

Abdelnasser, H., Ragab, M., Mohamed, R., Mohamed,
A., Farouk, B., El-Makky, N., and Torki, M. (2014).
Al-bayan: An Arabic question answering system for
the holy quran. In Proceedings of the EMNLP 2014



161

Workshop on Arabic Natural Language Processing
(ANLP), pages 57–64, Doha, Qatar, October. Asso-
ciation for Computational Linguistics.

Abdul-Mageed, M., Elmadany, A., and Nagoudi, E.
M. B. (2021). ARBERT & MARBERT: Deep bidi-
rectional transformers for Arabic. In Proceedings of
the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 7088–7105, Online,
August. Association for Computational Linguistics.

Alwaneen, T. H., Azmi, A. M., Aboalsamh, H. A.,
Cambria, E., and Hussain, A. (2022). Arabic ques-
tion answering system: a survey. Artificial Intelli-
gence Review, 55(1):207–253, Jan.

Antoun, W., Baly, F., and Hajj, H. (2020). AraBERT:
Transformer-based model for Arabic language un-
derstanding. In Proceedings of the 4th Workshop on
Open-Source Arabic Corpora and Processing Tools,
with a Shared Task on Offensive Language Detec-
tion, pages 9–15, Marseille, France, May. European
Language Resource Association.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova,
K. (2019). BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4171–
4186, Minneapolis, Minnesota, June. Association
for Computational Linguistics.

Malhas, R. and Elsayed, T. (2020). Ayatec: Build-
ing a reusable verse-based test collection for arabic
question answering on the holy qur’an. ACM Trans.
Asian Low-Resour. Lang. Inf. Process., 19(6), oct.

Malhas, R., Mansour, W., and Elsayed, T. (2022a).
Qur’an QA 2022: Overview of the first shared task
on question answering over the holy qur’an. In Pro-
ceedings of the 5th Workshop on Open-Source Ara-
bic Corpora and Processing Tools (OSACT5) at the
13th Language Resources and Evaluation Confer-
ence (LREC 2022).

Malhas, R., Mansour, W., and Elsayed, T. (2022b).
Qur’an qa 2022 shared task. https://gitlab.
com/bigirqu/quranqa.

Mozannar, H., Maamary, E., El Hajal, K., and Hajj,
H. (2019). Neural Arabic question answering. In
Proceedings of the Fourth Arabic Natural Language
Processing Workshop, pages 108–118, Florence,
Italy, August. Association for Computational Lin-
guistics.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P.
(2016). SQuAD: 100,000+ questions for machine
comprehension of text. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2383–2392, Austin, Texas,
November. Association for Computational Linguis-
tics.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtow-
icz, M., and Brew, J. (2019). Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. CoRR, abs/1910.03771.

https://gitlab.com/bigirqu/quranqa
https://gitlab.com/bigirqu/quranqa

	Introduction
	Related Work
	Dataset and Task Description
	Dataset Details 
	Qur’an QA Shared Task Description
	Task Evaluation Measures

	QA System Design
	BERT for Question Answering
	BERT
	Question Answering using BERT

	Arabic variants of BERT model
	AraBERT
	QARiB
	ARBERT and MARBERT

	Training Details
	Span Voting Ensemble
	Post-processing
	Handling Sub-words
	Redundancy Elimination
	Uninformative Answer Removal
	Updating the Ranked List


	Experimental Evaluation
	Development Phase
	Competition Final Testing Phase

	Conclusion and Future Work
	Acknowledgements
	Bibliographical References

