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Abstract
This paper introduces the mwetoolkit-lib, an adaptation of the mwetoolkit as a python library. The original toolkit performs
the extraction and identification of multiword expressions (MWEs) in large text bases through the command line. One of the
contributions of our work is the adaptation of the MWE extraction pipeline from the mwetoolkit, allowing its usage in python
development environments and integration in larger pipelines. The other contribution is the execution of a pilot experiment
aiming to show the impact of MWE discovery in data professionals’ work. Thus, we propose a textual clustering experiment
in which we compare using single-word and MWE features. This experiment found that the addition of MWE knowledge
to the Term Frequency-Inverse Document Frequency (TF-IDF) vectorization altered the word relevance order, improving the
linguistic quality of the clusters returned by k-means.
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1. Introduction
According to the literature, multiword expressions
(MWEs) are combinations of two or more words that
present some characteristic behavior when occurring
together, having a different behavior when compared to
the words used individually (such as ‘hot dog’ and ‘hu-
man resources’). This difference can be at any given
linguistic level(s), including morphology, syntax, se-
mantics and/or pragmatics (Baldwin and Kim, 2010).
Moreover, MWEs often present statistical salience with
respect to the distributions of the words that compose
them. Due to their unpredictable nature, from a com-
putational perspective, it is challenging to know how
to deal with such terms, and often they end up generat-
ing errors in Natural Language Processing (NLP) tasks.
Therefore, in the industrial context, data analysts and
scientists need to be able to process such multiword
units in order to enhance their analysis and interpreta-
tion of textual data.
As explained by Constant et al. (2017) and Watrin and
François (2011), MWE processing is essential for sev-
eral NLP tasks, such as parsing, machine translation,
information extraction and retrieval. Also, MWE pro-
cessing can be divided into MWE discovery and iden-
tification (Constant et al., 2017); the former focuses on
extracting MWE candidates from corpora and building
a lexicon, and the latter targets labelling word combina-
tions as MWEs in context. Although usually explored
in academic research contexts, the task of MWE dis-
covery may also turn out relevant in industrial contexts.

Thus, tools like the research-oriented mwetoolkit
(Ramisch, 2014) could be adapted to benefit not only
NLP researchers, but also data analysts working on ap-
plied text-related problems.
For that reason, we developed a wrapper for the Mul-
tiword Expressions toolkit, the mwetoolkit-lib1,
aiming at the MWE discovery task. It is a python li-
brary which can be seamlessly imported into any ex-
ternal python code, including jupyter notebooks, and it
is integrated with pandas (Wes McKinney, 2010), a
widely used python library for data analysis.
Such as mwetoolkit proposes to easily identify
MWEs within a given corpus, our library allows
its use outside the command lines. As it is a li-
brary that can be easily integrated into pipelines, the
mwetoolkit-lib main target audience is develop-
ers and data scientists, but it can still be used by dif-
ferent professionals, such as lexicographers and trans-
lators to find terms of interest.
Furthermore, this paper proposes a pilot experiment on
how MWE discovery may impact data scientists and
analysts’ daily work. We observed that a generalist
scope encompasses multiple domains that, in turn, have
their own specific MWEs. Therefore, it may be that a
word combination in one domain is not an MWE in
other domains. To avoid potential domain ambiguities
and maximize our knowledge and control of the results,
we focus on terminological MWEs relevant to our con-

1https://gitlab.com/fernandozagatti/
mwetoolkit-lib/

https://gitlab.com/fernandozagatti/mwetoolkit-lib/
https://gitlab.com/fernandozagatti/mwetoolkit-lib/
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text only, delimiting our experiments to texts in the Hu-
man Resources (HR) domain.
The pilot experiment consists in analyzing the impact
of discovering MWEs as key terms from an HR cor-
pus and clustering the corpus documents using the k-
means algorithm (MacQueen and others, 1967) on the
extracted MWE features. We choose such task because
it is prototypical in the daily work of both data scien-
tists and analysts, who often have to face the lack of an-
notated data required for supervised learning methods.
In addition, there seems to be considerably less liter-
ature on MWE-aware applications based on unsuper-
vised methods. Aiming to automatize an applied data
processing pipeline using morphosyntactic patterns for
MWE discovery and unsupervised techniques to work
with corpora, the main contributions of this paper are:

• Development of the mwetoolkit-lib, a
freely available python library based on the
mwetoolkit, which ensures larger usability
and integration with resources widely used in
academia and industry.

• A pilot experiment to check the impact of the
use of MWE knowledge (so linguistic/symbolic
knowledge) on unsupervised clustering algo-
rithms results.

