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Abstract
We introduce how the proprietary machine learning algorithms developed by Gojob, an HR Tech company, to match candidates
to a job offer are as transparent and explainable as possible to users (i.e., our recruiters) and our clients (e.g. companies looking
to fill jobs). We detail how our matching algorithm (which identifies the best candidates for a job offer) controls the fairness
of its outcome. We have described the steps we have taken to ensure that the decisions made by our mathematical models not
only inform but improve the performance of our recruiters.
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1. Introduction
Human Language Technologies had a significant im-
pact on the business of Human Resource Management
(HRM) over the past twenty years. Human Resources
Technologies (HR Tech), for instance, have leveraged
mathematical models to improve (job) recruitment-
related tasks. There are now very efficient models
to execute Natural Language Processing (NLP) tasks.
These are well suited to process and make sense of
the wealth of data (CV, resume, emails, text messages,
spoken conversations) that is being exchanged between
candidates and employers, including when a recruiter
or a recruitment agency acts as an enabler. If one takes
the example of data found in resumes, unless guide-
lines are given to the candidates by the employer or the
recruitment agency/platform, most of the time the con-
tent to process is not structured. Depending on regula-
tory constraints (e.g., data protection and privacy laws)
in the country in which the recruitment process takes
place, as well as the agreement signed by the job can-
didate prior to sharing data as part of his/her job appli-
cation, the content of the resume can or cannot belong
to the private domain. Regardless of this data being
considered private or not, its analyses as part of HRM
processes must meet several criteria including (but not
limited to):

• an ethical, fair, non-discriminatory and inclusive
job selection process;

• transparency and explainability of the mathemat-
ical models and non-algorithmic processes em-
ployed to assist with decisions;

• compliance to legal and regulatory constraints re-
lated to data privacy and protection.

Machine Learning (ML) algorithms have become a key

part of decision-making solutions across a great variety
of research and business sectors where large amounts
of structured or unstructured data need to be processed
and make sense of to inform the choices to be made.
Today, the way the most efficient ML models (like deep
learning or gradient boosting) function is often difficult
to monitor. It is also challenging to understand how the
algorithm(s) at play make decisions.

If one take the example of gradient boosting algo-
rithms, they are quite opaque, to say the least, in the
way they operate. An important issue in the research
and business sector leveraging ML is therefore to un-
derstand the decision processes and outcomes of the
mathematical models at play and which covariates are
really acting as discriminators. The challenge of un-
derstanding the “algorithmic ghost in the machine” has
been picked up by a consortium of multidisciplinary
scientists from various country who founded the field
of machine behavior: an approach consisting of using
rigorous behavioral analytics and metrics to track the
behavior of algorithms in order to identify how they
make decisions (Rahwan et al., 2019).

In the context of job recruitment, the decisions made
by ML models must be controlled, adapted and con-
sistent with the different challenges and objectives of
the individuals and/or organizations using them, as well
as complying with legal and regulatory constraints. In
the HR tech business, the outcomes of ML algorithms
must be aligned with the business sector’s best prac-
tices. This bears a legitimate question of trust and un-
derstanding, when compromise between interpretabil-
ity and performance is too often the name of game.
This constitutes a serious issue when, at least in the-
ory, no compromise should be made when it comes to
clarity of the data analysis process, ethics, and compli-
ance.
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As a temporary recruitment agency leveraging Arti-
ficial Intelligence (AI) to optimize its job matching
services, Gojob developed a proprietary job matching
machine learning solution consisting in a scoring al-
gorithm able to identify the most relevant temporary
workers for a request made by one of its clients (i.e.,
a job offer). Our algorithms are a tool for recruiters
to help them staff specific HR needs as fast and as ac-
curately as possible. It is therefore essential for our
recruiters to (i) know why a candidate’s profile is put
forward in (and by) the learning mathematical model,
(ii) to understand on which characteristics the recom-
mendation decision is being based, and (iii) to make
sure that ML algorithms operate in an ethical, inclusive
and therefore non-discriminatory fashion. These are
a must-have for the recruiter to trust the ML-powered
tools (s)he uses on a daily basis to assist with the deci-
sions to be made to deliver on his/her job. In addition,
the recruiter has to be able to justify to the job candi-
date and to the client (i.e., the possible future employer
of the candidate) why a person is deemed fit or not for
the position to be filled.
An algorithm should only be considered in light of its
performance and results according to a given set of
(more or less standard) metrics, but also while taking
into account the context in which the data processing
it operates (i.e., the decision it makes) happens. This
is why, here, in the first section, we introduce some of
the safeguards we put in place to ensure that our algo-
rithms, at the core of the daily jobs of our recruiters,
do not provide predictions containing ethical and dis-
criminatory biases. In the second section, we show
how we used a tool based on the concept of the Shap-
ley values (Shapley, 1953) to reach an acceptable level
of accuracy and explainability of the behavior of our
Machine Learning models with respect to the different
features we use for it to deliver, and keep learning.

