
Proceedings of the Second Workshop on Language Technologies for Historical and Ancient Languages (LT4HALA 2022), pages 84–93
Language Resources and Evaluation Conference (LREC 2022), Marseille, 25 June 2022
© European Language Resources Association (ELRA), licensed under CC-BY-NC 4.0

84

Contextual Unsupervised Clustering of Signs for Ancient Writing Systems

Michele Corazza1, Fabio Tamburini1, Miguel Valério2, Silvia Ferrara1
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Abstract
The application of machine learning techniques to ancient writing systems is a relatively new idea, and it poses interesting
challenges for researchers. One particularly challenging aspect is the scarcity of data for these scripts, which contrasts with
the large amounts of data usually available when applying neural models to computational linguistics and other fields. For
this reason, any method that attempts to work on ancient scripts needs to be ad-hoc and consider paleographic aspects, in
addition to computational ones. Considering the peculiar characteristics of the script that we used is therefore a crucial part of
our work, as any solution needs to consider the particular nature of the writing system that it is applied to. In this work we
propose a preliminary evaluation of a novel unsupervised clustering method on the Cypro-Greek syllabary, a writing system
from Cyprus. This evaluation shows that our method improves clustering performance using information about the attested
sequences of signs in combination with an unsupervised model for images, with the future goal of applying the methodology
to undeciphered writing systems from a related and typologically similar script.

Keywords: Deep Learning, ancient writing systems, clustering,inventory of signs in a script.

1. Introduction
The aim of this work is to investigate whether auto-
matic methods can be applied to ancient undeciphered
writing systems. One particularly challenging aspect
for research can be the sign inventory of a script, as
with certain undeciphered scripts there is no consensus
among experts. Namely, it can be very difficult to dis-
tinguish what is a sign on its own right (grapheme) or
a mere variant of a sign (allograph). This issue is detri-
mental to any attempt at decipherment and it can be fur-
ther complicated in cases in which the writing system
is scarcely attested and the corpus has many damaged
inscriptions.
This work constitutes a preliminary investigation of a
neural model that aims to learn good latent represen-
tations for signs in ancient, undeciphered writing sys-
tems. We are interested in the application of computa-
tional methods to ancient scripts from the Aegean and
Cyprus, in particular to Cypro-Minoan. Cypro-Minoan
is a script from the second millennium BCE, attested
in Cyprus and the Syrian town of Ugarit. Since there
is uncertainty regarding the inventory of signs of this
script, we can only use unsupervised methods, which
do not use prior information on the status of individual
signs. This has the added benefit of avoiding any bias
from hypotheses formulated by experts in the field.
In this work, we propose a new method for undeci-
phered writing systems using images as its input and
no gold standard labels. The system improves upon ex-
isting methods for images in order to adapt them to this
specific domain by incorporating information about the
attested sequences of signs. Since no gold standard can
be obtained directly from undeciphered writing sys-
tems, we describe a preliminary step consisting in the
evaluation of our improvement over a baseline, using

the Cypro-Greek (CG) syllabary as our ground truth for
the evaluation, as CG is descendant script, thus closely
related to Cypro-Minoan and it has been deciphered.

2. Related Work
In recent years, the prominence of deep neural net-
works in natural language processing tasks has in-
creased, leading to improved performance on many
tasks. The usage of these models for ancient writing
systems however poses unique challenges: these scripts
are scarcely attested and when they are undeciphered
no evaluation can be performed to assess the perfor-
mance of neural models. Nevertheless, some scholars
have proposed various approaches that deal with an-
cient writing systems.
In particular, some models tackle the problem of dam-
aged inscriptions, trying to reconstruct textual content
in ancient Greek (Assael et al., 2019) and Babylonian
Akkadian (Fetaya et al., 2020) using neural models.
Another interesting task is the identification of scribal
hands, where the goal is to investigate whether docu-
ments were inscribed by the same person or not. Com-
putational methods for this task have been applied to
the Dead Sea Scrolls (Popović et al., 2021) and to Lin-
ear B inscriptions (Srivatsan et al., 2021). Finally, a
deep learning model was proposed in order to identify
textual content written in the Indus Valley script (Pala-
niappan and Adhikari, 2017), which constitutes, to the
best of our knowledge, the first application of neural
networks to an undeciphered writing system.
While in recent years there have been attempts to ap-
ply machine learning methods to ancient writing sys-
tems, as far as we are aware no unsupervised model has
been applied to the inventory of signs of ancient writ-
ing systems. Since we are interested in unsupervised
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Figure 1: Number of attestations for each sign as represented in our dataset.

