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Abstract
In this paper we examine a BiLSTM architecture for disambiguating verbal potentially idiomatic expressions (PIEs) as to
whether they are used in a literal or an idiomatic reading with respect to explainability of its decisions. Concretely, we extend
the BiLSTM with an additional attention mechanism and track the elements that get the highest attention. The goal is to better
understand which parts of an input sentence are particularly discriminative for the classifier’s decision, based on the assumption
that these elements receive a higher attention than others. In particular, we investigate POS tags and dependency relations to
PIE verbs for the tokens with the maximal attention. It turns out that the elements with maximal attention are oftentimes nouns
that are the subjects of the PIE verb. For longer sentences however (i.e., sentences containing, among others, more modifiers),
the highest attention word often stands in a modifying relation to the PIE components. This is particularly frequent for PIEs
classified as literal. Our study shows that an attention mechanism can contribute to the explainability of classification decisions
that depend on specific cues in the sentential context, as it is the case for PIE disambiguation.

Keywords: verbal idiomatic multi-word expressions, attention models, explainable AI

1. Introduction
Due to the success of the Transformer architecture
(Vaswani et al., 2017), attention is one of the most pop-
ular concepts in Deep Learning right now. In NLP,
BERT-based (Devlin et al., 2019) architectures are so
dominant, that it seems to have given rise to the new
field of ‘BERTology’ (Rogers et al., 2020; Søgaard,
2021), where researchers try to explore, what BERT
learns about language. But it is not only the perfor-
mance, which makes attention so popular, but also the
fact that it gives us a certain degree of explainability,
as attention weights potentially reveal what influences
a model the most during a decision. However, it is cur-
rently the subject of lively debate how great this poten-
tial actually is (cf. Section 2).
In this work, we use attention in order to gain some
insights into what contextualizing deep learning archi-
tectures are capable of learning when performing the
task of disambiguating potentially idiomatic expres-
sions (PIEs). PIE disambiguation is a subtask of multi
word expression (MWE) identification. PIEs are po-
tentially idiomatic, i.e., they can have a literal or an
idiomatic reading like rock the boat (‘cause trouble’):

(1) If you want that promotion, you should stop
rocking the boat. IDIOMATIC

(2) They rocked the boat and fell into the freezing
cold river. LITERAL

Example (1) shows a sentence containing an idiomatic
usage of the PIE type, i.e. an instance of the verbal id-
iom (VID) type, while (2) contains an instance of its
literal counterpart1. PIEs are challenging for NLP ap-

1The term PIE was coined by Haagsma et al. (2019) and
it allows to encompass the literal and idiomatic usage at the
same time.

plications, because it is not enough to map a string to a
certain VID type. To correctly disambiguate a PIE in-
stance we have to take the context into account as well
as its form, since VIDs are often subject to morhposyn-
tactic restrictions (e.g. kick the bucket is not readily
passivisable: *the bucket was kicked).

In this paper, we use an established architecture for
PIE disambiguation in German, based on Ehren et al.
(2020), and investigate which elements of the senten-
tial context of a PIE are crucial for deciding whether it
is literal or not. More concretely, we investigate syn-
tactic features and relations to the PIE components of
those elements that are particularly indicative for lit-
eralness and idiomaticity. To this end, we propose an
attention-based architecture capable of revealing which
part of the context has the strongest influence on the
model’s classification decisions. More concretely, we
stack an attention mechanism on top of the BiLSTM
architecture proposed by Ehren et al. (2020) (cf. Sec-
tion 4). Our architecture is applied to German verbal
idioms, using the data from Ehren et al. (2020) (cf. Sec-
tion 3). We opted for the former architecture instead of
a BERT-based one for the sake of simplicity, compara-
bility and greater transparency.

