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Abstract
This paper identifies novel characteristics necessary to successfully represent, search, and modify natural language information
shared simultaneously across multiple modalities such as text, speech, image, video, etc. We propose a multi-tiered system that
implements these characteristics centered around a declarative configuration. The system facilitates easy incremental extension
by allowing the creation of composable workflows of loosely coupled components, or plugins. This will allow simple initial
systems to be extended to accommodate rich representations while providing mechanisms for maintaining high data integrity.
Key to this is leveraging established tools and technologies. We demonstrate using a small example.

Keywords: Annotation, Representation, Corpora, Framework

1. Introduction
In this paper, we propose a novel representation that
is capable of addressing some frequent use cases that
arise during the manipulation of data and annotations
spanning multiple modalities. To the best of our knowl-
edge, none of the existing systems are capable of grace-
fully addressing them. The proposed approach is ca-
pable of handling multiple modalities of information.
However, for the purposes of this article, we will re-
strict ourselves to areas of research that deal with three
modalities: i) Natural Language Processing (NLP)
(a.k.a. Computational Linguistics (CL)); ii) Automatic
Speech Recognition (ASR); iii) Computer Vision (CV).
A fortunate side-effect of neural network methods is
an exponential growth in research on multimodal data
across various disciplines (Ramachandram and Taylor,
2017). In addition, the availability of large datasets,
and fast GPUs has made it possible for an individ-
ual without explicit linguistic, acoustic, image process-
ing, or other forms of knowledge, to assemble a sys-
tem demonstrating state of the art performance across
a wide array of “understanding” tasks. However, all
these advances have not (yet) made redundant the need
for some level of task-specific supervision. Such super-
vision is typically provided through a combination of
gold standard and predicted annotation layers. Over the
past two or three decades, each community has made
significant progress in terms of the tools and represen-
tations that allow the capture of multiple layers of an-
notations within their subdomain. However, the prob-
lem identified by Bird and Liberman (2001), the lack
of standards to guarantee interoperable representations
across the input signals and associated annotation re-
mains largely unsolved.
Many existing tools and methods tend to be fragmented

and brittle. Small changes in the information aggregate
can impose a substantial toll on orchestrating the har-
mony across multiple annotation layers. The typical
approach for addressing this disconnect is an ad-hoc
manipulation of information (either content or annota-
tions) at a stage lying somewhere after it is captured
and before being used for training; or pre-processing
information before the application of trained models to
unseen cases in order to ensure maximum compatibil-
ity with the assumptions made during training.
We start by reviewing the state of frameworks in Sec-
tion 2. In Section 3 we look at the collection of seri-
alizations that have been proposed over the years with
a quick look at the available tooling in Section 4 be-
fore presenting the need for a generalized architecture
in Section 5, followed by details of the architecture in
Section 6 with a Subsection 6.3 demonstrating some
core capabilities using concrete use case. We conclude
in Section 7.

2. State of Frameworks
Over time many types of annotations have been created
within as well as across the three modalities. While
some layers of annotations can be independent of oth-
ers, they typically tend to be interdependent. These de-
pendencies can range from very simple to very com-
plex. Many annotation frameworks1 have been pro-
posed over the years to enable the capture, storage
and manipulation of this information aggregate. Due
to space limitation, we will highlight only some of
them2. Following are a few notable frameworks de-

1A framework is a collection of (software) tools, libraries
and methodologies to help manage the data and annotations.

2For a more detailed information on the evolution of vari-
ous frameworks, the reader can refer to the Handbook of Lin-
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veloped over the past two decades:
• ATLAS: A Flexible and Extensible Architecture

Linguistic Annotations (Bird et al., 2000; Bird and
Liberman, 2001; Maeda et al., 2006)

• GATE: General Architecture for Text Engineer-
ing (Cunningham, 2002)

• UIMA: Unstructured Information Management
Architecture (Ferrucci and Lally, 2004)

• LAF: The Linguistic Annotation Framework: A
Standard for Annotation Interchange and Merg-
ing (Ide and Suderman, 2014)

• ELAN: A Professional Framework for Multi-
modality Research (Wittenburg et al., 2006)

• EMU: Advanced Speech Database Management
and Analysis (Winkelmann and Raess, 2014;
Winkelmann et al., 2017; Jochim, 2017)