approaches, we will now discuss the state of the art of
such systems for image classification.
Recent advancements in the application of unsuper-
vised methods to image classification use a multitude
of methods, that can be divided in different overarch-
ing approaches. Since our evaluation uses clustering
as the main task for the model in a two-step approach,
we are especially interested in clustering-based models.
These are models that use clustering not only after hav-
ing learned good quality representations for images, but
also during training. Some methods using clustering
for unsupervised learning on images use Convolutional
Neural Networks and perform clustering on the latent
representations of images. This is the case, among oth-
ers, of DEC (Xie et al., 2016), DAC(Chang et al., 2017)
and DeepCluster(Caron et al., 2018). Other approaches
aim to maximise the mutual information between an
image and augmented versions of it. This is the case
for IIC (Ji et al., 2019) and IMSAT (Hu et al., 2017).
SWAV (Caron et al., 2020) works similarly, by using
assignments between two augmented versions of the
same image, and using the swapped assignments as the
labels to train the model. DeepClusterv2 (Caron et al.,
2020) is a combination between SWAV and DeepClus-
ter, using augmented versions of images, but still ob-
taining pseudo-labels for training from K-Means clus-
tering. SCAN (Van Gansbeke et al., 2020) ditches clus-
tering altogether, and uses a two-step approach: first, it
minimizes the distance between an image and its aug-
mentation as a pretext task, then the nearest neighbors
of each vector are computed, and used to classify im-
ages in the same category.

3. Dataset
To assess the performance of our unsupervised model,
we looked for a writing system with three characteris-
tics:

• deciphered status, allowing us to compare our re-
sults with a known ground truth;

• a close relationship and typological similarity to
Cypro-Minoan, in order to count with signs of the
same type (syllabic) and sign inventory of compa-
rable size (some dozens of syllabograms);

• a large enough corpus to provide us with a reason-
able amount of data.