2. Ethics and Social Artificial
Intelligence

The mission of our company is to provide access to em-
ployment to those who are seeking a job, and to of-
fer them the ability to thrive by learning new skills,
regardless of their age, gender, origin, education, or
level of professional experience. It is also our mis-
sion to provide our clients with the best job applicants
for the positions they need to fill. Non-discrimination
and limited opportunities to learn are major issues blue
collar workers face on a daily basis. To date, there
is no satisfactory solution available to address this is-
sue, either in Europe or in the US, where Gojob is lo-
cated. This is what lead to our strategic business de-
cision to have a specific focus on young individuals
who are Neither in Employment nor in Education or
Training (NEET) in the retail, logistics, and manufac-
turing industries. There are unfortunately over 2 mil-
lion people referred to as NEET in France, 10 million
in the United States of America (OCDE, 2017). We

use our technology to ensure a successful first work ex-
perience (or return to work) with our client (i.e., future
employer) through training, mentoring, mobility and fi-
nancial services, while measuring the results after six
months based on a set of given criteria: namely the
NEET has worked more than sixty days over a period,
has signed a contract for a temporary job that lasts more
than thirty days, has created their own job or is in train-
ing. In 2021, our company has staffed 43% of NEET
people as part of temporary job missions, out of ap-
proximately fifteen thousand temporary workers (who
work on average 5% more hours than other temporary
workers).
Given this context, we want to ensure that no particular
group is discriminated by our mathematical models and
algorithms. Our proprietary database is constituted of
applications made by temporary workers in France who
are voluntarily and willingly applying for jobs. The
atomic item is composed by the set of attributes related
to a temporary worker, the set of information related
to the job description to which the candidate could (or
would) apply for and a label which describes the out-
come of the application.
For example, our hypothesis is that applicants who
need a residence permit to be allowed to work are more
likely to be negatively affected by the model because of
a possible bias in our database. The same thing goes for
other sensitive attributes (age, gender, nationality, etc.).
Therefore, we use dummy variables to categorize, de-
tailed in previous works (Delecraz et al., 2022), what
we assume would be a group of candidates that would
be “favored” by the algorithm, as opposed to the group
that would be “discriminated” by:

• gender: male or female;

• nationality: French nationality or not;

• place of birth: born in France or not;

• education: has declared an education level or not;

• residence permit (RP) requirement: can work
without a residence permit or need to have one;

• age: four age groups (18–25, 25–35, 35–45, 45-
55) that we consider independently of each other
(given a group, we compare those who belong to
it against the rest of the population). We stop our
ages groups at 55 years old because the number
of candidates in our database older than 55 years
is way too low (mostly because this age group is
generally not seeking temporary jobs) to conduct
a qualitative analysis.

