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Abstract
Applications involving machine learning in Human Resources (HR, the management of human talent in order to accomplish
organizational goals) must respect the privacy of the individuals whose data is being used. This is a difficult aim, given the
extremely personal nature of text data handled by HR departments, such as Curricula Vitae (CVs). We present a methodology
for the generation of synthetic CVs which reflect real-world distributions of candidate attributes while providing strong privacy
guarantees. These synthetic CVs can be used for training machine learning models instead of (or together with) the original
data. Also, our methodology may be adapted to similar types of documents, requiring the generation of a mixture of structured
data and natural language. We employ a Bayesian network to model the conditional dependencies between the candidate
attributes. The structure of the underlying graph and the conditional probability distributions are learnt under differential
privacy from an existing dataset. Then, we generate synthetic CVs by guiding the text generation of a Transformer-based
generative language model with a manually-prepared set of prompts where the attributes sampled from the Bayesian network
are plugged in. We show by way of both intrinsic (based on linguistic properties) and extrinsic (based on training a model for
a classification task using the synthetic CVs) measures that our methodology can be successfully used for machine learning
applications in HR, where anonymization is fundamental.
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1. Introduction
In Human Resources (HR) settings, Artificial Intelli-
gence (AI) and Natural Language Processing (NLP)
have the potential of offloading time-consuming tasks,
such as selecting candidates for a position, understand-
ing the skill set of the workforce, planning training and
learning activities, from humans onto machine learning
models (Ore and Sposato, 2021; Eubanks, 2022). How-
ever, machine learning models require training data;
and textual data for HR applications, such as Curricula
Vitae (CVs, or resumes), contain extremely sensitive
pieces of personal data. These have to be protected, by
means of anonymization techniques, against misuses
due to the risk of identification of the individuals (Silva
et al., 2020) described in the original CV dataset, mak-
ing it compliant with data protection regulations active
in multiple countries around the world.
With respect to anonymization, we adopt the definition
provided by the General Data Protection Regulation -
GDPR (Voigt and Von dem Bussche, 2017) - of the
European Union, which describes anonymous informa-
tion as “information which does not relate to an identi-
fied or identifiable natural person or to personal data
rendered anonymous in such a manner that the data
subject is not or no longer identifiable” (GDPR Recital
26). In our case, this means that a CV can be consid-
ered anonymized when it is not possible to re-identify
the subject that it describes.
Some of the information contained in CVs - ‘direct
identifiers’ - can be easily spotted and made anony-
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mous by way of pre-trained Named Entity Recogni-
tion - NER (Nasar et al., 2021) - models or pattern-
based (Paccosi and Aprosio, 2021) approaches (e.g. for
emails, phone numbers).
However, a second type of information, called ‘indirect
identifiers’, appear in textual data, which may lead to
the re-identification of the individuals involved despite
the absence of direct identifiers (Tucker et al., 2016).
These can be especially understood in terms of the in-
teraction of multiple pieces of information which, by
themselves, would not allow re-identification, but that
instead would do so when taken together, as an inter-
connected network. For instance, it is not easy to re-
identify a male individual by simply knowing that he
served as President of the United States of America.
But it becomes much easier if it is known that he was
born in Hawaii and obtained an undergraduate degree
from Columbia University.
It is important to anonymize training datasets because
the trained AI models with personal information may
retain certain glimpses of personal data that can later be
inferred using attacks like membership inference (She-
jwalkar et al., 2021) leading to re-identification of in-
dividuals. One may argue that AI models can still be
lawfully trained and used by the responsible entity for
data collection and processing (the so-called Data Con-
troller, in GDPR terms). But then these models must be
subject to all requirements coming from data protection
regulations (Francopoulo and Schaub, 2020).
If an individual requests the deletion of his personal in-
formation according to GDPR Article 17 “right to be
forgotten”, a Data Controller has to find a way to deal
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with a text classification model trained also on that in-
dividual’s data. Retraining the model for each and ev-
ery deletion request would be a waste of resources in
terms of time, energy and money. Anonymization al-
lows to protect trained models from such situations.

We present an approach to avoid these issues, which
consists of generating realistic synthetic CVs to be used
for machine learning applications in HR. The point is
not to generate CVs whose textual form would make it
hard for a human reader to tell whether it was created
by a computer or not; but rather, to generate CVs which
capture relevant statistical properties of the attributes of
the candidates, containing enough noise to ensure that
re-identification is not possible, but sufficient signal to
be used for machine learning applications.

This approach is increasingly common in disparate ma-
chine learning fields (Nikolenko and others, 2021), and
the closest example to our case is that of healthcare and
medicine (Chen et al., 2021), where data anonymiza-
tion is of paramount importance. Notice that our work,
despite being specific to CVs, may be in principle
adapted to other kinds of documents where a mixture
of structured data and raw text needs to be generated
while ensuring de-identification.