The obvious choice was then the Cypro-Greek syl-
labary, which is the only known script that meets all
aforementioned criteria. The script (in use roughly be-
tween the 11th or 10th and the 4th centuries BCE) is
deciphered and is known to have been adapted from
Cypro-Minoan to write a well-understood ancient di-
alect of Greek (Arcado-Cypriot). Like Cypro-Minoan,
its signs are syllabograms that represented open sylla-
bles, i.e. Vowel (V) or Consonant-Vowel (CV) sylla-
bles. In addition to 56 syllabograms, the Cypro-Greek
script also comprised numerical signs and punctuation
signs, namely dividers of sequences, which stood for
words or groups of words (Egetmeyer, 2010).
Our dataset was obtained from drawings of Cypro-
Greek inscriptions from various sources (Casabonne et
al., 2002; Egetmeyer, 2010; Masson, 1983; Mitford,
1981; Karageorghis and Karageorghis, 1956; Kara-
georghis, 1976; Karnava, 2019; Masson and Mitford,
1986; Mitford, 1971; Masson and Olivier, 1983; Mit-
ford, 1958; Mitford and others, 1961; Olivier, 2007;
Mitford et al., 1983). The drawings were scanned, and
the single signs of each inscription were manually seg-
mented. They were also cropped to obtain square im-
ages of 100x100 pixels, retraced as clean black signs
on white background. Each file was then labelled
with the transcription (reading) of the sign in ques-
tion. The reading assigned followed reference editions
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of the texts (Masson and Olivier, 1983; Egetmeyer,
2010), except for some specific cases where the up-
dated transcription stemmed from individual publica-
tions (amongst the ones cited above).
The total number of sign images obtained was 2995
from 164 inscriptions. We then proceeded to exclude
images of signs that were broken or damaged, and
which therefore did not show their shape in full. When-
ever a sign was damaged but the full form was still pre-
served and drawn, the noise (e.g., cracks or scratches
on the inscription medium) was manually removed
from the drawing. The number of excluded sign im-
ages was 322, so that after this filter we were left with
a total of 2673 images.
Because our method considers the context (the position
of signs in relation to other signs in the sequences and
texts), we gave preference to larger texts written clearly
in Greek language. The longest text in the dataset (ICS
217, side B) yielded 584 sign images, while the short-
est provided only 2, but on average a document of the
dataset provided 9 signs. To make the dataset as rep-
resentative as possible of the complete corpus of the
script, which surpasses 1,050 inscriptions (Egetmeyer,
2010), we deliberately included documents from vari-
ous geographical areas and different time periods, even
if an equal number of signs between locations was not
achieved.
The number of categories of signs represented by these
images is 64, which includes syllabograms, numerical
and punctuation signs, and ‘space’, which refers to a
space in the inscription probably used as a separating
device. Importantly, the Cypro-Greek syllabary existed
in two main varieties: one used mainly in the area of
ancient Paphos, in West Cyprus (‘Paphian’) and an-
other used in most of the rest of the island (‘Common’).
The Paphian variety features specific variants of some
signs (5 in our dataset), which have different shapes but
the same phonetic values as their counterparts in the
Common variety. As their shape is significantly dif-
ferent, to the extent where it would affect the cluster-
ing method, the images pertaining to these categories
received specific labels that distinguished them as Pa-
phian. Finally, out of the 56 syllabograms that make up
the sign inventory of Cypro-Greek (excluding the Pa-
phian graphic variants), only one is not represented in
our dataset. This is syllabogram XA, as it is a rare sign
not found among the 164 inscriptions we compiled.
Like most linguistic features, the sign frequency fol-
lows a Zipf distribution (Figure 1), with some cate-
gories appearing fewer than 10 times in the entire cor-
pus. This situation, while expected, makes any at-
tempt at creating a neural model classifying signs very
challenging, especially since we use an unsupervised
method to cluster them. The most common grapheme
is the divider denoted in the plot by “DIV”. This
sign is used to separate sign sequences, which in the
Cypro-Greek script can stand for single words or entire
phrases, such as ’the city of Idalion’.

4. Model
As the basis for our approach we use DeepClusterv2
(Caron et al., 2020), an unsupervised convolutional
model for images, an improvement on the original
DeepCluster (Caron et al., 2018) algorithm. DeepClus-
ter (Figure 2) is an unsupervised model that applies K-
Means to the output of a convolutional neural network,
a ResNet50 (He et al., 2016), in order to learn pseudo-
labels that are then, in turn, used to update the weights
of the model. Before each epoch the vectors represent-
ing all of the signs are obtained from the model. These
are then normalized to be unit vectors by dividing them
by their L2 norm. On these, a K-means clustering al-
gorithm is applied, obtaining pseudo-labels that can be
used to train the model on a classification task.

Figure 2: DeepCluster

DeepClusterv2 improves upon its predecessor in some
significant ways:

• It replaces the output layer of DeepCluster with
one obtained by using the centroids of the clus-
ters from K-means. The application of this output
layer to the vectors from the ResNet50 calculates
the dot product between each vector and each cen-
troid. Since both the centroids and the vectors rep-
resenting images are normalized unit-norm vec-
tors, this corresponds to the cosine similarity be-
tween vectors and centroids. With this method,
the output layer does not need to be reinitialized
after every epoch and the proximity of the sign to
its centroid is enforced directly in the model;

• The model uses random augmentations of the im-
ages (crops, color distortion, random flips) both
before clustering and when training the model;

• Other minor adjustments include cosine learning
rate and the usage of a multi-layer perceptron as a
projection head for the image vectors.