• ANNIS; Complex Multilevel Annotations in a
Linguistic Database (Dipper et al., 2004; Götze
and Dipper, 2006; Zeldes et al., 2009; Rosen-
feld, 2010; Zipser et al., 2015; Krause and Zeldes,
2016)

GATE was probably one of the first comprehensive
suite of tools that could be used to annotate and tag
linguistic information on text. It was created during the
heyday of the Java programming language. The GATE
ecosystem has evolved over time and is currently being
overhauled to use cloud architecture. Unfortunately,
the new version is not available for testing yet.
As for UIMA, its strong coupling with the Java pro-
gramming language has had a severely negative impact
on its user base as Python has emerged as the language
of choice for most popular frameworks across NLP,
speech and video. The underlying Common Annota-
tion Structure (CAS) which claimed to address various
interoperability issues through the creation of a type
system did not live up to the hype.
The Linguistic Annotation Framework (which includes
GrAF) is designed with the assumption that all annota-
tions should be represented as graphs and manipulated
using various graph algorithms of minimization, trans-
duction, etc. LAF (and GrAF) framework is not being
actively developed but is being adopted by the Text-
Fabric3 that is using it for curating corpora of ancient
texts.
ANNIS, in combination with PAULA XML and Salt-
NPepper has an active, large community. The Salt-
NPepper modules play a similar role in the ANNIS
framework—somewhat akin to the role SQL plays in
the database landscape. It handles multiple modalities
using a pluriverse approach where multiple disparate
layers of different annotations and variations within an-
notation schemata for similar phenomena.
One other notable example is the OntoNotes cor-
pus (Weischedel et al., 2011) which used a relational
data model (Pradhan et al., 2007), to capture inter-

guistic Annotation (Ide and Pustejovsky, 2017)
3
https://github.com/annotation/text-frabric

and intra- layer connections and delegated constraint
checks to its ACID4 conformant engine. Individual
layers of annotations were independently serialized
in separate files with minimum inter-layer data cou-
pling (Pradhan and Ramshaw, 2017). Unfortunately,
it did not see adoption outside the project itself. Recent
introduction of data versioning systems (DVS) and the
use of Data Frames for representing such information,
seem to reinforce the importance of an underlying rela-
tional data model.

3. State of Representations
In the previous section we looked at some annotation
frameworks. Over the years, there have been large
scale initiatives such as the Text Encoding Initiative
(TEI) (Ide and Véronis, 1995) and international stan-
dardization efforts such as the ISO TC37 SC4. The
NLP community has seen numerous annotation for-
mats over the years, with the general consensus that
they are best represented using some graph formalism.
The requirements of such formats can vary quite a bit
depending on whether it is being used during the cre-
ation of complex annotations or whether a stable ver-
sion of this is used for training machine learning mod-
els, or for purposes of teaching. In the first case where
the users are creators of some complex set of anno-
tation, it is important to have a rich set of tools and
representations to address the issues that creep over a
lifetime of an annotation project, such as evolution in
guidelines which can necessitate retroactive updates to
annotations in order to create a consistent body of an-
notations. On the other hand, (typically read-only) con-
sumers of annotations don’t need to understand or deal
with data complexities that don’t impact its use. We
cannot cover a complete history of work in this area,
but will discuss a few notable cases.

• The LAF, GrAF, TCF and LIF family—The
Linguistic Annotation Format (LAF) (Ide and Ro-
mary, 2004) and its successor—Graph Annotation
Format (GrAF) (Ide and Suderman, 2007) primar-
ily used XML.

• NXT—Short for NITE XML Toolkit (Calhoun
et al., 2010; Carletta et al., 2005), where NITE
stands for Natural Interactivity Tools Engineering,
is a multi-level, cross-level and cross-modality an-
notation representation, retrieval and exploitation
of multi-party natural interactive human-human
and human-machine dialogue data.

• EAF—ELAN Annotation Format (EAF), is an
XML based data serialization format is part of a
larger Abstract Corpus Model5 (ACM).

• AG—This is the annotation graph XML format
used by various tools to create and manipulate in-

4In computer science, ACID (atomicity, consistency, iso-
lation, durability) is a set of properties of database transac-
tions intended to guarantee data validity despite errors, power
failures, and other mishaps.

5
http://emeld.org/workshop/2003/brugman-paper.html
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ternally to store various corpora by the Linguistic
Data Consortium which are typically released as
simpler representations.