An additional benefit of generating training data is that
the resulting size can be as big as needed: this fea-
ture is fundamental especially for deep learning mod-
els, which require huge amounts of training data in or-
der to learn effectively.

In our approach, we start from real samples, from
which relevant attributes are extracted, and whose con-
ditional dependencies and distributions across can-
didates are modelled through a Bayesian network
(BN) (Niedermayer, 2008). Since the structure and
the conditional probability distributions are learnt from
real samples which may contain sensitive information,
we make use of a differential privacy (DP) mechanism
known as PrivBayes (Dwork et al., 2006; Zhang et al.,
2017). This ensures that the re-identification risk for
individuals can be controlled and mitigated as required.

As an intermediate step, we generate synthetic candi-
dates in the form of sets of attributes, whose condi-
tional distributions are close enough to those of real
world candidates, yet providing DP. Finally, these re-
sults are plugged into a set of linguistic prompts (Rad-
ford et al., 2019), which are presented to a generative
language model that will generate each section of the
synthetic CV (Schick and Schütze, 2021). We vali-
date our approach in two ways: first, with a set of in-
trinsic measures (Gatt and Krahmer, 2018), looking at
various linguistic properties of our generated text; sec-
ondly, with an extrinsic measurement - a candidate role
classification task - where we show that our synthetic
CVs, which avoid the risks of re-identification, can be
successfully used as training data instead of the orig-
inal, real-world, identifiable CVs, with limited loss of
performance.

2. Related Work
2.1. NLP For HR
NLP is increasingly being used in HR applications,
but its use for this specific aim is still considered to
be limited (Strohmeier, 2022). Some examples are
CV (or resume) parsing (Sinha et al., 2021), which
focuses specifically on the task of extracting informa-
tion about candidates from raw text data in the form
of CVs; automatized procedures for candidate rat-
ing, ranking (Freire and de Castro, 2021) and selec-
tion (Kmail et al., 2015), or algorithms to match CVs
and job posts (Jain et al., 2021). Notice that these ap-
proaches focus exclusively on getting the best results
for each application. They do not take into considera-
tion how to mitigate the re-identification risk involving
training data independently of the task, which is instead
the main interest of our work.

2.2. Differential Privacy And NLP
In recent years, differential privacy has become the
de-facto standard for privacy-preserving statistical data
analysis and machine learning. It provides strong, for-
mal anonymization guarantees by enforcing that the
output distribution of a randomized algorithm is not af-
fected by small changes in its input, namely the addi-
tion (or removal) of a single data point (Dwork et al.,
2006). Given its effectiveness, it has increasingly been
used in NLP as a framework for anonymization (Lyu et
al., 2020; Igamberdiev and Habernal, 2021).
A somewhat related approach to ours is that of Krishna
et al. (2021), where the authors transform a raw text
dataset by adding noise to the latent representation of
a language model, before using it for a text classifica-
tion application. However, Habernal (2021) shows that
the sensitivity of the privacy mechanism was underes-
timated thus leading to an incorrect privacy analysis.
In our case, instead, DP is guaranteed by the usage of
PrivBayes (Zhang et al., 2017), whose robustness has
been formally and empirically demonstrated, and has
been adopted in other works (Ping et al., 2017).

2.3. Generation Of Synthetic Training Data
For NLP

Given that deep learning models, the state of the art
in most NLP tasks (Lauriola et al., 2022), require a
big amount of data, which for certain linguistic phe-
nomena can be hard to gather, recently it has be-
come commonplace to either augment existing training
data (Feng et al., 2021) with synthetic data, or employ-
ing a fully synthetic dataset, after having generated it
from scratch (Schick and Schütze, 2021).
When the resulting dataset has to look like natural
text, the generation process makes often use of the re-
cently proposed generative language models based on
the Transformer architecture (Vaswani et al., 2017),
such as GPT (Radford et al., 2019) and CTRL (Keskar
et al., 2019). These models are trained to generate real-
istic natural language text, word after word. The choice
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of each new token is conditioned on the previous ones,
with extremely realistic results.

3. Our Approach To Synthetic CV
Generation

Our approach is composed of three steps: first, the ex-
traction of candidate attributes from a dataset of real
CVs, in fact transforming the CVs into structured data
entries (Section 3.1); second, the creation of a differen-
tially private Bayesian network representing the con-
ditional dependencies between the selected attributes
(Section 3.2); finally, the generation of a synthetic
dataset of CVs (Section 3.3). This final stage, in turn,
involves, for each CV to be generated, sampling a syn-
thetic set of attributes for a candidate from the differ-
entially private Bayesian network; inserting them in a
series of ready-made prompts reflecting the structure of
a CV; and finally feeding these filled prompts, sequen-
tially, to the generative language model so as to create
a coherent CV.