Our model, Sign2Vecc (Figure 3), improves upon the
existing DeepClusterv2 approach by considering the
role of contextual information when dealing with im-
ages representing signs. In fact, the preceding and fol-
lowing sign bear important information when attempt-
ing to detect allographs in writing systems, as similar
sign shapes found within the same position of a se-
quence are more likely to be variants of the same sign.
This information is often used by paleographers, as it
can give precious insight into the allography of signs
and it is also a crucial aspect for any attempt at deci-
pherment.
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Figure 3: Sign2Vecc.

Sign2Vecc is inspired by the CBOW approach
(Mikolov et al., 2013) often used in computational lin-
guistics to learn word embeddings. In this approach, a
word is predicted from its left and right context. Sim-
ilarly, our aim is to train a model that can predict a
sign from its context. In our case, however, we have
no source of supervision and cannot provide the model
with a symbolic representation of signs, since images
are our only input. Additionally, we do not have la-
bels that can be used to directly train a model to predict
a syllabogram from its context. Therefore, we extend
the DeepClusterv2 framework by using a joint learning
objective. In addition to the usual DeepClusterv2 loss,
we use the signs to the left and right of the one un-
der examination in order to predict the cluster that the
central sign belongs to. The choice of such a small con-
text window (size one) might seem low when compared
to larger context windows traditionally used in com-
putational linguistics. However, its properties fit our
task well: as CG is a syllabary, by limiting the window
size to one, we never cross the boundaries of syllabic
sequences, as there is always a sign separating them.
Also, with larger context windows, when dealing with
a sign found at the end of a document, we would need
to introduce extra virtual signs on the right side (and
the same applies to the left side at the beginning of a
text), which is problematic.
Formally, we use the following training objective:

L(C,Xi,Yi) = (1− λc) H(
Md(Xi)

||Md(Xi)||
C, Yi)+

λc H(
Mc(Li, Ri)

||Mc(Li, Ri)||
C, Yi) (1)

Where C ∈ Rvs×nc is a matrix representing all the
centroids of the clusters obtained from K-means, and
vs is the size of the vectors obtained from the model,
while nc is the number of clusters obtained from K-
Means. Xi is the central sign, while Li, Ri represent

the signs to the left and right of Xi, respectively. Yi is
the cluster that the central sign Xi belongs to according
to K-means. H is the categorical cross entropy. Con-
sider the fact that since we normalize both branches of
the loss by dividing the vectors by their L2 norm, they
both have unit norm. Therefore the product between
the vectors obtained from the model and C corresponds
to the cosine similarity of the vector with each centroid.
λc is a constant used to determine the relative weight of
the two components of the loss.
The neural model is implemented by the two functions
Md and Mc:

Md(Xi) = MLPd(R18(Xi))

Mc(Li, Ri) = MLPc(R18(Li)⊕R18(Ri))