• TextGrid—This is the underlying format for files
created and used by the Praat tool6 (Boersma and
others, 2014)—probably the most popular tool
used by researchers and students for the study of
computational phonetics.

• CHAT—This is the serialization used by the
CLAN programs that have evolved over the years
as part of the CHILDES project (MacWhin-
ney, 2014) which has grown to become a larger
collection—the TalkBank. This also has a task
specific nature.

• The CoNLL-* family—The Computational Nat-
ural Language Learning (CoNLL) shared tasks
initiated a culture of yearly international evalua-
tions, starting in 2002, to promote consistent and
replicable research. The initial data representation
was in the form of a space (or, tab) separated ta-
ble of columns one of which being the words and
the other being a sequence of labels that identified
various annotation classes such as base phrases,
named entities, etc. Each year, a new task typ-
ically added one or more columns to this table
creating what came to be widely recognized as
CoNLL (column) format.
The Universal Dependencies effort (De Marneffe
et al., 2021) started as a project for representing
dependencies across many languages in a consis-
tent fashion. This group embellished the CoNLL
format, starting with version that represented
dependency trees, and gave it a new moniker
CoNLL-U (Universal). The Universal Dependen-
cies effort has spawned off-shoots in coreference,
morphological layers, named entities, etc. and has
become the consumer favorite. Notable extensions
to this are CoNLL-UA (Universal Anaphora) and
CoNLL-UP (Universal Propositions). There have
been recent updates to this format to allow the in-
jection of useful metadata.

• Symbolic Expressions—One of the oldest, large
scale and successful annotation projects—The
Penn Treebank (Marcus et al., 1993) used
Lisp-like symbolic expressions (S-Expressions or
sexp) to represent syntax trees. A variation of
such formalism called the PENMAN (Kasper,
1989) notation was used for defining the Sug-
gested Upper Merged Ontology (SUMO) (Bate-
man, 1990; Bateman et al., 1990). This has seen a
recent revival in the Abstract Meaning Represen-
tation (AMR) project (Banarescu et al., 2013).

We can see that over the years many task agnostic
formats were based on a larger ecosystem of serial-
ization technologies such as XML, and have recently
seen some evolution to use JSON, as a result of the

6
https://praat.org

growth and significance of the world wide web. Two of
these formats—TextGrid and CHAT—addressed spe-
cific tasks in the humanities discipline. They were not
designed to be extensible which led to some backwards
incompatibilities. Also since they don’t have a formal
grammar, it is harder to write tools to manipulate them.
Finally, somewhat surprisingly, defying all principles
of database theory, the CoNLL family of formats,
which are essentially a collection of single unnormal-
ized, tables of data, has become the most widely used
format by most NLP researchers. And we are seeing
some resurgence in the use of symbolic-expressions to
represent rich graph structures.
The data formats for storing binary data such as au-
dio and video signals is a completely different branch
that has seen various proprietary and open source stan-
dardizations somewhat akin to the evolution of the Uni-
code standard for text. Most of the annotation formats
that deal with audio and video information use offsets
into this data typically as time points/intervals possi-
bly along with a spatial specification commonly in the
form of a pair of coordinates bounding box (or, bound-
ing rectangle) for two dimensional signals which are
the most commonly used ones7.

4. State of Tooling
Although we are going to focus on architecture in this
article, it is very important to acknowledge the fact that
availability of right tools and libraries plays a crucial
role in minimizing the inertia in its adoption and evo-
lution. Unfortunately, creation of novel architectures
and toolings is also one of the least funded areas8. For
a very recent and thorough survey of of tools that are
available for various document annotation phenomena
we refer the reader to Neves and Seva (2021). They
list some 60 tools and thoroughly evaluate 15 of them
using 26 criteria that cover multiple aspects of the an-
notation and tooling requirements. It is evident that
many tools have been moving to use the web and cloud
based architectures but are mostly centered on a graph-
ical user interface. One tool—SLATE- (Kummerfeld,
2019)–that stands out from others by catering to a niche
user base—an expert—someone who prefers a com-
mand line interface.

5. Case for a Generalized Architecture
It would be helpful to reiterate that one of the impor-
tant lessons that the community–specifically the ones
evolving a science of annotation–has learned over the
past couple of decades is that the most robust abstract
representation of a many different kinds of (or, layers
of) annotations has roots in a graph formalism. The
LAF framework attempts at a representation that can
capture conflicting variations in annotation schemas for

7The discussion of three dimensional signals such as lidar
data used for autonomous driving is beyond the scope of this
discussion.

