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Abstract
We propose a fully Bayesian framework for learning ground truth labels from noisy annotators. Our framework ensures
scalability by factoring a generative, Bayesian soft clustering model over label distributions into the classic David and Skene
joint annotator-data model. Earlier research along these lines has neither fully incorporated label distributions nor explored
clustering by annotators only or data only. Our framework incorporates all of these properties within a graphical model
designed to provide better ground truth estimates of annotator responses as input to any black box supervised learning
algorithm. We conduct supervised learning experiments with variations of our models and compare them to the performance
of several baseline models.
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1. Introduction
The recent interest in few- and zero-shot learning as
well as the re-emergence of weakly supervised learn-
ing speaks to the reality that ground truth labels are a
limited resource and that, in many common situations,
obtaining them remains a major challenge. Multiple
sources estimate the global costs of human annotators
(only one of many sources of labels) to be approaching
$1–3 billion by 2026 and growing (Metz, 2019; Re-
search, 2020). Among the key cost-driving challenges
is the noise that is associated with many of the most
common processes for obtaining labels.
In this paper, we explore a novel graphical model that
ties together two rather successful approaches, item-
annotators tableaus (Dawid and Skene, 1979) and la-
bel distribution learning (LDL) (Geng, 2016), based
on converging studies in later research (Venanzi et al.,
2014; Liu et al., 2019a) on the use of clustering to
boost the signal of noisy data. We adopt a theoreti-
cal framework motivated by the anthropologist Mali-
nowski (Malinowski, 1967) and first used by Aroyo
and Welty (Aroyo and Welty, 2014) in the context of
machine learning to characterize meaning as a func-
tion of three components: 1) an act (represented by the
learning task), 2) the symbols (the labels), and, 3) the
referent (the annotators). Human labeling is a special
challenge not only due to its great expense but also due
to the fact that humans often disagree over the labels
that they provide. In fact, it is precisely the problems
where disagreement is most common that human input
is hardest to replace through automation or sensing.
This paper specifically addresses the following ques-
tion: do predictive graphical models for LDL that clus-
ter on both item AND annotator distributions outper-
form those that do not? To help us answer this question,
we contribute a generative graphical model that boosts
conventional label distribution learning by clustering

label distributions jointly in item and annotator label
distribution spaces. Previous approaches have studied
clustering in one space or the other. This is, to our
knowledge, the first time that clustering has been ap-
plied simultaneously to both.
We evaluate the improved labels produced by our
model with a downstream CNN-based classification 1.
We view this work as a universally applicable frame-
work for any learning task where annotators are in-
volved (Gordon et al., 2022).

2. Problem Statement
LetX be an M -element collection of (unlabeled) data
items and Y ∈ NM×N be a matrix of annotator la-
bels for some N , where each row of Y corresponds
to a data item and each column to an annotator. Ide-
ally, we would regard each entry Y m,n as a probability
distribution over a set of labels {1, . . . , P} for some
fixed P , where the distribution represents uncertainty
about what label annotator n would provide to item m.
Here, however, we simplify the model under the as-
sumption that each annotator either provides a single
label or none at all.
For our purposes, Y is a sparse matrix, where Y m,n ∈
{0, . . . , P} and Y m,n = 0 indicates that annotator
n did not label item m. Crucially, we assume that
each annotator could label the item if asked; how-
ever, we have no information about that particular an-
notator. Since this is a sparse matrix, it is conve-
nient to simply let A = {(m,n) | Y m,n ̸= 0} and
Ap = {(m,n) | Y m,n = p}.
We consider two gold standards: fdist and fmax, de-
fined for data item Xm as fdist(Xm) =def P(p =
Ym,n | m,Ym,n > 0), for m,n chosen uniformly

1The experimental code available through https://
github.com/Homan-Lab/ldl-pgm

https://github.com/Homan-Lab/ldl-pgm
https://github.com/Homan-Lab/ldl-pgm


96

Figure 1: This workflow diagram shows the dual roles of the graphical model hG, as the output of a supervised
learning process U on the training labels. This model is used to improve the ground truth estimations Y ′ of the gold
standard training label distributionsY train for supervised learning S and, once hraw is learned, as a post-processing
step after prediction to generate final hypotheses hdist and hmax. Evaluation metrics include the accuracy on the
most likely label for single label prediction hmax and the KL divergence for label distribution learning hdist.