Where MLPd and MLPc are two multi-layer percep-
trons that project the central sign and the concatena-
tion (⊕) of the left and right sign respectively to a vec-
tor of the same size. The outputs of Md and Mc are
both in Rbs×vs , where bs is the batch size. Notice that,
therefore, the matrix products of equation 1 between
MLPd,MLPc respectively and C are in Rbs×cn , so
they calculate, for each image in a mini-batch, a prox-
imity to all centroids. As MLPd and MLPc operate on
vectors with different sizes and perform different tasks,
they do not share weights. R18 is the ResNet18 convo-
lutional network that we use to replace the ResNet50
present in the original implementation of DeepClus-
terv2 to reduce the number of parameters. It is shared
by both branches of the model.
Since Sign2Vecc uses contextual information to im-
prove the base DeepClusterv2 model, there are some
peculiar situations that arise. First, we need to consider
how to provide context to the model at the beginning or
end of inscriptions. For this situation, we can leverage
a peculiar characteristic of the Cypro-Greek syllabary,
which is also present in the Cypro-Minoan script: the
system uses vertical lines or dots as sequence separa-
tors, so we can simply use a random sequence divider
from the corpus to replace the beginning or the end of
an inscription in the context, since the limits of a docu-
ment also represent sequence boundaries. This random
sequence divider is chosen at run-time and altered at
every epoch for a given context, since always choosing
the same separator from the dataset would be arbitrary.
This also means that we implicitly provide the model
with some information about separators. However, di-
viders are not syllabograms and do not encode phonetic
information, so we can safely exclude them from any
further evaluation. Additionally, since they are very
frequent, specialists agree on their function even in the
undeciphered Cypro-Minoan script and they can be dis-
tinguished from other signs without any uncertainty.
Another aspect that needs careful consideration is the
fact that some signs are damaged and some inscrip-
tions are broken. In this case, when we needed to rep-
resent a damaged sign or a broken portion of the in-
scription, we generate random black dots on a white
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background at run time, using Poisson disc sampling
(Bridson, 2007). This choice was made in an effort to
reduce the effect that a fixed image representing dam-
age would have on the model, since this might lead the
model to rely on the fixed “damage” image, while the
missing signs that are damaged are variable in nature.
The usage of dots matches the conventional represen-
tation of damage used by some paleographers in their
drawings.

5. Experimental settings
In this section, we provide additional information on
the settings and hyper-parameters we use to train all our
models. The first important aspect to consider regards
the parameters used in order to obtain the augmented
versions of images during training. In our models, we
use two sets of cropped augmentations for each image,
with a relative size compared to the original image cho-
sen randomly in the ranges [0.6, 1.0], [0.4, 0.6]. The
two sets of crops are 6 and 10 for each image, respec-
tively.
We did not alter the rest of the augmentation steps used
by DeepCluster, which include a random horizontal flip
of the image and a random color distortion. It needs to
be noted, though, that while it is sensible for the Cypro-
Greek syllabary, the application of a random horizontal
flip might not be suitable in general, as it introduces
an invariance with respect to flipped images that might
be problematic. Since, however, the Cypro-Greek syl-
labary doesn’t contain distinct graphemes that are hor-
izontally flipped, we conclude that there is no reason
to drop this augmentation step. The only alteration we
made to the original augmentation is the reduction of
the strength of the color distortion by using a param-
eter of 0.1 instead of the default 1.0, considering that
we worked on black and white images and that such
a strong level of color distortion was making the signs
barely distinguishable from the background. We pro-
vide the values for all hyper-parameters used to train
the model in Table 1.
Another important aspect of our evaluation is the
choice of the number of clusters provided to K-Means
(number of prototypes in Table 1). Since we are in-
terested in evaluating the performance of our model by
simulating its application to an undeciphered writing
system, we cannot provide the model with the exact
number of signs present in the dataset. We therefore
proceed by overclustering the signs, and use a very gen-
erous estimate of 100 which should be more than any
kind of system based on the syllabograms it contains.
The fact that 100 is repeated three times in the param-
eters means that we apply K-means clustering three
times. Naturally, we also have three different output
layers for the model, one for each K-Means applica-
tion. Since the algorithm initializes centroids at ran-
dom, running K-means multiple times increases the ro-
bustness of the model and reduces the impact of the
random initialization of the centroids.

Hyper-parameter Value
Architecture Resnet18

Base Learning Rate 4.8
Batch size (bs) 16

Crops for assign 0
Epochs 100

Feature dimensions (vs) 128
Final learning rate 0.0048

Number iterations before freeze 300000
λc 0.2

Hidden MLP size 2048
Max scale crops [1.0, 0.6]
Min scale crops [0.6, 0.4]
Number of crops [6, 10]

Number of prototypes (nc) [100,100,100]
Size of the crops [80, 60]

Start warmup 0.3
Temperature 0.1

Warmup Epochs 10
Weight decay 1× 10−6

Table 1: Hyper-parameters for Sign2Vecc

Since we cannot use the number of classes during train-
ing, K-Means, which needs this information to initial-
ize its centroids, can’t be used as a clustering algorithm
to evaluate performance. We are also unable to use the
output layer of the model directly, since it overclusters
our data. We therefore use a density based clustering
algorithm, DBSCAN (Ester et al., 1996), which does
not require the number of clusters as an input, in order
to evaluate the performance of our model. The algo-
rithm is applied to the latent representations of single
signs learned by the models, given by:

Md(Xi)

||Md(Xi)||

We use the implementation of DBSCAN from scikit-
learn (Pedregosa et al., 2011).