Our results, presented in Section 7, support the view
that attention can be leveraged to make neural-network
models more “explainable”, as we can statistically cor-
roborate our impression that the attention model often
puts its focus on tokens that seem to be most crucial
also for the human classifier. At the same time, the dif-
ficulties of the classifier with the peculiarities of the mi-
nority class becomes evident. To our knowledge, this
is the first study of its kind, particularly in the area of
idiom identification.
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2. Related Work
Attention-based models, especially BERT, have been
used in the task of PIE classification (as well as many
other NLP tasks) with considerable success, reaching
first places in shared tasks (Taslimipoor et al., 2020;
Pannach and Dönicke, 2021) or state-of-the-art results
on well established data sets (Fakharian and Cook,
2021). Following the success in this and other areas
of NLP, an interest in the more fine grained representa-
tional properties of these models has grown.
One way to shed more light on these models is to ex-
amine the resulting embeddings using cosine similar-
ity. This is, for example, done in Garcia et al. (2021)
for investigating the representation of compositionality
in nominal compounds. Looking at pretrained embed-
dings from several both contextualizing and static mod-
els, they compare embeddings of compounds with the
embeddings of their components, synonyms, and con-
texts by means of cosine similarity and find that pre-
trained contextualized models often do not distinguish
between compositional and idiomatic compounds.
Another approach that has recently attracted a great
deal of interest is to use the attention scores in
attention-based models such as BERT, and to analyse
the focus of attention when the model is classifying
input in a certain way. An early example of such an
analysis was already given by Bahdanau et al. (2016)
who were the first to apply attention to a machine trans-
lation task, and who employed two-dimensional at-
tentional heat maps to visualize the “non-monotonic”
alignments between tokens of source and target lan-
guage. Meanwhile, there are powerful interactive tools
such as BertViz (Vig, 2019) to vizualize the attention
scores of different heads and layers. At the same time,
however, there is an ongoing discussion to what ex-
tent attention scores are actually useful to explain the
decisions of contextualizing models (Jain and Wallace,
2019; Wiegreffe and Pinter, 2019; Bastings and Filip-
pova, 2020; Søgaard, 2021). For example, it has been
claimed by Jain and Wallace (2019) that “Attention is
not Explanation”. In a series of experiments on binary
text classification and question answering, using BiL-
STMs coupled with Bahdanau Attention, they found
only a weak correlation between attention weights and
other, gradient-based measures of feature importance.
Furthermore, they were able to find attention distri-
butions very different from the learned ones, which
nevertheless yielded nearly identical prediction scores.
From this, they conclude that attention does not provide
“faithful” explanations of a model’s decisions. Wiegr-
effe and Pinter (2019) reject the assumption that an at-
tention distribution needs to be exclusive to serve as
explanation. In addition, they show that even when
adversarial attention distributions can be found, they
do not perform as well on a simple diagnostic as their
learned counterparts. They conclude that explainability
depends on the definition and distinguish between plau-
sible and faithful explanations, with the former not be-

ing invalidated by the work of Jain and Wallace (2019).
We agree with Wiegreffe and Pinter (2019) that ex-
clusivity is not a prerequisite in order for an attention
distribution to serve as plausible explanation. Further-
more, like the two former works we will also use a
one-layered BiLSTM as an encoder, coupled with Bah-
danau attention, since Wiegreffe and Pinter (2019) es-
tablished that the hidden states can still act as faithful
representations of the input tokens, which is very im-
portant as we want to make claims about the influence
of the different inputs. It is not clear, if this also holds
for a very deep encoder like a BERT-based one. In this
work, we will be contributing to the question of the
usefulness of attention scores by applying a statistical
and introspective analysis of the main attention to the
classification of PIEs.

3. Data
We perform our experiments on the COLF-VID 1.0
(COrpus of Literal and Figurative meanings of Verbal
IDioms) data set (Ehren et al., 2020), which consists of
6985 sentences drawn from newspaper texts with ex-
amples of 34 German VID types. Every instance in
the corpus is annotated with one of the four labels ID-
IOMATIC, LITERAL, UNDECIDABLE or BOTH. Only
0.59% of the instances are given one of the latter two
labels, so basically we are dealing with a binary clas-
sification task. The distribution of the remaining two
labels is imbalanced as 77.55% of the instances are la-
beled as idiomatic, while only 21.86% are judged to be
literal. An example from COLF-VID 1.0 is shown in
(3):

(3) Bundesbahn
Federal railway

will
wants

die
the

Notbremse
emergency brake

ziehen.
pull.
‘Federal railway wants to pull the emergency
brake.’