3.1. Information Extraction
The first step consists in the extraction of candidate
attributes from a dataset of real CVs, in the form of
raw text, using various techniques: NER and pattern
heuristics to find the attributes, relation extraction (RE)
to annotate the relationships holding between these at-
tributes and the candidate (Silva et al., 2020; Paccosi
and Aprosio, 2021). The output of this step is a struc-
tured dataset, containing the key attributes which con-
stitute a candidate profile (e.g. Alma Mater, various
features for education history and work experience,
technical skills, spoken languages). While looking at
the values of extracted attributes may still lead to the
re-identification of an individual at this stage, the sub-
sequent steps of the process will make the likelihood
of such risk proportional to DP’s ε. Importantly, direct
personal identifiers (like name, surname, email address,
social media accounts) are ignored and not included as
candidate attributes.
Notice also that the goal of this phase is to retain only
attributes over which distributions across candidates
can be learnt, and that the breadth and scope of this
phase of information extraction can vary according to
each use case.

3.2. Ensuring De-Identification: Bayesian
Networks

From this structured dataset of candidate attributes,
we build a Bayesian network, a probabilistic graphical
model which represents a set of variables and their con-
ditional dependencies as a directed acyclic graph (Nie-
dermayer, 2008). In our setting, the nodes of the graph
are the candidate attributes and an edge between two at-
tributes represents a cause-effect relationship between
them. For example, the work experience of a candidate
is naturally influenced by their education history, and
edges between the corresponding attributes would rep-
resent this dependency. We provide the visualization of

a possible Bayesian network for some simplified can-
didate attributes in Figure 1.

fieldrole age

experience education

Figure 1: Toy example of a Bayesian network for can-
didate attributes.

Each node is associated with a function that takes as
input the set of possible values for the node’s parent
variables, and gives as output the probability distribu-
tion on the node’s values. This function constitutes a
conditional probability distribution.
The structure of the graph can be learnt from data or
built a priori, while the conditional probability distri-
butions are usually learnt from data. In our case, we
learn both from data. The structure of the network or
the conditional probabilities may therefore leak some
information on an individual in the training set. In or-
der to provide strong privacy guarantees and minimize
the re-identification risk, we leverage the notion of dif-
ferential privacy.

Definition 1. (Dwork et al., 2006) A randomized al-
gorithm M : D → Z , i.e., the output of M is a ran-
dom variable, is said to provide ε-differential privacy
if for every ε > 0, for any pair of neighboring datasets
(X,X ′) ∈ D ×D that differ in one entry only, and for
every measurable Z ⊆ Z the following holds

Pr[M(X) ∈ Z] ≤ eε · Pr[M(X ′) ∈ Z]. (1)

The privacy budget ε controls the anonymization level
of the mechanism M. The smaller the value of ε, the
stronger the privacy guarantee provided, as the output
distributions are pulled closer and closer.
A standard way of providing differential privacy
to vector-valued functions is by adding Laplace-
distributed noise to its output (Dwork et al., 2006).
For functions that returns categorical values, the expo-
nential mechanism is generally used instead (McSherry
and Talwar, 2007).
These mechanisms are the main ingredients behind
PrivBayes (Zhang et al., 2017), which provides a suc-
cessful mechanism for learning the structure as well as
the conditional probabilities of a Bayesian network un-
der differential privacy. The following generation steps
will be protected against the risks of re-identification
due to the robustness of post-processing of any differ-
entially private mechanism (Dwork et al., 2006).
Once the private Bayesian network is built, we can
sample new values for all the nodes in the graph. These
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generated values follow the conditional dependencies
of the attributes and preserve the consistency and sta-
tistical properties of the original dataset up to the noise
addition which acts as a de-identification barrier. In our
case, this means that we can generate a synthetic set of
attributes for a realistic, but not real, candidate.