8We can only speak from experience in the area of tooling
in natural language processing research
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a given layer of annotation—the classic example being
that of difference in word segmentation across guide-
lines. They propose a way forward for merging across
layers with such variations through the use of dummy
nodes that can be resolved in multiple ways while read-
ing or serializing a specific version. The LAF archi-
tecture, however, only deals with text sources. Chiar-
cos et al. (2012) provide an elaborate discussion on the
potential complexities introduced by minor differences
in representational decisions made by individual anno-
tation schemas in a multi-layered annotation corpus.
They provide an algorithm for merging annotations us-
ing the case of conflicting token representations across
such layers. The problem gets further complicated
when the notion of temporal intervals is introduced as
described in the ExMARaLDA effort (Schmidt, 2004).
Both these efforts address special case of a class of
problems that are expected to multiply with the addi-
tion of additional modalities such as speech signals that
are a function of time; and visual information which
adds a spatial dimension to the mix. The algorithms
presented in these are engineered for many such even-
tualities on an as-needed basis. This approach is likely
to prove prohibitive in the long run. Most approaches
poorly address the need for capturing metadata associ-
ated with the data itself.
Using declarative constraint specifications, for exam-
ple, an interval algebra in the temporal domain, or us-
ing constraints on transformation of graphic primitives
in a spatial domain, could allow one to generalize the
solutions at a higher level of abstraction which could
allow the creation of a class of solutions that would rea-
sonably manage a potential explosion of checks across
possible constraint violations. Furthermore leverag-
ing developments in version control and fully persistent
data structures (Driscoll et al., 1989) and conflict-free
replicated data types (Preguiça, 2018) which have stan-
dard implementations in many languages that are very
efficient in time and space could allow room for better
integration across schema evolutions. One other issue
with the existing frameworks is their typically mono-
lithic nature that results in a steep learning curve. An
architecture that attempts to decompose the typical do-
mains into smaller sub-domains can facilitate selective
and incremental adoption by end users and also allow
for creation of flexible extensions to address edge cases
specific to a particular sub-domain.

6. Proposed Architecture
A way to handle various slices of the representations,
maybe even an individual layers locally while still al-
lowing global consistency guarantees could substan-
tially relive the cognitive load on the user, or in other
words could go a long way in managing the inciden-
tal and accidental complexities of the tooling, which
would be even more important given the significant es-
sential complexities arising from the integration across
multiple modalities.
The architecture we propose here does claim to be a
new invention. Rather our design approach can be

compared with the evolution of the concept of the
blockchain, which as detailed by Narayanan (2017) is a
careful selection and assembling of a collection of con-
ceptual and technological innovations that happened
over the past fifty some years. The UNIX operating
system designers made a very similar claim9 (Ritchie
and Thompson, 1974). We have identified existing
tools, technologies and propose to follow well estab-
lished design principles such as, for example, separa-
tion of concerns, the liberal use of open/closed princi-
ple, and a decomposition of the domain into modules
that can be composed together in various declarative
configurations, as opposed to a monolithic design.

6.1. Design Requirements
All the design requirements that we will discuss are as-
sumed to operate over a corpus with the following gen-
eral characteristic of the underlying data and annota-
tions:

• Multiple layers of span-ed or span-less10; time-ed
or time-less11; annotations

• Multiple media types and encodings
• Different annotation guidelines
• Produced using different tools

6.1.1. Functional Requirements
Here we list some functional requirements that the for-
malism absolutely has to satisfy.

• Selective Disassembly and Reassembly—This is
an important requirement that we address in our
architecture as the example we discuss later will
highlight.

• Structured Querying Capability—One should
be able to perform structured queries spanning
media and layers.

• Ensure Synchronization after Modifications to
Layer(s)—For example, it should be reasonably
easy to propagate changes in one layer to other
layers while maintaining certain core constraints,

9“The success of UNIX lies not so much in new inventions
but rather in the full exploitation of a carefully selected set
of fertile ideas, and especially in showing that they can be
keys to the implementation of a small yet powerful operating
system.”—Ritchie and Thomson (1974)

10A span-ed annotation is one that is associated with a spe-
cific text span. Named-entities, base phrases, sentences, etc.
fall in this category. Whereas span-less annotations are ones
that are not directly associated with one specific span. Typ-
ically they tend to capture relation between two or more an-
notations that themselves may be span-ed or span-less. For
example, an identify coreference relation between a set of
span-ed entities and/or events in a text.