It shows a usage case for the VID die Notbremse ziehen
(‘pull the emergency brake’⇒‘put an immediate hold
on something’) which is labeled as IDIOMATIC.
The data is split following Ehren et al. (2020): 70% of
the data are used for training, while 15% are used for
the dev and the test set, respectively. Since the num-
ber of instances per PIE types in COLF-VID is highly
skewed, we perform a balanced split, i.e. every split
contains the same ratio of instances per PIE type.
There exist a variety of similar PIE corpora that would
in principle be suitable for our proposed attention archi-
tecture, for example the MAGPIE corpus (Haagsma et
al., 2020). The main reason we choose COLF-VID 1.0
is its size and relatively low idiomaticity rate, and the
fact that it has been used in Ehren et al. (2020), which
our attention architecture builds on. We describe our
architecture in the next section.2

2Another corpus of verbal PIEs, which contains COLF-
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4. System
Our system is based on the BiLSTM+MLP classifier by
Ehren et al. (2020) enhanced with an attention mech-
anism similar to the one in Bahdanau et al. (2016).
Figure 1 shows the overall architecture together with
an example for the input (4):

(4) Das
The

Konzert
conert

fiel
fell

ins
into the

Wasser.
Water.

‘The concert was cancelled.’

In a first step shown at he bottom of Figure 1, the pre-
trained embeddings of the input tokens are fed into a
BiLSTM. The concatenated outputs of the forward and
backward LSTMs give us the contextualized version of
the input embeddings, which ideally should contain in-
formation about the relevant preceding and succeeding
elements in the token sequence. In Ehren et al. (2020),
the contextualized embeddings are then fed into a mul-
tilayer perceptron (MLP) to conduct PIE classification.
However, in our model, we add an attention mechanism
between the BiLSTM and the MLP.
When talking about attention mechanisms, the terms
keys, values and query – which all denote vectors – play
an important role. We can think of the query as the
vector representation of the question what the model
should pay attention to, while the keys are the poten-
tial candidates for receiving this attention. Since our
aim is to explore which tokens in the input sequence
the model focuses on the most during classification,
it makes sense to use the their contextualized embed-
dings. Keys and values are the same in our case. The
answer what should function as the query is less obvi-
ous as there exist numerous options. Because the PIE
instance is the anchor point for every classification de-
cision, we choose the average of the pretrained embed-
dings of the PIE’s components. Now we can compute
the attention scores based on the query and the keys.
Given a query q ∈ Rq and a key ki ∈ Rk we leverage
the following scoring function taken from Bahdanau et
al. (2016):

score(q, ki) = w⊤
v tanh(Wqq +Wkki) (1)

Here, ki is a key, and Wq ∈ Rh×q and Wk ∈ Rh×k rep-
resent linear transformations mapping k and q into the
same space before they are added together3. Then, the
resulting vector is put through the tanh function and is
multiplied with w⊤

v , so we receive a single score. After
we computed the attention score for every key ki we
apply softmax in order to obtain a probability distribu-
tion a0:n of attention weights over all input tokens.
With a0:n, we compute the weighted average for the
contextualized embeddings v0:n, which gives us the

VID, was used in a recent shared task at KONVENS (Ehren
et al., 2021).

3Note that k and q might already be in the same space if
the contextualizations and embeddings have the same dimen-
sionality.

context vector c that represent the context of a PIE in-
stance:

c =

n∑
i=0

aivi (2)

Note that all contextualized embeddings are included,
even the ones representing the PIE components, al-
though they do not really belong to the context, but
form the target expression itself. One could exclude
them by setting their scores to −∞, which would result
in their corresponding attention weights being set to
zero when fed into the softmax function (as done with
the padding tokens). But as addressed earlier, it might
not only be the context providing clues on the correct
reading, but also the PIE constituents themselves by ex-
hibiting morphosyntactic flexibility atypical for the re-
spective VID.
Finally, we concatenate c with q and feed it into a MLP
to compute the scores for the four classes. What we
expect in this example is that the contextualized repre-
sentation for the token Konzert receives the highest at-
tention and thus influences the context vector the most,
because it is the only token in the sentence that provides
information on the correct reading of the PIE instance.