Figure 2: Plate diagram for the proposed probabilistic generative graphical model.

at random and fmax(Xm) =def argmaxp P(p =
Ym,n | m,Ym,n > 0). In other words, fdist(Xm) rep-
resents the gold standard label distribution associated
with each data item and fmax is the gold standard sin-
gle label that is most likely according to fdist. Note
that fmax is more commonly used than fdist.
Our learning goals, then, are to produce hypotheses
hdist and hmax that approximate fdist and fmax, re-
spectively, given X and Y . Most learning settings
tacitly assume that annotator disagreement is a sign
of noise or error and ignore ddist entirely. Label dis-
tribution learning does the opposite: it assumes that
annotator disagreement is meaningful and specifically
seeks to minimize the loss between hdist and fdist.
Obviously, both approaches rely on extreme assump-
tions that, in practice, are never entirely true. How-
ever, research has shown that even when fmax is the
goal, learning hdist and then taking hmax(Xm) =def

argmaxp P(hdist(Xm) = p) often provides better re-
sults than learning hmax directly (Venanzi et al., 2014;
Liu et al., 2019a; Weerasooriya et al., 2020), and this is
what we do here.

3. The Probabilistic Graphical Model
We call fdist and fmax gold standards, not ground
truths, because of the sparseness of Y . Although sev-

eral researchers have shown that, for the purpose of
estimating fmax, three to ten annotators is sufficient
(Callison-Burch, 2009; Denkowski and Lavie, 2010),
those numbers are far too small to provide reliable sam-
ples of the true distributions of annotator opinions. In
this section, we introduce a new graphical model that
estimates the ground truth label distribution, i.e., the
distribution of labels from the entire population of an-
notators, of each item (which we normally do not have).
This model is based on the assumptions that: (1) all
data items (respectively, annotators) are drawn from
one of K (respectively, L) latent classes2 or clusters,
(2) the label distribution for each item is strictly a func-
tion of the cluster to which it belongs, (3) the sample
of labels given for each item is strictly a function of
the distribution of the cluster to which each annotator
belongs, and (4) the items and annotators are identi-
cally and independently sampled (i.i.d.) and matched
uniformly at random.
We then use the graphical model hG to guide super-
vised learning as a means of data regularization (see

2Hereafter, to reduce confusion, we reserve “class” to re-
fer only to the different label choices, as they typically repre-
sent an observable class to which the data item belongs, even
though the idea of labels as indivisible classes runs contrary
to the spirit of LDL.
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Algorithm 1 The generative process for hG.
1: Input: Integers K, L, M , N , and P ; Dirichlet

hyperparameters α ∈ RP , γ ∈ RK , and τ ∈ RL,
assignments A ⊆ {1, . . .M} × {1, . . . N}

2: function GENGRAPH(K, L, M , N , P , α, γ, τ )
3: Choose Θ ∼ DirP (α)

K×L, ▷ One distribution
for each item/annotator cluster pair (k, l)

4: Choose ψ ∼ DirK(γ), ▷ Distribution of item
clusters

5: Choose Ω ∼ DirL(τ), ▷ Distribution of
annotator clusters

6: Choose w ∼ CatK(ψ)M , ▷ Assign one latent
cluster to each item

7: Choose z ∼ CatL(Ω)N , ▷ Assign one latent
cluster to each annotator

8: Choose Y ∼×(m,n)∈A
CatP (Θwm,zn

). ▷

Assign labels according to each annotator, item as-
signment

Figure 1). We first use it as a preprocessing step to
supervised learning on our label matrix Y , by reas-
signing to each input m the generating distribution of
the most likely item cluster. Note that any supervised
learning method can work as the target so long as it
can use a distribution of labels and the supervising sig-
nal. For instance, in our experiments (see Section 4) we
use a combination of deep language models and simple
dense networks. Next, after the predictive model hdist