2. Related work
Usually, state-of-the-art techniques for automatic iden-
tification of MWEs use morphosyntactic patterns com-
bining linguistic and statistical information, rarely re-
sorting to explicit representations of the meaning of
words (Seretan, 2011; Ramisch, 2014; Constant et al.,
2017). The literature is extensive and there are works
in different domains and tasks related to MWE, such as
discovery, identification and MWE-aware applications.
For discovery, also using mwetoolkit as the basis of
their work, Cordeiro et al. (2016) presented an exten-
sion to mwetoolkit, named mwetoolkit+sem.
They add a new metric for MWE discovery/extraction
which tries to estimate a combination’s compositional-
ity using word embeddings. In general, the score is cal-
culated through the cosine distance between the MWE
term and the words that make up the MWE.
Dubremetz and Nivre (2014) used the mwetoolkit
on a sample of the French Europarl corpus and the
French MWE lexicon Delac for training binary classi-
fiers aiming at MWE discovery. They obtained a maxi-
mum precision of 74% in a manual evaluation of this
classification task, i.e. 74% of the candidate MWEs
classified as correct MWEs were indeed MWEs. Also,
approximately half of the correctly discovered MWEs
were not present in Delac, contributing to the enrich-
ment of the French MWE lexicon.
Unsupervised methods for MWE discovery have been
employed in the past, including clustering techniques
(Tutubalina, 2015; Chakraborty et al., 2011). Though,
MWE discovery supporting unsupervised text analytics
remains understudied to the best of our knowledge.

3. The mwetoolkit-lib
Existing tools for MWE discovery propose sub-optimal
interfaces for data analysts, specially considering
the use of linguistic and domain-specific knowledge.
Hence, we aim to integrate the consolidated method-
ology with these tools daily used by data scientists.
Based on the mwetoolkit, a robust framework for
processing MWEs, it was necessary to adapt the exist-
ing code to integrate the methods and commands used
in the terminal into any python script, including note-
books, broadly used by data analysts and scientists.

3.1. The mwetoolkit
The mwetoolkit (Ramisch, 2014) is a robust toolkit
for MWE processing which proposes a command line
interface and is organized as a set of python scripts.
It allows text preprocessing while supporting different
tagger and parser file formats, complex morphosyntac-
tic user-defined pattern searching using multi-level reg-
ular expressions, efficient word and n-gram counting,
and statistical measures for MWE discovery. In addi-
tion, the toolkit has modules for MWE identification
based on lexicon matching and on Conditional Random
Fields, but these are out of scope given that we focus on
MWE extraction.
The MWE discovery task is tackled using the statisti-
cal salience that MWEs may have and common mor-
phosyntactic patterns they share. This pipeline is the
following: (I) MWE candidates are searched within the
corpus’ n-grams using the user-defined patterns; (II)
the absolute frequency for each candidate is computed;
(III) statistical Association Measures (AMs) are com-
puted; and (IV) the discovered candidates are filtered
and ranked according to such measures. These steps
are detailed below:

I Pattern searching: Given a list of morphosyn-
tactic patterns which comprises lemmas, surface
forms, POS tags and/or syntactic dependencies,
all n-grams that match these patterns are extracted
from the input corpus.

II MWE candidates counting and word indexing:
Occurrences of each MWE candidate and their
component words need to be counted in order to
compute the final AMs. A suffix array was imple-
mented for word indexing and thus handling this
task efficiently.

III Statistical Association Measures: Different
AMs are computed using both n-gram and com-
ponent words’ counts as input: maximum likeli-
hood estimator, dice’s coefficient, pointwise mu-
tual information and student’s t-score. Such AMs
are key for the lexicometric analysis of the data
professional.

IV Ranking and filtering: As its name suggests,
MWE candidates might not be MWEs. As a post-
processing step, filtering such candidates can be
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done by using their counts or AMs. Also, candi-
date ranking using AMs is supported.

3.2. Adaptation to a python library
The code proposed in the mwetoolkit for achieving
the MWE discovery pipeline is robust and finely orga-
nized. Each step is handled by a single script or a pair
of scripts: (I) candidates.py; (II) index.py and
counter.py; (III) feat association.py; (IV)
sort.py and filter.py. All these scripts make
up the internal library mwetk which comprises shared
functions and classes.
Aiming to adapt this pipeline to the
mwetoolkit-lib, we first identified the func-
tionalities that should be shared between the proposed
library and the aforementioned scripts. Then, the cor-
responding methods were moved to an internal library
mwetk, and the scripts were updated accordingly, so
that they keep functional after the refactoring.
The main method of the mwetoolkit-lib, to be
called by the user in a python script, was built inside the
mwetoolkitlib.py file and must be accessed by
calling the get candidates dataframe method.
The idea here is to encapsulate all intermediate steps
into a single function, hiding unimportant details about
the tool’s internal architecture from the users, leaving
the pipeline less prone to human errors.
It is necessary to pass two parameters to the method,
namely: (1) a corpus file containing the corpus from
which the MWEs will be discovered with the POS tags,
lemmas and surface forms for each token and (2) a file
containing the morphosyntactic patterns that the user
wants to extract from the text. Both files can be pre-
sented in any format supported by the mwetoolkit.
This method will return a pandas dataframe with
MWE candidates and their info. As in the original
mwetoolkit, candidates are shown in their normal-
ized form (lemmas) alongside with their POS tags, oc-
currences count and AMs. Ranking and filtering can
now be easily done using pandas and data can be in-
tegrated with other python libraries.