5. Disambiguation experiments
Using the same hyperparameters as Ehren et al. (2020),
we train our model for 30 epochs with a batch size of
32 and employ fastText embeddings (Bojanowski et al.,
2016) with 300 dimensions as input. The hidden layers
of the LSTMs are of size 100 which give us contextu-
alized vectors of size 200 after concatenation. Conse-
quently, the context vector has the same dimensionality.
For the query vector, the centroid of input embeddings
is used, and its concatenation with the context vector
results in an input layer of size 500 for the MLP, which
has one hidden layer with 100 neurons. For optimiza-
tion we use cross-entropy loss and the Adam (Kingma
and Ba, 2014) variant of the SGD algorithm. The im-
plementation can be found on GitHub4.
Table 1 shows the results on the validation and the test.
We report the weighted macro average to account for
the stark imbalance in classes. Since we use the same
model and data set as Ehren et al. (2020), it makes
sense to compare results to those achieved by the base
model5. To our surprise, the attention model performs
slightly worse than the base model with an F1 score
of 87.66 against 87.99 on the validation set and 86.89
against 87.83 on the test set.
We suspect that the reason for the decrease in perfor-
mance is that, by adding the attention mechanism, we
introduce an additional 60.000 parameters in the form
of the two weight matrices Wq and Wk (cf. Equation 1),

4https://github.com/rafehr/
PIE-attention

5More precisely, to the results with the model using fast-
Text embeddings. Ehren et al. (2020) also employ word2vec
and ELMo.

https://github.com/rafehr/PIE-attention
https://github.com/rafehr/PIE-attention
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Figure 1: Architecture of the attention model.

Weighted macro average
Model Split Pre Rec F1

Majority
baseline

Val 56.78 75.32 64.75
Test 59.22 76.95 66.93

Ehren et al.
+fastText

Val 87.86 88.14 87.99
Test 87.45 88.29 87.83

This work Val 87.44 87.88 87.66
Test 86.83 86.89 86.85

Table 1: Evaluation results of the attention model on
the COLF-VID 1.0 data set and comparison to baseline
models

which make up the attention scoring function and were
both of size 100 × 300. For training a model with that
many parameters, our data set might be too small. This
is supported by the fact that other parameter increas-
ing measures during hyperparameter tuning like an en-
largement of hidden layer size or hidden layer number
all result in (far) worse performance. We refrain from
more extensive hyper parameter tuning, since our focus
is not on performance but on using the attention mech-
anism for purposes of explainability.

6. Extracting properties of tokens that
receive a high attention

Our main goal is to uncover which parts of the input the
model pays most attention to and what this might tell
us about what it is learning in this kind of task. There-
fore our architecture is designed in a way that attention
scores are expected to have considerable influence on
the classifier’s decision: Everything the MLP sees at
the end is a context vector which is composed of con-
textualized fastText embeddings weighted by their re-
spective attention score.
We are particularly interested in the maximum atten-
tion token (MAT) of PIE contexts, i.e., the token that
receives the highest attention, and we inspect the fol-
lowing properties of the MAT: (i) its attention weight,
(ii) its POS tag, and (iii) the label of the first arc on the
dependency path between the verb component (respec-
tively the noun component) of the PIE and the MAT.
In order to gather this information, we parse the sen-
tences using the NLP library spaCy6, which gives a la-
beled dependency tree for every sentence. The POS
tagging is conducted with the TreeTagger (Schmid,
1999), which uses the STTS tag set. We group the
STTS POS tags into four general categories: noun
(NN, NE), verb (VV*, VA*, VM*), adjective (ADJD,
ADJA), and other. Note that we use the dependency

6https://spacy.io/

https://spacy.io/
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parses and POS tags only for the attention statistics;
the PIE disambiguation classifier does not use syntac-
tic information but acts solely on surface tokens.
Concerning the dependency labels, there are obviously
cases where we do not have a direct arc between the
respective PIE component and the MAT, but we al-
ways have a dependency path, provided parsing was
successful. We assume that the label of the first arc on
this path, starting from the PIE component, is a good
choice for characterizing the relevant aspect of the de-
pendency relationship between the two words, since it
indicates the relation between the PIE component and
the MAT including its dependency context. For illus-
tration, consider Figure 2, which shows an idiomatic
usage of in der Luft hängen (‘hang in the air’⇒‘be
present’).7 Components of the PIE are bold, the MAT