We conducted an analysis across these sensitive at-
tributes to assess the fairness of the outcomes pro-
vided by our ML model (based on regularizing gradient
boosting using XGBoost, an optimized distributed gra-
dient boosting library) using the FairLearn toolkit (Bird
et al., 2020), an open-source project which provides
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which proposes many methods of fairness analysis for
machine learning models. We examined how the model
performs based on the Equal Opportunity fairness defi-
nition; a metric considered in the specific scientific lit-
erature (Hardt et al., 2016) to be the more relevant one
to address this question. If Ŷ is a binary predictor of the
outcome of a worker application and Y the associated
ground truth, we consider the class 1 as the preferred
outcome in the classification task (the worker was re-
cruited). Given a sensitive attribute A indicating the
belonging to a group considered as discriminated and
Ā the belonging to the favored group, Ŷ is considered
equal opportunity with respect to sensitive attribute A
if:

P
(
Ŷ = 1 | Y = 1, A

)
= P

(
Ŷ = 1 | Y = 1, Ā

)
(1)

Before implementing a fair algorithm, we analyzed the
data to observe possible biases towards and/or under-
representation of some categories. We observed that
the distribution of the label is not the same across sensi-
tive attributes. All the work related to this subject is de-
tailed in a previous article (Delecraz et al., 2022). Our
analysis shows that our model never exceeds the 5%
True Positive Rate Parity (which is the absolute value
of the difference between the two probabilities in equa-
tion 1). Of course there is no threshold that defines if
a model is fair or not. In the literature, depending on
the application, we find references to thresholds rang-
ing from 5% to 20%. In our case, we take these first
scores as a starting point and of course aim at a score
of 0%.

3. Explainability of the Outcomes of
Machine Learning Model

Machine learning models are designed and used to opti-
mize a metric or a cost function. In the case of our ML-
based solution to assist in job recruitment tasks, know-
ing that our model considers a candidate as relevant to a
given offer is not enough. We need to give the recruiter
a minimum amount of insights and information when
(s)he reviews the profile of a job candidate, in order to
understand which variables were particularly discrimi-
nating, either locally or overall. Our intent is to actu-
ally understand the rules the algorithm has generated,
not just how the algorithm functions. Understanding a
model consists in analyzing how it works as a whole, in
a given context, that is to say through the input data, the
algorithm itself, the output predictions, the weights the
model gives to different features, the distributions of
different variables and the effect the model gives each
one.
It is therefore important to know the “why” of a pre-
diction and to identify the instances where the model
is flawed. In particular, the model can make (rightly or
wrongly) unexpected decisions, and it is therefore es-
sential to understand what has influenced the prediction
in one direction and what could have influenced it to go

the other way. A better understanding of the model can
sometimes lead to a better understanding of the prob-
lem (or question to answer) and to the discovery of new
subtleties. Molnar (2020) give a good explanation and
broader vision of the explainability issues at play.
Machine Learning techniques are destined to become
more and more widespread and to intervene very regu-
larly in decision-making processes in professional and
personal settings. Today, the most efficient models
are not easy to interpret and there is a lack of visibil-
ity on how their decision processes operate. For ex-
ample, gradient boosting algorithms are quite opaque.
An important issue is to understand the decisions out-
put of our model and which covariates are really dis-
criminating. In a context focused on recruitment,
the decisions made by the model must be controlled,
adapted and consistent with the different challenges.
It should be noted that the decisions must be aligned
with the business knowledge. This is a true question
of trust and understanding, and the compromise be-
tween interpretability and performance is not always
obvious. We used the SHAP library toolkit (Lundberg
and Lee, 2017; Lundberg et al., 2018; Lundberg et al.,
2020), based on the concept of Shapley values (Shap-
ley, 1953). This tool allows one to have a local and
global vision of the decisions of the model in an ag-
nostic way. The SHAP value measure the participation
of a feature to the prediction. For each prediction of
our model, we compute the SHAP value for each of its
feature.