11A classic example of time-less annotation is punctuation
in a transcript; The space between words in a transcript on the
other hand can represent many different time durations. It can
be almost negligible (given some lower duration threshold)
with an effective duration of zero, or could range from several
milliseconds to several seconds or more with a positive value
of time duration.
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• Customized Aggregation—Allow modular and
customized information aggregation strategies.

6.1.2. Non-Functional Requirements
we have identified various capabilities that would be
expected of this architecture. We have identified a few
of these that we consider to be salient and concepts that
have not so far been sufficiently exploited by existing
frameworks.

• Prefer convention and configuration over writing
custom code.

• A focus on functional decomposition across dif-
ferent modalities at both the level of data and mul-
tiple layers to promote incremental adoption.

• Allow the capture of metadata at various levels—
including metadata on the annotations themselves.

• Retain rich source context to allow for its poten-
tial regeneration.

• Allow declarative specification of entities, con-
straints and transformations.

• Rely on functional data structures which are the
underpinnings of modern version control systems

• Delegate complex constraint satisfaction require-
ments to tools like relational database engines

• Build on an ecosystem of established data ab-
stractions and libraries rather than from scratch.

• Allow customizations through special modes,
hooks and plugins .

• Adopt literate annotation practices
• Easy but powerful data importing and exporting

mechanism.

6.2. An Implementation
In this section we will cover some details of the choices
we made over possible implementations that let us ad-
here to the list of criteria that we listed in the earlier
section.

6.2.1. Convention and Configuration over Code
Convention can go a long ways in keeping information
easily understandable and shareable. Our architecture
makes very few assumptions about the data, and allows
the creation of a multi-tier configuration with sensible
defaults for a small class of typical set of roles expected
of a user, or a typical combination of modalities. The
user can decide to tune the configuration as they be-
come more comfortable using the system and in a way
that allows them to be most effective at a given task.
We will look at two example abstraction that can go a
long way in reducing task complexity and allowing for
better data consistency.

A case specialized MIME
When dealing with multiple modalities of data and a
mix of text, binary or mixed content in files, it be-
comes important to use some notations that allow the
interpretation of the file content. This is one of the
main reasons for the creation of a Multipurpose Inter-
net Mail Extensions (MIME) standard. The purpose for

creating this standard was initially to identify multime-
dia contents and to support non-ASCII text characters.
However, the degree of specification that such formal-
ism provides globally across all data can be too gen-
eral for a specific domain. In specialized domains as
in the case of natural language processing, indication
that a file contains text does not add very much infor-
mation. In the absence of standard mechanisms, the
differentiation between file formats containing various
information is made through the use of various con-
ventional names or multiple file extensions. Let’s take
a look at a few historical cases: i) The ATLAS XML
files were traditionally named with an .aif.xml file
extension; ii) The original merged representation of the
Penn Treebank parses were stored in files with exten-
sion .mrg; iii) The CoNLL shared task tabular format
used a .conll extension. The variability introduced
using (sometimes) arbitrary naming conventions flies
in the face of the concept of namespaces with a likely
origin in programming language literature, but signif-
icant enough to have been exported in other fields of
study such as computer networking, area codes and
country codes in phone numbers, zip codes, etc. The
cases are too numerous and common place to need fur-
ther justification. However, so far as we are aware,
there has not been a way of specifying important in-
formation of the quality, source, version, etc. of infor-
mation found in various annotation files—either gold
standard or manual. Typically a file containing a syn-
tactic parse is commonly named with the .parse or
.tree extension. There was a time when the land-
scape of parses was limited to Penn Treebank parses,
and a few more bits of information was enough to dis-
ambiguate the contents for the end user.

It could be a predicted parse, or a gold standard parse; a
constituent parse, or a dependency parses, etc. Even if
one knows the answers to these questions the precise
provenance might be impossible to trace as it could
be predicted parse using a specific version of a spe-
cific parser trained on a specific corpus and which (as
is traditionally the case with off-the-shelf parses) was
trained on parses after removing empty category nodes
from them.