Viele Gedanken an VIETNAM hängen in der Luft
Many thoughts on Vietnam hang in the air

sb

op nk

Figure 2: Subject (SB) relation between the verb and
the noun phrase containing the MAT Vietnam

in capital letters and the rest of the sentence is in italic.
There is no direct arc from the PIE verb to the MAT, but
there is a path from the subject of the PIE verb to the
MAT (VIETNAM), since the latter is part of a PP that
modifies the subject. Thus, since the MAT is part of
the subject NP, the system pays attention to some prop-
erty of the subject. Such examples motivate our choice
to register the first label (here SB) on the path from PIE
component to MAT.
There is one more peculiarity with regard to how we
register dependency relations. Very often – in 20.38%
of the cases to be exact – the first arc in the (undirected)
path from the PIE verb to the MAT is labeled OC for
object clause, see for example Figure 3. Here the head

Die GRÜNEN haben ... Profis an Land gezogen
The Green have ... pros on shore pulled

oc
sb

Figure 3: OC (object clause) relation between the PIE
verb and the finite auxiliary verb

of the PIE verb is the auxiliary haben which in turn
governs the subject. In such cases, we disregard the
OC relations and register the label first label on the path
from PIE component to MAT that is not OC (SB in this
case).

7Another meaning of in der Luft hängen is ‘to be uncer-
tain’.

FIG LIT overall
average MaxAttn 0.52 0.46 0.51
STD 0.2 0.18 0.2
MaxAttn on PIE verb (%) 1.23 2.92 1.6
MaxAttn on PIE noun (%) 6.51 13.75 8.11
MaxAttn on noun (%) 82.06 71.25 79.53
MaxAttn on adjective (%) 9.21 15.00 10.66
MaxAttn on verb (%) 3.56 7.5 4.43
MaxAttn on other (%) 5.16 6.25 5.38
MaxAttn on sb (%) 39.8 17.08 34.62
MaxAttn on mo (%) 25.8 41.67 29.43

Table 2: Selection of global attention statistics

7. Attention statistics

We collect the attention scores on the test set and com-
pute statistics individually for instances where the sys-
tem predicts the label FIGURATIVE (FIG) and for in-
stances where the label LITERAL (LIT) is predicted.8

Finally, we also perform an ablation experiment by re-
placing noun MATs with pronouns, in order to assess
whether the system pays attention rather to grammati-
cal functions or to semantic properties of lexical items.

7.1. Global attention statistics

Table 2 shows a selection of the global attention statis-
tics. The first column contains the numbers for FIG, the
second for LIT, and the last for FIG and LIT combined.

First, not surprisingly, for both classes, LIT and FIG,
the model focuses more on content words than on func-
tion words, since the vast majority of MATs have POS
tags of nouns and adjectives. However, there is a con-
siderable difference between the two classes: LIT has a
much larger preference for (adverbial/predicative) ad-
jectives than FIG (15 % vs. 9.21 %) and a lower pref-
erence for nouns (71.25 % vs. 92.06 %).

Concerning dependency relations, in FIG sentences,
subjects are more likely to contain a MAT compared
to LIT. The reason might be that for the verb (without
the PIE context), the literal reading is much more fre-
quent, and in idiomatic readings, we might have sub-
jects whose semantic properties are in contradiction to
the semantic features that subjects of the literal reading
usually have. Put differently, the choice of the subject
filler is more marked in figurative readings than in lit-
eral ones.