is learned, we post-process each prediction by snapping
each output hdist(Xm) to the most likely item cluster.
Algorithm 1 describes the model from a generative per-
spective (see also Figure 2). In addition to the num-
bers of item and annotator clusters K and L, the model
takes three hyperparameters, α ∈ RP (recall that P is
the number of label classes), γ ∈ RK , and τ ∈ RL,
each of which represents a Dirichlet prior on a cate-
gorical distribution. It produces Θk,l (the label dis-
tribution for each item cluster k and annotator clus-
ter l), ψ (the marginal class distribution of items), and
Ω (the marginal class distribution of annotators). wn

is the hidden/latent variable representing the class of
item m and zn is the hidden variable representing the
class of annotator n. Each of these objects is a cat-
egorical distribution, and so, for convenience, we use
subscripts to indicate individual categorical probabil-
ities, e.g., Θk,l,p = P(The category is p) and Ωl =
P(The category is l).
Note that our distributions are conditioned on A, i.e.,
we always know beforehand which annotators are as-
signed to which items. Unfortunately, the coupling
between items and annotators makes exact inference
hard and even resistant to variational approximation.
It is, however, relatively easy to perform simulated an-
nealing over the parameters Θ, ψ, Ω and latent vari-
ables w, as well as z. In addition, we may also em-
ploy expectation-maximization (EM), specifically us-
ing belief propagation to estimate the probability dis-

# annotators # label mean # of
dataset per item classes entropy annotators

JQ1 10 5 0.746 1185
JQ2 10 5 0.586 1185
JQ3 10 12 0.993 1185

Table 1: Summary of datasets on which we conduct our
experiments. Each of these contain 2000 items.

tributions ofw and z during the expectation phase. We
explore both learning algorithms here.
We now describe, in more detail, how we use
the model. We partition our data into training
(Xtrain,Y train), development (Xdev,Y dev), and test
(Xtest,Y test) splits. During training, we first ap-
ply one of our two unsupervised learning algorithms
hG = U(Y train) to learn a graphical model hG =
(Θ,ψ,Ω,w, z) from Y train. Note that this provides
estimates w of the latent item cluster to which each
item belongs (simulated annealing provides a hard
clustering while EM provides a soft clustering, but with
EM we consider only the most likely cluster). Then,
before supervised learning, we replace row Y test,m

with the marginal label distribution associated with
item cluster wm,

Y ′
m =

∑
l

ΩlΘwml, (1)

and perform supervised learning hraw =
S(Xtrain,Y

′), yielding a raw label distribution
learning predictor. Note that Y ′ is not a matrix of an-
notator labels, as Y train is, but a vector of probability
distributions over labels.
For inference after training (i.e., we do not perform
this step during training), for any input x we project
the output of hraw(x) onto our graphical model hG to
predict the item cluster membership of item x, i.e., let
w(x) denote a random variable for the item cluster as-
signment of x. Then, we do the following:

P(w(x) = k) ∼
∑
l

ψkΩlP (hraw(x) ∼ CatP (Θk,l))

(2)

We then assign to x the item cluster
argmaxk P(w(x) = k), using Equation (1)
to compute hdist(x) and define hmax(x) =def

argmaxp P (hdist(x) = p).

4. Experiments
4.1. Data
We conducted our experiments on publicly available
human-annotated datasets. Each dataset consists of
2000 social media posts and employs a 50/25/25 per-
cent for the train/dev/test split.
Liu et al. (Liu et al., 2016)3 asked five annotators each
from MTurk and FigureEight to label work-related

3https://github.com/Homan-Lab/pldl_
data

https://github.com/Homan-Lab/pldl_data
https://github.com/Homan-Lab/pldl_data
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Dataset CNN MM + CNN DS + CNN CL PGM (Annealing) PGM (BP)
KL-Divergence ↓

JQ1 1.092±0.004 0.460±0.001 1.042 ± 0.005 2.077 ± 0.003 0.652±0.005 0.538±0.010
JQ2 1.088±0.003 0.514±0.002 1.035 ± 0.003 1.695 ± 0.003 0.884±0.004 0.624±0.017
JQ3 1.462±0.004 0.888±0.001 3.197 ± 0.034 3.862 ± 0.001 1.201±0.005 0.951±0.016