6. Results and evaluation
To evaluate the effectiveness of Sign2Vecc on the CG
dataset, we need to perform a comparison with a Deep-
Clusterv2 model trained with the same parameters but
no context. However, we also need to adapt the model
so that DBSCAN can be applied. In particular, we note
that using oversampling is the best way to increase the
density of signs belonging to the same class, allowing
the usage of DBSCAN as a clustering algorithm. How-
ever, oversampling minority classes is not possible as
we have no access to the ground truth labels. For this
reason, we apply oversampling by replicating the entire
dataset twice. This approach allows us to obtain two
objectives: on one hand, we keep the centroids fixed
for a longer time, since every epoch is twice the length
of a standard one. On the other, we also oversample
less frequent signs when applying K-Means, thus help-
ing the clustering algorithm to detect more rare shapes
and create a cluster around them. It is worth noting that,
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Model ϵ value Adjusted Rand Index Adjusted Mutual Information V-measure
DC2, no oversample 0.05 0.30± 0.02 0.59± 0.02 0.66± 0.03

DC2, oversample 0.06 0.47± 0.02 0.68± 0.02 0.73± 0.01
S2V, oversample 0.08 0.51± 0.04 0.72± 0.02 0.75± 0.01

Table 2: Means and standard deviations for all the best clustering metrics of the three models.

Models Adjusted Rand Index Adjusted Mutual Information V-measure
DC2 with and without oversampling 1.92 ∗ 10−5 1.21 ∗ 10−4 1.71 ∗ 10−4

S2V with oversampling, DC2 with oversampling 0.01 3.60 ∗ 10−5 1.17 ∗ 10−4

Table 3: One tailed t-tests comparing the metrics obtained from the models.

Figure 4: Three dimensional t-SNE projections for sign
representations.

since every epoch and every sign is subject to random
crops, the two copies of the same sign are not identical
and therefore this method of oversampling has a posi-
tive effect on the application of K-means as well.
Before quantitatively evaluating performance using
DBSCAN, another useful output of the model is the
possibility to create three-dimensional scatter plots
from the sign representations (Figure 4), in order to vi-
sualize the distance between signs. Since both Deep-
Clusterv2 and Sign2Vecc work by minimizing dis-
tances between similar signs, the best choice for a di-
mensionality reduction algorithm is to use t-distributed
stochastic neighbor embedding (t-SNE), which uses the
Kullback-Leibler divergence between the distributions
of distances in the original space and those in the re-
duced space (Van der Maaten and Hinton, 2008). By
applying t-SNE (from scikit-learn) to the outputs of all
three models we can create three visualizations1 of the
vector space which can be used by experts to spot in-

1https://corpora.ficlit.unibo.it/
INSCRIBE/PaperCG/

correctly classified signs. To a lesser extent, we can
also qualitatively assess the improvement that we ob-
tain by applying Sign2Vecc and we see that, in gen-
eral, Sign2Vecc tends to create groups of signs that
are more separated from each other when compared
to DeepClusterv2. This is especially evident when we
compare the scatter plot from Sign2Vecc with the one
obtained from DeepClusterv2 and no oversampling, as
those have the largest difference in terms of perfor-
mance. However, evaluating performance on the scat-
ter plot alone is unfeasible, as the data is highly mul-
tidimensional and it is not always clear which model
performs best. Scatter plots are not just useful for
coarse evaluations of models. They also make for a
state-of-the-art visual tool with important applications
and implications for the paleographic study of ancient
scripts. They can provide specialists with a method for
quickly comparing large numbers of sign shapes, and,
in that way, independently postulate hypotheses about
the classification of graphemes or even identify misread
signs.