3.3. CV Generation Using Specialized
Prompts And A Generative Language
Model

The candidate attributes sampled from the Bayesian
network together with the artificial personal details are
then used to generate the text for each section of the
synthetic CV.
We start from the hunch that CVs can be viewed
through the lens of storytelling as strongly structured
stories: in this sense, their structure, which is very sim-
ilar across candidates, being relatively standardized,
should reflect some degree of sequentiality, coherence
and development (Popova, 2014). We therefore adapt
methodologies proposed in story generation (Yao et al.,
2019; Wang et al., 2020; Alhussain and Azmi, 2021)
involving the use of pivotal bits of story structures. We
employ them in the form of short, incomplete natural
language sentences (prompts), that we provide as in-
puts to the generative model to direct it towards a co-
herent linguistic output similar to a CV.
In our approach, we exploit the attributes generated by
the Bayesian network described in 3.2 as a way to con-
trol the text generation. The intuition is that the at-
tributes will influence the probabilities of the words
chosen by the model. Because of this, the resulting
text will describe coherently the synthetic candidate,
using a mixture of fixed attributes and real-looking text.
To give an example, given two attributes {‘University’:
‘Columbia’} and {Field of Study: ‘Political Science’},
we guide the generative model to select words which
are more probable when the words ‘Columbia’ and ‘Po-
litical Science’ are found in the previous context. Us-
ing a toy vocabulary {‘international’, ‘beach’, ‘beer’,
‘law’}, higher probabilities should be assigned by the
model to ‘international’ and ‘law’.
As we were saying above, in order to make the model
generate realistic text, before presenting the synthetic
attributes to the generative model, we further plug them
in a set of linguistic structures called prompts (Radford
et al., 2019; Wang et al., 2020). Prompts are typical
bits of sentences where the attribute would be found in
a human language (e.g., ‘I studied x at y’, ‘I worked as
p at q for r’). Since CVs contain different sections, usu-
ally with the aim of resuming the candidate’s past ex-
perience and skills in a sequentially coherent way, we
previously define an ordered list of prompts, which will
correspond to the various sections and will contain the
relevant attributes. These prompts, with the attributes
plugged in, are what will be actually presented, one af-
ter another, to the generative model as starting points
for the generation of each section of the CV.

Importantly, the generation works in a cyclical fashion,
in a feedback loop: at each step, the model receives as
input the preceding text of the synthetic CV (includ-
ing text generated by the model itself), followed by the
next prompt in the list as input. Its task is to generate
the following natural language section in the synthetic
CV. Obviously, at the beginning there is no previously
generated text, but only the first prompt.
In this way, at each section we direct the model towards
the creation of a new section conditioned on the previ-
ous ones, to ensure sequential coherence.

4. Model Implementation
In order to evaluate our approach, we implement in a
very simple use case the full pipeline we presented.
The final aim is that of generating a dataset of synthetic
CVs that can be used to train a machine learning model.
Starting from an existing dataset of CVs (Jiechieu and
Tsopze, 2021) annotated with the candidate roles (Sec-
tion 4.1), we first extract a set of candidate attributes
(universities, companies, years of experience; Section
4.2), then we learn the structure and conditional prob-
abilities of a differentially private Bayesian network
modelling the conditional dependencies between the
extracted attributes (Section 4.3); in parallel, we man-
ually create a set of prompts to be filled with candi-
date attributes generated with the BN, which we feed
sequentially to GPT-2 (Radford et al., 2019), a public
generative language model (Section 4.4).

4.1. Dataset
As a starting point, we use the dataset of real-world
CVs presented in (Jiechieu and Tsopze, 2021). In it,
direct identifiers had already been anonymized, leav-
ing however all indirect identifiers (see Section 1) in
the text. The dataset, made of around 28000 CVs in En-
glish, was collected online from a dedicated website 1.
Each CV was automatically annotated with the role(s)
provided by each applicant, to be used as its label for
classification tasks; for simplicity, in the case of multi-
ple roles, we only employ the first one. This leaves us
with a set of nine possible classification labels 2. We
do not apply any particular pre-processing to the text,
except for the removal of HTML markup.

4.2. Attribute Extraction
In order to extract the attributes for the candidates, we
use a mixture of NER and pattern-based approaches
(Paccosi and Aprosio, 2021). As a NER model, we use
Spacy’s Transformers3 pre-trained NER model (with-
out fine-tuning it), which encodes the input using
RoBERTa (Liu et al., 2019) pre-trained embeddings.

1www.indeed.com
2Software Developer, Project Manager, Java Developer,

Python Developer, Web Developer, Software Developer,
Front-End Developer, Systems Administrator, Database Ad-
ministrator, Network Administrator, Security Analyst

3https://spacy.io/universe/project/spacy-transformers

www.indeed.com
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We focus on three types of attributes: universities, com-
panies, and years of work. For each sentence in a CV,
we first extract the spans for the named entities using
Spacy; then, we only keep the organizations (labelled
’ORG’), which we further add to the candidate’s at-
tributes as universities, if the word ’University’ appears
in the span, and as companies otherwise. We extract the
years of experience with a simple heuristics, looking
for the regular expression "(\d+)\syears", con-
sidering only cases where the integers are inferior to 10
(otherwise, the expression would catch also the candi-
date age).
Ideally, each CV should contain mentions of both uni-
versities and companies - however, we find that this
is not the case. Therefore, we filter the dataset keep-
ing only the entries where we could find at least one
university or one company, and one attribute for years
of experience. This reduces the size of the dataset to
around 7000 CVs. We further assume that the levels
of education corresponding to each university follow
gradually (one university: Bachelor’s, two universities:
Master’s, three universities: Ph.D.), and we add these
accordingly as attributes to the candidate profile.
An important issue is to keep only the essential amount
of data points and attributes, in order to limit the com-
putational strain when using the Bayesian network. To
do so, first of all, we keep only the first three compa-
nies (and their matched years of experience) and uni-
versities.4