We propose the use of a system of tags and such tax-
onomy itself can be grouped under the meta tag (pre-
fix) “NLP-” to form a category of MIME types called
NLP-MIME and possibly ASR-MIME for speech data
and CV-MIME for vision data. Most of the data rep-
resented in other modalities such as image, videos, etc.
tends to be containers of binary data, and the mecha-
nism that has been in use for decades is by creating a
plethora of file types such as .wav, .au, .mp3 for
audio, and .png, jpeg, etc. for images, and so on
and so forth. A common solution for such content was
the specification of a header at the beginning of the file
which conveyed the salient invariants for that represen-
tation. For example, a .wav file would have a header
specifying the sampling rate to be 16K, a bit precision
of 16-bit and containing a single channel. We propose
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a content hash-like framework of 10 character hashes
which can capture the important characteristic of a file,
say a .parse file.
We will use an extension of signature .uughtzzzzz -
parse to indicate exactly what kind of parse it con-
tains. In this case we use a ten character coding scheme
where the first two characters map to a table indicating
the source file—if any. And the following few indicate
the value of one specific property each as shown below:

01 (word formed using first two characters [0,1])
This is reserved for the tag for the file that was
used as the source file and was transformed—
either automatically or manually—to form the
current version. If this is the source file, then these
have a special value of uu. Letter u standing for
unset.

2 (character at index 2)
Whether the parse is a gold standard (g or an au-
tomatic c, C, d

g Gold standard Penn Treebank parse
c Output of Charniak Parser
b Output of Berkeley Parser
. ...

3 (character at index 3)
How the hyphenization was represented in the
schema for these parses

h Tokens split at most hyphens (e.g., Treebank
parses using guidelines version ...)

s Tokens split at some hyphens (e.g., an inter-
mediate inconsistent version)

n Tokens split at none of the hyphens (e.g., the
original Treebank v3 parses)

. ...
4 (character at index 4)

Whether the parse used the NML phrase tag which
was added in later versions of Treebank guidelines

t Yes, it did
f No, it did not.

...

...

If one devises a reasonable strategy of creating such
tags, and once the crucial properties of the contents are
specified in the six character tag, then the user of the
data can make several sensible assumptions about the
contents. In fact, when there is a one-to-one conver-
sion between two such tags, it can be used in a build
system that would provide various guarantee—whether
the verifiable features in the contents match the tag; ex-
actly what function or transformations one needs to ap-
ply to a source tag to generate the contents for another
tag, likely within the same layer. Such a system can
substantially reduce the cognitive overhead on uses of
the system and also allow modular functions to be writ-
ten that only rely on the specific localized information
for a particular layer.
If it feels like creating a whole category of new MIME
types is going too far, then one might want consider the

Line No. A Typical Editor Emacs 
1 # coding=utf-8 #!/usr/bin/python 
2   # -*- coding: utf-8 -*- 

 
 Figure 1: An established convention (from the early days

of UNIX, and further expanded over time) for adding useful
metadata on the first two lines of source code.

Figure 2: Example of hyphenation near right margin in a
typical typeset document. There are two parts or columns
in this figure. The left column is a snapshot of portion of
text adjacent to the right page margin. And the right column
shows the part that is adjacent to the left margin and on the
following line. Three out of nine lines have these hyphenation
artifacts marking the continuation of words on the following
line.

creation of molecular file formats12 which includes a
chemical/MIME specification.

A case for magic comments
We recommend the use of magic comments to provide
more detailed information, potentially richer and com-
plimentary to the tag classes. One of the practices or
conventions that goes long back in time is the concept
known as shebang, which would be immediately rec-
ognized by UNIX/GNU-Linux users as the interpreter
that should be involved to run the contents of that file
as a script provided the executable bit is set for that
file. This concept, which can be considered somewhat
akin to the headers in binary files, has found its way
into being used for many other scenarios—one of them
being the specification of the text encoding used in a
file as part of the UNICODE standard. A few bits of
(visually) invisible sequence of bytes, called the Byte
Order Marker13 (BOM) is used to indicate the specific
encoding used by a text file. The mechanics in various
situations are complex and described in the UNICODE
standard. The same design principle was used in other
systems such as by the Python programming language
to indicate the text encoding of the source code used in
a Python script.

It matters where and in what form data originates
NLP is a relatively new field that has seen an explosion
in interest over the past several years. Most researchers
made a very simplifying assumption that source text is
born as tokens. This recently raised interesting issues
leading to the introduction of shared tasks that started
with raw text.