4. Experimental evaluation
For making sure we properly reproduced all the steps
of the mwetoolkit, we proposed an experimental
evaluation considering an industry daily task: creat-
ing representative textual datasets using unsupervised
techniques. We want to show that mwetoolkit-lib
does not miss any detail of the mwetoolkit and to
check how the use of linguistic knowledge through
making the textual clustering a MWE-aware task im-
proves the quality of our results.
For this evaluation, we used a private dataset of texts
of the HR domain provided by americanas s.a, describ-
ing employees activities in Brazilian Portuguese, and
containing 20,000 documents.
The first step in the evaluation was to run tests to
confirm that the command-line mwetoolkit and our

python library were extracting the same results. Af-
ter ensuring that both were extracting the same 8,300
MWEs and generating the same list of candidates, we
investigated the impact of MWEs on the k-means clus-
tering algorithm in this data.

4.1. Term Frequency-Inverse Document
Frequency

Among different techniques for converting text into nu-
meric vectors, we chose the Term Frequency-Inverse
Document Frequency (TF-IDF) since this is a straight-
forward and consolidated technique in the literature.
Pimpalkar and Raj (2020) define this technique as a
quantitative metric used to determine the relevance of
terms in a document. The formulas for calculating the
TF-IDF used in this project, taken from scikit-learn2,
are represented by Equations 1 and 2.

tfidf(t, d) = tf(t, d) ∗ idf(t) (1)

idf(t) = log[(1 + n)/(1 + df(t))] + 1 (2)

The following topics define the meaning of each term
in Equations 1 and 2:

• tf-idf(t, d): “Term Frequency-Inverse Document
Frequency” of term “t” in document “d”.

• idf(t): “Inverse Document Frequency” which
measures how common a word is among all do-
cuments.

• tf(t, d): Computes “term frequency” which is the
number of times a word “t” appears in a document
“d”.

• n: Total number of documents available.

• df(t): Number of documents in which the term “t”
appears.

4.2. K-means clustering
K-means is a clustering algorithm proposed by Mac-
Queen and others (1967). Its main process is the par-
titioning of its N -dimensional dataset into k distinct
groups based on samples. It manages to provide par-
titions that are reasonably efficient in terms of cluster
variation, mainly because it is an unsupervised tech-
nique and does not require expert considerations.
As reported by Xiong et al. (2016), after initializing the
algorithm and imputing the dataset and the value of k,
k samples are randomly selected as centroids, one for
each cluster. Then, at each step, the algorithm calcu-
lates the distance of the dataset samples from each of
the k centroids, assigning the sample to the closest cen-
troid and, once all samples are classified in a cluster, the
centroids are recalculated; this process is repeated iter-
atively until the clusters do not undergo major changes.

2https://scikit-learn.org/

https://scikit-learn.org/
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4.3. The experiment
Since this algorithm does not consider any linguistic
feature, we want to test whether imputing the data with
MWE analysis would improve the quality of the clus-
ters found by k-means. The pipeline for the experi-
ments, seen in Figure 1, was performed with and with-
out the MWE extraction step.
Firstly, we conducted the textual preprocessing (tok-
enization, transformation of the text into lowercase, re-
moval of diacritics and stopwords), and vectorization
with TF-IDF. Then, the k-means method was applied
with 8 clusters. The number of clusters was defined by
the Elbow method.3

Secondly, the MWE discovery step was inserted be-
fore preprocessing and, when tokenization was per-
formed, NLTK’s MWETokenizer (Bird et al., 2009)
was used to merge the discovered MWEs into single
tokens. The morpho-syntactic patterns used by the
mwetoolkit-lib can be seen in Table 1. These pat-
terns were defined by linguists based on related works
such as Boos et al. (2014) and experimental tests within
HR domain. Lemmas and POS tags used by the MWE
extraction pipeline were computed using the stanza
library(Qi et al., 2020).

Pattern Examples
NOUN ADP NOUN atendimento ao cliente (cus-

tomer service)
NOUN ADJ ADJ planejamento orçamentário

anual (annual budget plan-
ning)

NOUN NOUN ADJ inglês nı́vel intermediário
(intermediate English)

NOUN NOUN NOUN Supremo Tribunal Federal
(Federal Supreme Court)

NOUN ADJ nota fiscal (invoice)
NOUN NOUN vale transporte (transporta-

tion allowance)

Table 1: Morphosyntactic patterns used for discovery.