Then, to reduce the presence of attributes over which
no generalization is possible, and to keep under control
the time required to learn the Bayesian network, we set
a frequency threshold for the extracted universities and
companies. We only keep the original mentions for at-
tributes appearing at least 5 times (leaving us with 792
universities and 1048 companies), and we substitute
the entities filtered out with two generic spans (’Other
University’, ’Generic IT Company’) just to use them
as dummy features for the generation of CVs. Finally,
we also include among the attributes the applicant role,
extracted as described in Section 4.1.
Regarding direct identifiers (e.g., name, address, email,
social media links, etc.), for each realistic candidate,
we generate them as purely fake data using an existing
Python library5: the aim is just that of providing real-
istic prompts to the generative language model. Since
all these values are generated artificially and indepen-
dently of the original dataset, no data privacy is com-
promised at this step.
Finally, for training the Bayesian network, we create a
separate set, containing only the candidates having at
least one company and one university, leaving us with
a set of around 1500 CVs.

4When not enough years of work could be extracted, we
randomly generated an integer, ranging between 0 and the
minimum between 0 and the biggest number of extracted
years of experience.

5https://faker.readthedocs.io

4.3. Bayesian Network
For the Bayesian network, we use the Python package
developed by the authors of Ping et al. (2017). As in-
troduced in 3.2, we consider the following attributes in
our experiments: the applicant role; up to three univer-
sities and education titles; up to three job experiences,
with their length in years; the total number of years of
work. Regarding the conditional dependencies among
the nodes, these are learnt under differential privacy us-
ing PrivBayes (Zhang et al., 2017; Ping et al., 2017),
where we limit the maximum number of parent nodes
to 3.
The conditional probabilities are learnt from the re-
duced set of around 1500 CVs described in Section 4.2,
adding Laplace noise to ensure differential privacy, as
described in Zhang et al. (2017). As presented in Sec-
tion 3.2, the privacy budget ε controls the anonymiza-
tion guarantees. The smaller the value of this parame-
ter, the higher the noise injected and hence the privacy
guarantees provided. When learning the Bayesian net-
work, we experiment with different values of the pri-
vacy budget ε in order to investigate its effect on our
downstream classification task: 0.1 (which, following
Zhang et al. (2017), ensures strong DP); 1; 10; 10000.

4.4. Prompting The Generative Model
To generate the synthetic CVs with GPT-2, we manu-
ally define a template CV structure reflecting standard
versions of CVs, consisting of:

1. An introductory fake personal information part
(see Section 4.2), followed immediately by a short
summary of the candidate’s skills;

2. Education;

3. Work experience;

4. Linguistic skills;

5. Hobbies.

For each section, we write a set of two to five possible
prompts to randomly sample from at generation time,
so as to ensure variability. These prompts are com-
mon ways of introducing the corresponding CV sec-
tions (e.g. for education, ‘I studied x at y’, ’I attended
y, where I studied x’).
Notice that not all the sections involve attributes gen-
erated by the Bayesian network: in our case, only
sections 1 (fake personal information, candidate role),
2 (universities and titles), 3 (companies and years of
work) do. In the other cases, prompts are just generic
bits of sentences (e.g. for hobbies, ‘In my spare time,
I’) which are meant to nevertheless drive the genera-
tion towards a coherent profile. In the case of sections
2 and 3, where multiple universities and companies are
present, prompts will be generated sequentially mul-
tiple times (i.e. first for the Bachelor’s, then for the
Master’s, etc).

https://faker.readthedocs.io
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As per GPT-2 6, we use the English pre-trained
Medium model (Radford et al., 2019) available within
Huggingface’s Transformers library (Wolf et al., 2020).
We chose English as the language for our experiments
because this is the language of the dataset we used for
the extrinsic task (see Sections 4.1 and 5.2). The gen-
eration, as discussed in section 3.3, works in a cyclical
way, so as to enforce coherence among the various sec-
tions: generation starts from the prompt for section 1,
and then is stopped after 30 words (slightly longer than
the average length of a sentence in English (Sigurd et
al., 2004)); the prompt for section 2 is appended to the
result of the generation, and this whole text is fed back
as a new prompt to GPT-2, which again generates no
more than 30 words; and so on until the end of all the
sections is reached, and the CV is ready.
We generate in this way a set of 4000 synthetic CVs,
matching the training dataset of real CVs (see Section
5.2), that we will use in the following evaluation steps.