This is in line with our experience when annotating
PIEs, where selectional preference violation was iden-
tified as one of the key factors to inform the decision
whether a PIE instance was idiomatic. The following
example shows such a violation:

8The other two labels are barely predicted at all, so we do
not include those in the statistics.
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(5) But the White House is playing with fire by
not complying here [...].9

Here the subject is an institution instead of the animate
agent we would expect with the verb play, thus reveal-
ing the idiomatic reading.
Another salient observation is the magnitude of the at-
tention given to the MAT by the system: the mean at-
tention is 0.51 with a standard deviation of 0.2. This
indicates that the attention is rather not distributed be-
tween multiple tokens. On the contrary, the model
seems to pick one target that clearly stands out in terms
of attention score, since, on average, MaxAttention
differs considerably from the second highest attention
score. The minority class LIT has a smaller MaxAtten-
tion than the majority class FIG, which seems to reflect
the uncertainty of the classifier and the difficulties to
identify clear indicators of LIT instances.
A further noticeable difference can be observed in the
ratio of cases in which the MaxAttention is on PIE el-
ements: again this could be taken to speak for the un-
certainty of the classifier regarding LIT instances; or it
might be the case that morphology contributes crucial
indicators by deviating from the canonical form we ex-
pect in FIG instances. Note that fastText embeddings
also take morphological features into account by virtue
of the subword method. However, a manual inspec-
tion of the nominal PIE elements with MaxAttention
failed to confirm that they are consistently morphologi-
cally non-canonical with respect to FIG usage. A more
detailed investigation of why the model chooses a PIE
element in some cases is left for future work.

7.2. Attention scores and sentence length
Since the features we investigated above can vary con-
siderably depending on the size of the sentence, we
also plotted them against sentence length, distinguish-
ing again between FIG and LIT.
Figure 4 and Figure 5 show how the maximal, sec-
ond highest and average attention (RestAttention, not
counting maximal attention) scores develop with in-
creasing sentence length. The solid line is the mean,
while the area surrounding it represents the 95 % con-
fidence interval. In both LIT and FIG, MaxAttention
decreases with increasing sentence length, albeit Pear-
son’s correlation coefficient is only weakly negative
(overall −0.267 for sentences up to 30 tokens). Sec-
ond highest attention and RestAttention remain rather
stable, and in both LIT and FIG, the difference between
MaxAttention and second highest attention seems pro-
nounced, while in LIT the confidence interval almost
overlaps in some areas, which is clearly not the case
for FIG. Generally, second highest attention and Re-
stAttention are relatively close. Again, the larger confi-
dence area and the slightly (but not significantly) lower

9https://www.politico.com/
newsletters/playbook/2019/10/08/
trump-changes-the-subject-486633, accessed
04/11/2022
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Figure 4: Attention and sentence length for FIG
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Figure 5: Attention and sentence length for LIT

MaxAttention mean for LIT seems to suggest that the
classifier is struggling more to find good indicators for
LIT than for FIG, regardless of the sentence size.

7.3. Syntactic features of MATs and sentence
length

The development of syntactic properties of the MAT
(POS tag and dependency label) is plotted against sen-
tence length in Figure 7 for LIT and in Figure 6 for
FIG. Again, we observe very different patterns in the
two cases.
First, as already mentioned above in connection with
Table 2, we see that MATs are more often contained in
subjects (relation SB) of figurative PIEs, compared to
literal PIEs; for longer sentences the difference is even
more striking than the overall values from Table 2.
A second observation is that, for LIT, modifiers (rela-
tion MO) quickly become more important than subjects.
Thus, for longer sentences in LIT, modifiers seem to be
rather indicative for the label. And although adjectives
play a larger role in LIT, especially for shorter sen-
tences, the most frequent general POS tag for MATs
is noun as can be seen from Figure 7. A manual in-
spection of the data suggests that nominal MATs with
a modifying relation to the PIE verb are often the heads

https://www.politico.com/newsletters/playbook/2019/10/08/trump-changes-the-subject-486633
https://www.politico.com/newsletters/playbook/2019/10/08/trump-changes-the-subject-486633
https://www.politico.com/newsletters/playbook/2019/10/08/trump-changes-the-subject-486633
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Figure 6: POS/dep. labels and sentence length for FIG
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Figure 7: POS/dep. labels and sentence length for LIT

of locative PPs.