4.4. Evaluation results
Using vectorization with TF-IDF, it was possible to ex-
tract the degree of relevance of the words and to rank
them according to their value. Extracting the top-5
words (Table 2) for vectorization using the knowledge
of MWE, the token “atendimento ao cliente” (‘cus-
tomer service’) was identified as something very rel-
evant to the text. In the clusters without MWEs, this
information was lost and the TF-IDF considered “ser-
vice” and “customer” as distinct features. It may look
very simple, but having this MWE identified, we could
obtain a single cluster in which it is very salient, while,
in the clusters without MWEs knowledge, the words

3This method tests the algorithm with different numbers
of clusters in order to identify the optimal value of k.

Rank With MWE Without MWE
Top1 atividades atendimento
Top2 responsavel responsavel
Top3 principais atividades
Top4 atendimento area
Top5 atendimento ao cliente cliente

Table 2: Relevance of words and MWEs by TF-IDF.

“atendimento” and “cliente” appeared in all the other
clusters within the 15 most common unigrams.
For clustering, in the first run, without MWE, k-means
created a cluster with the word “atendimento” (service)
in which it brought texts about services in general, cus-
tomer service, public service, telephone service, among
others. In parallel, when we applied MWE discovery
in the pipeline, a cluster was created specifically for
the MWE “atendimento ao cliente” (customer service)
and another for activities and services in general.
Adding the knowledge of MWE, 1282 MWEs appeared
among the most frequent terms in the clusters. With-
out this information, only 48.60% had appeared among
the most frequent terms. These MWEs are in the
HR domain, such as “producao de conteudo” (‘con-
tent creation’) and “fechamento de caixa” (‘financial
close’). With one of the groups being more specifi-
cally about ‘customer service’, we were able to better
differentiate the other clusters. In the MWE-aware ver-
sion of this experiment, we obtain a cluster that deals
specifically with financial tasks with terms such as “no-
tas fiscais” (‘invoices’), “controle de contas” (‘billing
control’) and “emissao de notas” (‘invoice issuance’)
that were not representative in any cluster in the ‘flat’
version of the experiment.
It is important to emphasize that using unsupervised
methods impose some difficulty on having highly trust-
ful evaluation. Thus, our pilot experiment still re-
quires a more in-depth quantitative evaluation in other
datasets to observe the real effects of MWE on unsu-
pervised clustering. However, it already showed the
usability of mwetoolkit-lib and how it was easy
to integrate the linguistic knowledge of mwetoolkit
with other methods in a larger pipeline, bringing up an
easy way to have hybrid approaches implemented for
textual clustering.

5. Conclusions and future work
We implemented the mwetoolkit (Ramisch, 2014)
as a python library, aiming to make this MWE mod-
ule easier for data scientists to use in non-academic
R&D contexts. We conducted some experiments to
demonstrate the impact of using MWE knowledge
in clustering methods and how MWEs extracted by
mwetoolkit-lib can be used in an unsupervised
method.
The adoption of hybrid approaches (such as MWE +
clustering) brings advantages to the automatizing meth-
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Raw text Preprocessing Vectorization K-Means

Raw text MWE  
extraction Preprocessing Vectorization K-Means

First experiment pipeline

Second experiment pipeline

Figure 1: Difference between the pipeline of experiment 1 (top, no MWEs) and experiment 2 (bottom, with MWEs)

ods, in a way that the data does not need any previous
human annotation to be used. We do believe that the
future of NLP is based on bringing together linguis-
tics/logic knowledge within the big data knowledge we
can access together, and making these sources of infor-
mation dialogue with each other.
The use of hybrid methods with MWEs can also bring
domain knowledge that is implicit in the data. This
knowledge can be extracted more easily when applying
the techniques together with human experts to analyze
the results individually.
As future work, extensions in both
mwetoolkit-lib and experiments can be ex-
plored. The mwetoolkit-lib can benefit from the
implementation of the MWE identification pipeline
from the mwetoolkit, thus allowing training,
evaluating and execution of the labelling of MWEs
in running text. Furthermore, benefiting from the
rich python environment, different Machine Learning
algorithms can be used to tackle this new task by
integrating the mwetoolkit-lib with other python
libraries such as scikit-learn (Pedregosa et al.,
2011) and keras (Chollet and others, 2015).
Concerning the experiments, we would like to carry out
clustering using other algorithms (such as MiniBatch
k-Means or HDBSCAN) and in new datasets, ensuring
that the linguistic quality improvement we found gen-
eralizes over other architectures and domains.
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