5. Empirical Evaluation
We evaluate both the linguistic quality of the CVs, us-
ing a set of dedicated metrics (Section 5.1), and their
downstream usability for machine learning, through a
classification task (Section 5.2). Results show that, de-
spite some loss in terms of performance, the generated
data which guarantee privacy can be successfully used
for machine learning, opening to a wide range of HR
applications.

5.1. Intrinsic Evaluation: Linguistic Features
Intrinsic evaluations of generated texts look at the lin-
guistic properties of the results, independently of their
effect on performance on a given NLP task (Gatt and
Krahmer, 2018). A common way of evaluating gener-
ated text is to obtain a matched set of real sentences
starting from the same input, comparing the two (an
overview of such metrics can be found at Gatt and
Krahmer (2018)) - but, in our case, this is not possi-
ble. Another one is that of asking humans to evaluate
the generated texts on a range of criteria. However, this
approach has been subject to scrutiny for its arbitrari-
ness (Howcroft et al., 2020) and, most importantly, it
does not apply to our case, since we are not interested
in fooling people into believing that a synthetic CV is
actually real. We nevertheless report some examples of
CVs generated with our methodology in the Appendix.
The approach we use here, instead, is that of defining
a set of automatized ways of measuring intrinsic lin-
guistic properties of the generated texts along a num-
ber of dimensions (Roemmele et al., 2017; See et al.,
2019). In doing this, we exclusively want to investigate
the quality of the generated by GPT-2 following our
prompts. Therefore, we assume that the features pro-
duced by the Bayesian network should have no effect

6We did not use GPT-3 (Brown et al., 2020), the most re-
cent version of GPT, as its pretrained weights were not pub-
licly available at the time of the work.

on this, and we report the intrinsic evaluation scores ob-
tained from the training set for ε = 0.1, which ensures
the highest level of differential privacy.
More specifically, we are interested in measuring, on
the one hand, the lexical diversity and refinement of
the generated texts, and on the other, their syntactic
complexity. We want to do so because the prompts for
the type of text we are generating, CVs, are less open-
ended than prompts for other genres. We suspect that
this may negatively impact the generation abilities of
GPT-2, making it turn towards repetitive, oversimpli-
fied, shallow output.
We therefore adopt a set of measures from Roemmele
et al. (2017). First, given that high-quality writing
has been associated with the presence of more diverse
words and phrases (Pitler and Nenkova, 2008), we re-
port the type-token ratio (TTR), both for bi-grams and
uni-grams, computing it within each CVs and then av-
eraging the results.
Second, since lower frequency words indicate a more
advanced output (Crossley et al., 2011), we compute
the average word frequency of the generated words,
using as frequency estimates, token occurrencies from
a dump of the English version of Wikipedia, consider-
ing only words appearing at least 10 times in the whole
corpus (Roemmele et al., 2017).
Finally, we turn to noun phrases (NPs) and verb con-
structions as indicators of syntactic complexity, and
therefore richer text (McNamara et al., 2010). We look
at the average ratio of NPs and verbs over sentence
length, and at the average number of tokens con-
tained in each type of phrase or construction (in
the case of verbs, we measure the length in tokens of
the subtree in the dependency parse), again divided by
sentence length. To single out NPs, verbs and their de-
pendency parse subtrees, we use the pre-trained Spacy
Transformers model.
To provide a comparison with real-world text, we com-
pute the same metrics on a random sample of 4000
real CVs (that we call ‘Real’) taken from the dataset
of (Jiechieu and Tsopze, 2021).
Results are reported in Table 1: in general, they indi-
cate that the generated text mirrors closely enough the
intrinsic linguistic properties of real world CVs, with a
few trade-offs between the two.
GPT-2, through prompting, generates a higher number
of token types (higher TTR uni-gram), but tends to re-
peat bi-grams (lower TTR bi-gram) slightly more often
than real candidates do. In a parallel fashion, the NPs
produced by GPT-2 are more frequent (higher NP ra-
tio), but slightly shorter (smaller NP average length)
than those of real CVs; and the opposite is true of
verb constructions (verbs ratio), whose longer average
length indicate higher complexity for GPT-2 than for
real candidates. Finally, the average corpus token fre-
quency of generated and real CVs are quite close, with
GPT-2 preferring slightly more common words. This
provides an initial sanity check of our approach to the
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generation of synthetic CVs.