3.1. Global and Local View
We have adopted two different observation positions to
try to explain the decisions of our model. A close up
view explanation can provide a clear view. In particu-
lar, a global view can give the impression of complex
dependencies on a given covariance, whereas a local
view can show simpler and clearer interactions. This
allows one to see what might change in the output if
the input changes slightly. Yet, a helicopter view al-
lows one to access aggregated information as well as to
get an idea of how the model works on a group rather
than an individual. It is possible to group instances ac-
cording to the granularity we want to consider.

3.1.1. Global view
The global view allows us to quickly understand which
features matter when the model makes a decision. The
set of features we use in our model is designed to cap-
ture the different characteristics that allow us to evalu-
ate the suitability of a temp for a job offer. The SHAP
library provides a tool to examine global model behav-
ior. We report the SHAP importance compute for each
feature in Table 1. A SHAP value is computed for all
feature for each prediction. Given a feature, we com-
pute its importance by doing the average of the abso-
lute values of the SHAP values overall the predictions.
These values allow us to identify the features that, over-
all, have the most impact. Features meaning and name
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have been deliberately hidden for reasons of confiden-
tiality.

Features SHAP importance
Feature 13 0.85489
Feature 2 0.78975
Feature 7 0.48765
Feature 3 0.25791
Feature 12 0.24747
Feature 8 0.16531
Feature 0 0.16264
Feature 1 0.15541
Feature 5 0.05532
Feature 9 0.03777
Feature 11 0.02633
Feature 4 0.02554
Feature 10 0.01142
Feature 6 0.00768

Table 1: SHAP importance for each feature used by the
model.

The explainability that results from these first figures
in this global view is more useful to the teams that de-
sign the model than to the end users, namely our re-
cruiters. However, further analysis allows us to learn
more about the different features, especially those that
have a low importance in decision-making. For exam-
ple, we can deduce that features with a very low SHAP
value do not capture well enough what can be deci-
sive for a recruitment and that they should either be
improved or removed from the model. However, we
can also observe one of the weaknesses of the SHAP
tool, namely the existence of correlation between fea-
tures. For example here, we have calculated that on our
corpus of data, Feature 10 and Feature 13 have a corre-
lation score of 0.6. The model (remember that it is an
XGboost) could therefore have identified this correla-
tion and decided not to give importance to Feature 10,
as Feature 13 would allow it to obtain more or less the
same decisions.
In Figure 1 we can identify the SHAP values for each
variable. On the x-axis we can see their impact (on
the right if the impact on the prediction is positive, on
the left if it is negative). On the y-axis are printed the
different variables and ordered by the total magnitude
of their SHAP values. The color code indicates the
value of the variable (the closer the color is to red, the
higher the value, conversely blue symbolizes low val-
ues). Note that when several points are aligned hori-
zontally but scattered vertically, they represent points
that have been impacted similarly. Whereas points that
are horizontally distant but have the same color repre-
sent instances that have been impacted differently for
similar values of the variable concerned. This last case
means in particular that there was an interaction with
other variables.
By reading the feature importance in Figure 1, we can
first notice the monotonic effects that the model has

5 4 3 2 1 0 1
SHAP value (impact on model output)

feature_6

feature_10

feature_4

feature_11

feature_9

feature_5

feature_1

feature_0

feature_8

feature_12

feature_3

feature_7

feature_2

feature_13

Low

High

Fe
at

ur
e 

va
lu

e

Figure 1: Feature importance with SHAP values. For
each dot, vertical position depict the feature, horizon-
tal position indicates whether the effect of that value
caused a higher or lower prediction and the color de-
scribes the value taken in that dot.