We show the improvement in performance when us-
ing overclustering with DeepClusterv2, then we eval-
uate the further improvement in performance obtained
by Sign2Vecc. In order to compare models, we retrain
each of them 10 times, in order to reduce the impact of
the random initialization of the parameters as a factor
and test for the statistical significance of the results.

Since we already use sequence dividers as a given to
replace the end of sequences, we exclude them from
the evaluation of clusters. In the same way, we exclude
numerals from the evaluation, as they are not syllabo-
grams and hence not our main focus. Moreover, the ba-
sics of the system for writing integers is largely shared
by all related Aegean and Cypriot scripts (Linear A,
Linear B, Cypro-Minoan, and Cypro-Greek).

When applying DBSCAN for our numerical evalua-
tion, however, two parameters must be established. The
first one is the minimum number of neighbors needed
for a point to be considered a core point in the algo-
rithm. Since we are using an unsupervised approach,
we cannot assume any minimum size for these local
neighborhoods, so we choose the minimum possible
value of 2. Another crucial parameter required by DB-
SCAN is an ϵ value that controls the maximum distance

https://corpora.ficlit.unibo.it/INSCRIBE/PaperCG/
https://corpora.ficlit.unibo.it/INSCRIBE/PaperCG/
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Figure 5: The elbow plots obtained from DeepClusterv2 with no oversampling, DeepClusterv2 with oversampling
and Sign2Vecc with oversampling. The two horizontal lines show the range of ϵ values we used for our evaluation.

between a vector and its neighbors to initialize the al-
gorithm. This parameter indirectly controls the number
of clusters that will be created, as well as the number of
signs that are deemed to be impossible to cluster by the
algorithm. Lower values of ϵ result in a higher number
of clusters, while higher values create fewer clusters.
One of the few proposals for a heuristic to choose ϵ
is the elbow criterion (Rahmah and Sitanggang, 2016).
This method works on a vector space by first comput-
ing, for each vector, the farthest amongst its two near-
est neighbors. Then, these values are sorted in ascend-
ing order and the elbow obtained by using this method
is used to select the value of ϵ. This corresponds to
finding a point of diminishing returns, where increas-
ing ϵ does not result in many more vectors having local
neighbors.

In Figure 5 we show the elbow plot obtained by sort-
ing the maximum distance from the two nearest neigh-
bors of each sign. While this criterion is useful, in
practice we notice that when applied to approximately
27000 signs (the total number of signs x 10 models),
the elbow can be ambiguous and does not always lead
to an acceptable level of performance for all models.
Moreover, we will show that Sign2Vecc with oversam-
pling appears to tolerate a wider range of values for ϵ,
while this is not true for the non-contextual versions of
the model. While Sign2Vecc is superior to DeepClus-
terv2 in this aspect, we consider an arbitrary choice of
ϵ as unfairly advantageous to our model. Therefore,
we choose to evaluate the relative performance of the
three models over a range of ϵ values, also shown with
black lines in Figure 5. While it is debatable where the
elbows lie in this kind of figure, we use a wide range
to avoid the reliance on a single value of ϵ. Even if it
can be argued that we do not include the elbow for all
models, the results show that we do consider the best

performing values of ϵ for all of them.
To assess the clustering performance of all three mod-
els we use some standard metrics for clustering: Ad-
justed Rand score, Adjusted mutual information and V-
Measure, as implemented by scikit-learn (Pedregosa et
al., 2011). As we use a range of values of ϵ for our eval-
uation, we provide two different ways to show the im-
provement in performance obtained from Sign2Vecc:
we plot all the mean values of the metrics for the dif-
ferent values of ϵ, then we select the best value for each
model and compare them using a one tailed t-test to
evaluate the statistical significance of the observed dif-
ference in performance between models.