12
https://en.wikipedia.org/wiki/Chemical file format

13
https://www.unicode.org/faq/utf bom.html#BOM
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Raw text in its unsegmented/untokenized form is still
not usually the root source of the text. Much of the
text that is part of the word layer of various corpora
typically is in the form of some markup which is inter-
preted by the end application and is not visible on the
interface. To take a few examples, most PubMed arti-
cles are available as a XML documents that adhere to
a specific schema. This text can contain various details
such as emphasis markers, subscripts, superscript, for-
mula, tables, etc. However, most annotation projects
strip that out while preparing data for annotation. A re-
sult of this is that the consuming learning algorithm or
system often does not have access to all the information
encoded in the source document. This can be good in
some cases but in many cases it results in the prediction
algorithm having to re-learn structure and properties of
the text which it could have otherwise used to learn use-
ful patterns. Recent iterations of CoNLL-U files have
started keeping such information in the headers.
Figure 2 demonstrates another special case that is typi-
cally encountered when annotating scanned text. When
scanned text is used as a source of annotation, it is a
typical practice to clean up such artifacts. However that
results in loss of useful information.
What we propose to do is keep track of all such infor-
mation in a way that it can be cleaned when necessary,
but can also be accessible to the learning algorithms.

6.2.2. Appropriate Level of Functional
Decomposition

We use the command design pattern that has been cen-
tral to generations of version control systems, but was
likely made popular, and has been expanded by the
git version control tool. This allows for a creation
of tools that focus on several top-level domain decom-
posed (potentially hierarchically) reasonably indepen-
dently of each other while ensuring that the resulting
artifacts can be aggregated to form a consistent whole.
One can design custom workflows that take into con-
sideration the nature of segmentation of a typical user
base such as the annotator, the data consumer (e.g., for
training machine learning models), a linguist, a pho-
netician, the schema designer (with less programming
expertise), the power user (who can write new plugins
and custom workflows), to name a few. For the power
user the architecture allows for creating and storing fre-
quently used or infrequent but complex stages of data
transformations or searches that can be executed easily
later.

6.2.3. Built on top of Giants—Emacs,
Emacs-Lisp, Org-mode, Babel, etc.

We decided to use the time tested decisions on repre-
senting text and other media that went into the design of
the programmable editor—Emacs14. It is important
to clarify that the architecture is not tied to the Emacs
editor. Emacs-Lisp15 (Monnier and Sperber, 2020) is
a dialect of lisp with a special focus on programmatic

14
https://emacs.org

15
https://cemantix.org/links/emacs-lisp.html

text editing capabilities. Its extensive documentation16

details the numerous text and data encoding decisions
that were made with its evolution and which we can
simply adopt.
We try to highlight some aspects of emacs-lisp that are
of particular import in this context:

• Homoiconicity—This is a fortunate side effect of
using a lisp dialect. The ability to treat data and
code interchangeably can be very powerful.

• Extreme Configurability—As part of its core de-
sign principle, the data represented and processed
using emacs-lisp is extremely configurable. There
are several layers of configurability that can be a
very powerful tool.

• Hooks—One of the fundamental design princi-
ples which also is its strength is the care taken in
capturing various events that alter states of data
and which allow for insertion of hooks that get au-
tomatically triggered helping one create an auto-
mated way of describing and ensuring validity of
constraints.

Another important component is the orgmode17 library
that can be used to represent active documents which
is touted to be a great format/library for conducting re-
producible research(Schulte and Davison, 2011). It’s
core functionality can provide many features that could
a general framework such as this one. Given the space
limitations, We will highlight a few functionalities that
directly contribute towards our goal.

• Rich Document Representation—orgmode is
sometimes referred to as Org Document as one
can consider it to be a set of tools to create rich,
structured documents.

• (Programmable) Structured Editing—It is a
kind-of markdown language that is designed with
structured editing in mind

• Rich API—The org-element.el library pro-
vides a rich set of functions and allows for cus-
tomizing connections between various pieces of
information through a mechanism of mixing and
matching (hierarchical) inheritance of information
(properties or key-value pairs) with a hierarchical
tag structure that can provide an immensely pow-
erful representation of information.

• Rich Set of Plugins—It has a very rich set of plu-
gins that provide a rich collection of search and
filtering libraries that can be used to search and
manipulate the data structures.