7.4. Ablation test using pronouns
The goal of replacing MAT nouns with pronouns –
while taking care that the remaining sentence is still
grammatical – is to test whether it is the grammatical
function which the model likes to pay attention to, or
rather some token in the context of the PIE by virtue
of being a content word. For this, we manipulate a
subset of 474 PIE instances and compute the attention
statistics as done above. Because of the increasing data
sparseness, we concentrate on FIG with 339 instances
and compare them with the attention scores of the un-
manipulated source.
The overall attention scores for the original and manip-
ulated FIG instances are shown in Figure 8 and Fig-
ure 9) respectively. We can observe that the MaxAtten-
tion decreases, compared to the original data, but the
pattern basically remains intact.
Figure 10 and Figure 11 plot the MAT’s syntactic
features against sentence length for the original and
pronominalized FIG instances respectively. A general
observation in both cases is that, after pronominaliza-
tion, nominal POS tags and SB dependencies receive
less attention than before; i.e., the MaxAttention does
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Figure 8: Attention and sentence length for FIG before
pronominalization
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Figure 9: Attention and sentence length for FIG after
pronominalization

not tend to remain on the role filled with the new pro-
noun (the POS tags for pronouns account for only 2.5%
in total). Modifiers (MO), on the other hand, receive
more frequently the highest attention, in particular for
short sentences. This seems to indicate that the model
pays attention to combinations of subject dependency
label and content word and, in the absence of this, tends
to turn to modifiers.

8. Qualitative analysis
To gain a better intuition for the attention preferences
of the model, we now turn to a qualitative analysis of
some of the data. We will look into examples from the
perspective of an annotator in order to explore whether
the systems attention falls on tokens a human would
also consider important for their decision to annotate
a PIE instance in a certain way. The example sen-
tences below are equipped with a heatmap indicating
the weight distribution - the higher the attention, the
more intense the color.
Example (6) shows an instance of the PIE auf dem
Tisch liegen (‘lay on the table’⇒‘be available/be
known’) with Zahlen (‘numbers’) as subject:
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Figure 10: POS/dep. relation vs. sentence length for
FIG before pronominalization
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Figure 11: POS/dep. relation vs. sentence length for
FIG after pronominalization

(6) Diese
These

Zahlen
numbers

lagen
lay

am
on the

Morgen
morning

danach
after

bereits
already

auf
on

Erich
Erich

Honeckers
Honecker’s

Tisch.
table.

‘These numbers were already reported to Erich
Honecker the following morning.’

We can interpret the abstractness of the subject as an in-
dicator for the idiomatic reading, since numbers (usu-
ally)10 cannot be placed on a table. The model set the
same focus and in four of four cases, in which Zahlen
was the subject of auf dem Tisch liegen, it received the
highest weight and the label FIG was predicted.

10We could of course construct a context with physical rep-
resentations of numbers, but this is obviously not the case
here. A bigger problem is that we can interpret it metonymi-
cally with numbers standing for a phyisical report lying on
someone’s table. But the annotators of COLF-VID did not
follow this route and usually judged these type of instances
to be figurative.

In (7) we have one of eight instances of the PIE
eine Brücke bauen (‘build a bridge’), where Brücke
(‘bridge’) was modified with the adjective goldene
(‘golden’) which gives rise to the idiomatic meaning
‘give someone an easy way to retreat’.

(7) So
This way

werden
will be

dem
the

künftigen
future

Bankkunden
bank customer

goldene
golden

Brücken
bridges

bis zu
including

Zinssparen
interest saving

und
and

Dispokredit
overdraft credit

gebaut.
built.

‘This way, golden bridges will be built for the
future bank customer as far as interest savings
and overdraft facilities.’

Since bridges are seldomly built from gold, the pres-
ence of the adjective is very informative to establish the
correct reading. The model did pick up on that fact as
goldene is in the top 3 of tokens with the highest atten-
tion in seven of eight cases, predicting FIG six times.
Another adjective attracting a lot of attention is tief
(‘deep’), when used adverbially with Luft holen (‘’take
a breath’⇒‘to take a break’) as shown in (8).