Figure 6: Adjusted Rand score of the three models for
different values of ϵ.

By observing the mean of each metric obtained from
the models with varying ϵ values (Figures 6,7,8), we
can clearly spot some interesting trends. First, we con-
sider a wide enough range of values for ϵ that the global
maximum for all metrics is included, while at the edges
of the plot we observe decreasing performance. When
comparing the oversampled variant of DeepClusterv2
to the non oversampled one, we can see a marked
improvement across all metrics, suggesting that over-
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Figure 7: Adjusted mutual information of the three
models for different values of ϵ

Figure 8: V-measure of the three models for different
values of ϵ.

sampling leads to a measurable improvement in per-
formance when using DBSCAN for clustering. Addi-
tionally, our Sign2Vecc model achieves the highest val-
ues. While for low values of ϵ Sign2Vecc and the over-
sampled version of DeepClusterv2 show similar per-
formance, for ϵ > 0.06 Sign2Vecc performance clearly
improves while DeepClusterv2 shows a sharp decrease
across all metrics. Also, Sign2Vecc appears to be more
stable than DeepClusterv2 across a wider range of ϵ
values. In practice, this means that Sign2Vecc is prefer-
able for any attempt at automatic clustering on an un-
deciphered script, where the number of clusters is not
known in advance and ϵ can only be chosen by using
heuristics such as the elbow method or by evaluating
the quality of the clusters manually.
Table 2 shows the means and standard deviations across
all metrics for the best performing values of ϵ of each
model. The metrics show a clear trend that reflects the
improvement of the oversampled model with respect to
the non oversampled variant, while the best perform-
ing model overall is Sign2Vecc. Table 3 presents the
results of the t-tests comparing the metrics obtained by
the various models. We compare DeepClusterv2 with
and without oversampling, DeepClusterv2 with over-
sampling and Sign2Vecc, respectively. The table shows
that all differences observed in the metrics are in fact
statistically significant (p < 0.05) even with a rela-
tively small sample size of 10 models. This, in conjunc-
tion with the aforementioned advantage of Sign2Vecc
even when considering multiple values of ϵ, shows that
using context in order to augment the vector representa-

tions obtained from DeepClusterv2 leads to improved
clustering performance that cannot be due to random
chance.

7. Conclusions
In the previous sections, we describe the peculiar chal-
lenges that are associated with the application of ma-
chine learning models to ancient writing systems, with
particular attention to undeciphered scripts. In particu-
lar, we focus on syllabic systems from the Aegean and
chose the Cypro-Greek syllabary as our gold standard,
in order to be able to create an ad-hoc system that deals
with such scripts.
We then propose an evaluation framework that can
be used to assess whether performance improvements
over existing methods can be obtained by tailoring
the approach to ancient scripts. In particular, this ap-
proach uses DBSCAN as a clustering algorithm over
the sign representations learned from neural models,
since it allows us to obtain clusters without directly
providing their exact number to the system, since this
value might be unknown in the context of undeciphered
scripts. Furthermore, we use contextual information in
an unsupervised model for undeciphered scripts called
Sign2Vecc, and prove that this model leads to a clear
improvement in performance over the baseline.
The evaluation of the different models on the Cypro-
Greek syllabary shows two interesting findings. We
observe that using oversampling can be useful when
data is scarce, as it greatly improves performance while
clustering using DBSCAN. In addition to that, we show
that including contextual information leads to a further
improvement in performance, suggesting that the us-
age of context helps the model to generalize variations
in shape of the same sign, by also considering its posi-
tion in sequences. This last finding matches the com-
mon approach used by experts, that evaluate the sta-
tus of signs by examining their position in sequences.
This work constitutes, to the best of our knowledge, the
first application of unsupervised methods to the sign
inventory of ancient writing systems, with the goal of
a future application of a similar approach to undeci-
phered scripts. In addition, it is the first method in-
tegrating contextual information with an unsupervised
neural model that directly uses the graphical represen-
tations of signs.
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