learned for every feature. Feature 13 has the biggest
weight here and its effect is quite unequivocal. The
fact that the points are located in two small clusters
show little interaction with other features and a strong
homogeneous effect. The Feature 2 shows a more un-
even effect. Its high values have a similar impact on the
model, but the low values are more spread out. Some
latter have a more or less neutral impact, but some oth-
ers have a quite strong negative impact and take a wide
range. The Feature 2 strong importance is likely to
come from these instances rather than a really global
effect. Feature 3 has a similar behavior to the Feature 2.
However, it differentiates itself because of its negative
monotony and also because some really high values en-
dure a negative impact that is really far from the one on
the other points. In contrast, Feature 4, 10 and 6 are
meaningless for the model. The model ignores those
features, and we can say that they have little effect on
the model decisions.
We could go further in the plot reading, and it really is
a wealthy source of information. One only has to get a
good understanding of the global effects. It is possible
to discern whether a feature effect is global or focused
on some instances only. Moreover, a very important
aspect is to challenge these effects and make sure they
are aligned with the business logic. Depending on the
case a model should not base its decision on one feature
only but rather on interactions and non-linear effects.
This action permits us to find undesirable effects and
debug the model.

3.1.2. Local view
We also analyze the insights on local prediction and
visualize the effect of the different variables. In the
Appendix A, we provide a couple of examples we ran-
domly chose in the data. In the Figures 2a we will zoom
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in on some predictions. The red color indicates posi-
tive impact and the blue color indicates a negative im-
pact. Each time we can see the value of the concerned
feature. We also see the output value (negative value
means the model gave the negative class to the instance
x).
If we compare Figure 2a with Figure 2b we can see that
the outputs are appreciably similar but the reasons are
totally different. Both instances have been given the
negative class by the model. In the Figure 2a the fea-
ture that contributes the most is Feature 7 followed by
Feature 13 and 8. Here the negative impact was carried
by three features only. The other variables had a mild
positive impact. To extend the reflection conducted in
the global view part, Feature 2 (which had an increas-
ing effect on the model) has a positive impact with a
value of 0.229. This value can seem low, but the model
estimated that it had a positive impact. Therefore, a
worker corresponding to this instance should increase
his value for the Feature 2 and also for Feature 7 if he
wants to be classified as positive the next time. In the
Figure 2b, the most important feature was Feature 13 as
it was in the previous example. However, other features
have been reversed as Feature 12, 7 and 2. One can see
that according to these two examples, turning Feature 7
from 0.025 to 0.245 has a stronger impact than turning
Feature 2 from 0.229 to 0.005.
In Figure 2c, we can see that the profile was supported
by the model because of the high values for both of fea-
tures 13 and 7. In the three examples Feature 8 was low
and brought a really mild negative impact. To go fur-
ther we could explore the distribution of this variable
and in what scenarios it has a positive impact eventu-
ally.
With this type of representation, we can quickly ex-
plain to the recruiters which features have the most im-
pact on the model’s decision. In case of rejection, our
recruiters have the possibility to send feedback to the
candidate to explain the reason, or the actions that the
candidate can do to quickly increase his chances to be
qualified for the job offer. In case of acceptance, the
recruiter has explanations about the decision-making
which improves his confidence in the model. He can
also provide a detailed explanation to the client on the
relevance of the candidate to the job offer.

4. Conclusion
The study in this article shows the control we main-
tain over our Machine Learning algorithms as a so-
cial impact company. While no final hiring decision
is made by a machine alone, the choices the matching
algorithm makes must be fair and explainable to our re-
cruiters for them to make the final call. This is why we
have built into our AI-based automation process algo-
rithmic safeguards that signal possible biases (theory)
and measured biases (outcomes) as well as ways to vi-
sualize and understand what sources of information the
model’s decisions are based on. We strongly believe

that safeguards algorithms to minimize biases and dis-
crimination should become the norm when artificial in-
telligence is used in job recruitment processes.
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A. Example of SHAP value decomposition for predictions
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Figure 2: Decomposition of two negative and one positive prediction showing each feature impact with SHAP
values.
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