Generated Real
TTR uni-gram 0.071 0.043
TTR bi-gram 0.249 0.334

Average word frequency 11.42 11.03
NP ratio 0.296 0.249

NP average length 0.067 0.0827
Verbs ratio 0.085 0.093

Verb-subtree average length 0.582 0.411

Table 1: Results for the intrinsic evaluation tests

5.2. Extrinsic Evaluation: Applicant Role
Classification

5.2.1. Methodology
To evaluate to what extent our synthetic CVs can be
used for downstream machine learning in HR applica-
tions, we exploit the labeled dataset that we obtained at
the end of the process described in Section 4.2.
Remember that each CV comes with the role of the can-
didate provided by the candidate themselves. This will
be the label for our classification task, which we call
Candidate Role Classification, and that can be con-
sidered as an automatized recruitment task, similarly
to CV-job description matching or candidate recom-
mender (Zaroor et al., 2017; Lamba et al., 2020). As
introduced in Section 4.1, there are nine labels in total.
We randomly split the 7000 real CVs containing at least
either one university or one company, and one explicit
mention of the years of work (see Section 4.2) into a
train set of 4000 CVs and a test set of 1000 CVs (equiv-
alent to a 80/20 split), leaving 2000 CVs on the side as
a potential development set, that eventually we do not
use.
We do not apply any pre-processing to the generated
text, except for the removal of the direct identifiers -
the fake personal information (cf. Section 4.2) - as they
are just noise: they are purely random tokens and have
no relation with the classification label.
Since the aim of our work is not obtaining the high-
est score possible, but rather validating our approach
within a machine learning framework, we train and test
two different general-purpose classifiers based on word
embeddings, widely used in the field of NLP.
The first one is the fastText (Joulin et al., 2017) clas-
sifier, which builds upon the CBOW model of fastText
(Bojanowski et al., 2017), employing both uni-grams
and n-grams to efficiently learn to perform text classifi-
cation. We train the model for 100 epochs using default
parameters.
The second one is instead based on BERT (Devlin et
al., 2019), a pre-trained contextualized language model
which has been shown to excel at a wide range of NLP
tasks (Rogers et al., 2020). We fine-tune the BERT
large cased model for text classification with Hugging-
face’s Transformers library, for 10 epochs, with default
parameters.

5.2.2. Results
We report the results in Table 2. The table shows the
weighted F1 scores obtained against the real CV test
data using three different training data - real, generated,
and augmented (merging generated and real) CVs.
The first case, that of real CVs, constitutes an up-
per bound on the classification performance, given that
train and test have similar, human-generated, linguistic
form. Instead, in the second case, where the training set
is fully synthetic, the model faces a greater challenge,
in that it has to learn to abstract from the surface form
of the synthetic CVs, which is different from that of the
real ones, in order to be able to learn.

BERT fastText

Real CVs
0.88 0.81

Generated
ε = 10000 0.71 0.75
ε = 10 0.71 0.75
ε = 1 0.73 0.74
ε = 0.1 0.73 0.68

Augmented
0.89 0.81

Table 2: Results for the extrinsic evaluation on Candi-
date Role Classification

Despite a certain loss in performance against the upper
bound, which is to be expected, CVs generated with
our approach can provide good performance (remem-
ber that there are nine possible classes - random base-
lines, at around 0.11, are reported in Figures 3 and 4).
Most importantly, they do so while providing differ-
ential privacy, which is an extremely important added
value, if not a necessary requirement, in the case of HR
applications for NLP models.
Also, augmenting the dataset of real CVs with synthetic
CVs gives a marginal advantage to the model. This
seems to suggest that our methodology for the creation
of training data may be of particular interest in cases
where a big training set needs to be bootstrapped from
a small dataset of CVs, and where there are no strong
constraints on differential privacy. In such cases, the
real and the synthetic sources of training data can be
used together.
By closely inspecting the results, however, no clear de-
creasing trend emerges as more noise is added through
the ε parameter. This is surprising, as one would ex-
pect that the gradual addition of noise, pushing further
apart the distributions of the attributes across training
and test set, should negatively impact classification per-
formance. We interpret this as suggesting that the lion’s
share of successful classification is due to the prompts
and GPT-2, and not so much to the features generated
by the Bayesian network - at least for our current clas-
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sification task, and for the attributes we have chosen.

BERT BERT
masked random

Real CVs
0.65 (-.23) 0.12

Generated
ε = 10000 0.55 (-.16) 0.11
ε = 10 0.56 (-.15) 0.1
ε = 1 0.54 (-.19) 0.09
ε = 0.1 0.57 (-.16) 0.08

Augmented
0.64 (-.25) 0.13

Table 3: Further analyses for Candidate Role Clas-
sification with BERT: providing an empirical random
baseline, and measuring the effect of removing explicit
mentions of the candidate roles in text. We report the
scores, together with the loss in performance from the
original setting within brackets.

fastText fastText
masked random

Real CVs
0.75 (-.06) 0.11

Generated
ε = 10000 0.58 (-.17) 0.1
ε = 10 0.58 (-.17) 0.18
ε = 1 0.55 (-.19) 0.13
ε = 0.1 0.62 (-.06) 0.2

Augmented
0.71 (-.10) 0.12

Table 4: Further analyses for Candidate Role Classifi-
cation with fastText (same table structure as Figure 3).