Accuracy ↑
JQ1 0.494±0.001 0.842 ± 0.001 0.684 ± 0.004 0.813 ± 0.005 0.730±0.000 0.727±0.007
JQ2 0.475±0.001 0.810 ± 0.002 0.658 ± 0.003 0.873 ± 0.003 0.579±0.041 0.663±0.013
JQ3 0.284±0.020 0.456 ± 0.010 0.061 ± 0.031 0.458 ± 0.005 0.290±0.002 0.250±0.007

Table 2: Experimental results for classification. New methods (PGM) using the development set for each dataset.
CNN is a baseline where only a CNN classifier is run.Predictions are compared against the empirical ground truth.

tweets according to three questions and associated mul-
tiple choice responses: point of view of the tweet (JQ1:
1st person, 2nd person, 3rd person, unclear, or not
job related), subject’s employment status (with 17 re-
sponse options).
We train and test on the following models:

CNN is a 1D convolutional neural network (Kim,
2014) with no unsupervised graphical model. It
contains three convolution/max pool layers fol-
lowed by a dropout and softmax layer, imple-
mented via TensorFlow (Abadi et al., 2015). We
used sentence embeddings from the pretrained
paraphrase-MiniLM-L6-v2 BERT model
(Reimers and Gurevych, 2019).

MM + CNN is the baseline model with the best-
performing graph-based model from (Weerasooriya et
al., 2020) used as a guiding model, in a manner anal-
ogous to the use of our graph model introduced earlier
in this paper. The main difference between their model
and ours is that it only performs item label distribution
clustering; there are no annotator clusters.

DS + CNN uses the label aggregation methods intro-
duced in DS (Dawid and Skene, 1979) and this is ulti-
mately paired with a CNN classifier.

CL (Rodrigues and Pereira, 2018) is a neural joint
modeling approach for modeling annotators and data
features. Crowd layer (CL) attaches to the output of any
network with a Q-dimensional output, i.e., a crowd-
layer, which has multiple, parallel, Q-dimensional,
new output layers, one for each annotator, and takes as
input the old output layer. This extended model trains
as a single, monolithic neural network. It then learns to
predict the labels of each annotator simultaneously.

PGM is our proposed Bayesian probabilistic model,
with the graph model introduced here for guidance. We
set all of the Dirichlet parameters, i.e., α, γ, and τ , to
2. We consider two different learning algorithms: sim-
ulated annealing (with temperature schedule T (t) =
1/(t+1)) and expectation maximization (EM) with be-
lief propagation.

For each of the the graphical models we performed
(meta-)parameter search on the number of item and an-

notator clusters K,L ∈ {3, . . . , 20} and report the re-
sults of the best performing model (validated on de-
velopment data). We evaluate these models using two
different metrics. To evaluate the label distribution pre-
diction, we report, over the test set, the mean KL di-
vergence between each gold standard label distribution
and the predicted label distribution KL(hdist(x)∥y).
To evaluate single label prediction, we report the ac-
curacy measured over the test set.

4.2. Results and Discussion
Table 2 shows the main results. We note that, with
respect to KL divergence, our PGM models perform
second-best, yielding better divergence than even the
powerful CL model (MM+CNN only outperforming
our BP/EM model by a bit). In terms of accuracy,
our PGMs, while outperforming the CNN lower-bound
baseline, do not unfortunately, according to this set of
experiments, outperform the other baseline approaches.
We suspect that our lower performance in terms of ac-
curacy might be related to some degree of overfitting
that we have, thus far, not been to control for.
Note that, in the case of all models (baselines and our
proposed PGM variants), the final supervised learning
classification phase was repeated 100 times (trained
and evaluated) to calculate the reported error bars.

Limitations. Although we directly compared our
models performance to those of (Weerasooriya et al.,
2020), which represented clustering in item label space
only, we did not perform head-to-head comparisons to
the model of (Venanzi et al., 2014), which represents
clustering in annotator label space only. This is due,
in part, to the fact that the data from their studies is no
longer being available. Nonetheless, we intend to run
their models on the data that we do have in our next
follow-up study.

5. Conclusion
In this work, we introduced a new graphical model for
improving the quality of annotator labels, both from the
perspective of the conventional problem of predicting
the most common label as well as the emerging prob-
lem of predicting the distribution of labels that have
been acquired/provided. Our methods combine label
distribution learning with clustering jointly in the item
and annotator label distribution spaces.
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