(8) Wer
Who

dort
there

tief
deeply

Luft
air

holt,
takes,

kann
can

den
the

Duft
smell

des
of the

Newlands
Newlands

Stadium
Stadium

in
in

Kapstadt
Cape Town

einatmen
breathe in

[...]
[...].

.

‘If one takes a deep breath, one can breathe
in the smell of the Newlands Stadium in Cape
Town.’

In 9 of 12 of those cases the system gave the highest
attention to tief, predicting the class LIT eight times.
But in contrast to the examples above, it actually is not
a sure sign for a literal reading, because it can just as
well modify the idiomatic reading (take a deep breath
⇒ take a long break), as is represented in the test set,
since 6 of the 12 instances were actually labeled as
idiomatic. But since roughly 70% of instances in the
training set occurring with tief were labeled as literal,
the model reasonably predicted the label LIT.
More examples in which the model paid attention to
tokens that a human annotator would also consider
highly relevant for the disambiguation task can be
found when examining the four literal instances of im
Blut haben (‘have in one’s blood’⇒‘have a predispo-
sition for sth.’) in the test set. In each of these cases,
the object of the PIE, that represented a substance a
person can actually have in their blood, was given the
second or third highest attention (Schadstoffe (‘pollu-
tants’), Cholesterinkonzentrationen (‘cholesterol con-
centration’), Kokain (‘cocaine’), Alkohol (‘alcohol’)),
while always predicting the correct reading.
(9) gives an example that was misclassified by the
model since LIT was predicted although FIG would
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have been correct.

(9) Wer
Who

hat
has

die
the

größte,
biggest,

die
the

schönste
most beautiful

Brücke
bridge

gebaut?
built?

‘Who has established the best connection?’

However, the error is understandable; without context,
a human annotator would also classify (9) as LIT, be-
cause of the attributes größte (‘biggest’) and schönste
(’most beautiful’) which modify Brücke (‘bridge’) (and
which the attention model also focuses on).
Even though we could present many more of these
types of examples, we of course do not claim, that our
model’s decisions correspond always to the way hu-
mans would decide between LIT and FIG concerning
the role that the different input tokens play for this de-
cision. There are a lot of instances to be found where
the highest weights are associated with input tokens,
that – from a human perspective – do not seem to be in-
formative for the disambiguation. This is partly due to
biases from training data, which distinguish of course
our system from a human native speaker. But with our
experiments, we were able to show two things: (1) The
attention distribution is not arbitrary. This is not only
supported by the statistics presented above, but also by
a qualitative analysis of the data. (2) The relationship
between the input and the output tends to be tangible
and straightforward, i.e. a human can comprehend why
the model focused on certain tokens. This is not self-
evident, since with contextualizing models like a BiL-
STM we cannot automatically assume that the hidden
states are still faithful representations of the input to-
kens. It would be interesting to see whether a BERT-
based encoder with its many layers would still allow
for such a straightforward interpretation.

9. Conclusions
In the context of PIE disambiguation, we have provided
strong evidence in support of the view that, for certain
deep learning architectures, attention can be leveraged
to uncover the influence of input tokens on the clas-
sifier’s decision. Strikingly, regardless of classes and
ablation measures, the attention model seems to pick
exactly one pivotal target that clearly stands out com-
pared to other tokens in the sentence in terms of atten-
tion scores. It would be interesting to explore, whether
adversarial attention distributions in the same vein as
for Jain and Wallace (2019) (cf. Section 2) can be found
and, if so, which properties they would reveal com-
pared to the one presented in this paper. Regardless
of the outcome of such experiments, we would main-
tain that the results presented here are a valid, because
plausible, explanation for the model’s behaviour, since
we do not agree that an attention distribution needs to
be exclusive to serve as explanation.
Furthermore, the statistical behaviour of the studied at-
tention model can be motivated with specific properties

of the classes LIT and FIG, which differ considerably
with respect to the syntactic categories that the model
assigns MaxAttention to. This is even more apparent
when taking sentence length into account, and also sup-
ported by an ablation test using pronominalization that
we conducted. This work leaves many interesting op-
tions for future work, for example, the consideration of
further linguistic features and ablation tests, crosslin-
gual comparisons, and last but not least the comparison
to other attention models such as BERT’s self attention.
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