However, we reckon that if the overall generated text,
and not simply the mentions of the attributes, is the
most important part of the training procedure, classi-
fier performance could be driven by simple heuristics,
as is sometimes the case in NLP tasks (Rosenman et
al., 2020). In our case, in particular, the models may
be simply looking for explicit mention of the candidate
role in the generated text.
In order to investigate whether this is the case, we per-
form an additional ablation-style analysis, where we
first remove from the training set explicit mentions of
a CV’s label, and then re-run the classification. More
specifically, we mask explicit mentions of a CV candi-
date role by a generic mention ‘worker’ in the gener-
ated training sets (e.g. instead of ‘I was employed as a
Java Developer at’, the CV would appear as ‘I was em-

ployed as a worker at’). Results are reported in Table 3
and Table 4, under the mention ‘masked’.
To show that performance is well above chance,
we also report empirical random baselines (‘random’
columns in Figures 3 and 4), which fluctuate around the
theoretical random baseline of 1/9 = 0.11. They were
computed by averaging the results of 100 train/test runs
obtained after randomly permuting the nine labels of
the training set.
When masking mentions of candidate roles, scores de-
crease in all cases. This indicates that both BERT and
fastText classification models make use of the explicit
mention of the class. BERT is affected more (average
-0.19). fastText, instead, seems to be slightly more ro-
bust to our ablation-style manipulation (overall average
-.13). Despite this loss in performance, however, scores
remain well above the random baseline reported.
This validates our approach: it confirms, by looking at
the cases where the synthetic CVs are involved (Gen-
erated and Augmented), that our generation procedure
can create training data which encodes semantic infor-
mation which is coherent with the candidate profile and
role. Also, the robustness of our approach with re-
spect to the noise injected in the probability distribu-
tions seems to promise that strong privacy constraints
can be respected.

6. Conclusion
We have presented and empirically validated a method-
ology for the generation of synthetic CVs which reflect
real-world distributions of candidate attributes while
providing anonymization.
Synthetic CVs are interesting from two points of view.
First, they are relevant for developing HR applications
in compliance with personal data protection regula-
tions, especially when powered by machine learning
models. Secondly, they are a type of document that,
in order to be generated, requires both structured data
and raw text: therefore we expect that work on the gen-
eration of CVs could be adapted in principle to other
similar types of text.
Our approach makes use of three stages: application
of NLP techniques to extract candidate attributes; us-
ing Bayesian networks in order to learn the conditional
dependencies between the attributes under differential
privacy; and finally generating synthetic CVs by driv-
ing the generation of a Transformer-based generative
language model through a manually-prepared set of
prompts where the attribute sampled from the Bayesian
network are plugged.
Evaluations based on linguistic properties indicate that
the generated CVs have good-enough linguistic quality,
and a machine learning evaluation (training a model for
a classification task using the synthetic CVs instead of
the real ones) shows that our approach, which provides
differential privacy and a potentially unlimited amount
of training data, offers promising performances for ma-
chine learning applications in HR.
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Appendix: Examples of Generated CVs
We report three examples of synthetic CVs, generated
using the methodology described above. To distinguish
them from the text generated by GPT-2, manually writ-
ten prompts (see Section 3.3) are reported in grey ital-
ics. The CVs were generated using a value of ε = 0.1,
which ensures the highest privacy guarantees (see Sec-
tion 3.2).

1. Personal Details Name: Mariola Keudel Nation-
ality: DE Address: Holtstr. 4/9 78091 Sebnitz
Country of residence: DE Phone number: 08775
002138 Email: mkeudel@hofmann.de Field of ex-
pertise: IT - current position: Java Developer

Summary Dedicated and focused Java Developer
who excels at helping companies gain control of
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dence: DE Phone number: 0293336135 Email:

fpeir0̆0f3@quiros.net Field of expertise: IT - cur-
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Summary With 5 years of experience working as
Database Administrator, I have worked at several
companies, such as: Microsoft, IBM, HP, Dell and
HP Zellers.

Work Experience and Career My responsabilities
as Database Administrator at IBM include: Pro-
vide troubleshooting for database backups.

Studies and Education I pursued a B.A. in Com-
puter Science at University of Cincinnati studying
Computer Science and Engineering.

Computer and Technical Skills I have experience
with Windows 8 and Microsoft Office Suite 2015.
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tire Java development cycle from the very early
days until the early years of its release in Java EE
6.

Studies and Education I pursued a B.A. in Com-
puter Science at Cornell University studying Sys-
tem Administration and Computer Systems.

Computer and Technical Skills My technical
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