• Literate Programming (and therefore Literate
Annotation)—Another sub-ecosystem of plugins
are based on the babel library (another important
component of the emacs ecosystem.) This com-
bination opens up potential for a practice of liter-
ate annotation where one can potentially annotate

16The emacs-lisp manual is very comprehensive spanning
some 1200 pages and regularly maintained.

17
https://orgmode.org
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Rich Transcript  Um {lipsmack} and that's it. {laugh} 
Input to Syntactic Parser  Um and that 's it . 
Output of the Parser  (S (INTJ (UH Um))  

   (CC and) 
   (NP (DT that))  
   (VP (VBZ 's) (NP (PRP it))) 
   (. .)) 

   
 
 
 

Figure 3: Level of information from a syntactic parse as
expected by a syntactician.

annotations—among other capabilities.
We refer to the specification using a recursive acronym
YAMR18—YAMR Ain’t Meaning Representation.

6.2.4. Relational Data Model—The Force is Still
Strong

Separation of concerns is another important design de-
cision that plays a part in this architecture. One can
incorporate local constraints easily through the use of
hooks but complex constraints are best delegated to a
database engine using a database schema. There was
a time when NoSQL database seemed to promise the
world, but history has shown that an absence of schema
does not make schema go away. It just reappears in
places where it is not convenient to maintain and share.
The move by Google engineers to switch Spanner,
their distributed database, from NoSQL to SQL (Ba-
con et al., 2017) architecture is a good indicator that
relational models still have their place in the world of
distributed computing.

6.3. Illustrating the Architecture
We will try to illustrate the richness and flexibility of
our architecture using two short sentences.

6.3.1. An Example Task
Let’s assume that a syntactician would like to parse the
utterance shown on the first line of Figure 3 (among
many others). In its most raw form, this string reflects
the guidelines used for transcription that marks non-
word sounds in curly braces as shown. Most of the off-
the-shelf parsers are not trained on such special tokens
representing non-words. Let’s assume that the parser
expects pre-tokenized text as input. The second line
shows a cleaned, tokenized string that can be fed to the
parser. Following that is its likely parse.
Let’s say that a phonetician would like to take a closer
look at the relation between syntax and the duration of
words, pauses, etc. In order to accomplish that, first
the utterance needs to be processed through a forced
alignment routine that tries to align audio segments to
words, non-words in the transcript and also pauses that
are longer than a certain threshold. A typical aligner
does not care about the punctuation’s in the input, and
some even expect that to be part of the data clean up
process. The forced aligner produces two new layers of
information—a sequence of timed words and a phone-
level word alignment of the audio with respect to the
transcript. The next step is to integrate the syntax layer
with the phone-level alignment. Figure 4 depicts the
same transcript but in a tabular form.

18https://yamr.org

For the purposes of this discussion the top level header
represents four layers of information. The caption de-
scribes the notations used in the table. A closer look
at the table tells us that the alignment of sequence of
symbols across the layers is not quite straight forward.
Especially the fact that the time aligned words layer
does not insert an sp (pause duration) marker when the
duration is below a certain threshold. It should also be
noted that the phone-level alignment layer uses a dif-
ferent scale than the use of seconds by the timed word
layer. It is not hard to convince the reader that some
non-trivial mechanism needs to be in place for one to
integrate the syntax layer in this richer layer of infor-
mation. One could write one time script to deal with a
particular set of examples, but as far as we know there
is no good general purpose solution available to anyone
wanting to do such analysis.
The set of tools that we provide makes it easier for one
to address such cases only by filling in some config-
urational parameters, such as the fact that {LG} and
{laugh} are to be considered equivalent. In the worst
case one might have to write a few lines of custom code
if all such cases are not addressable using the configu-
ration.

6.3.2. A Serialized Representation
In this section we will try to describe and illustrate how
the serialization of the information looks like through
snapshots of the file view. One important piece to know
about orgmode is that it started as outline mode and so
there is an innate ability (when opened in emacs) of
folding (or, hiding) various levels of hierarchical infor-
mation under a specific node (called entry or headline)
in the orgmode lingua. Figure 5 shows a small cross
section of a file with a top-level Session node and its
first child that is the first utterance. The utterance itself
has multiple children nodes. The child nodes are rep-
resent either a word, a token, a whitespace or a metan-
ode. Whitespace is shown as a single underscore ( ).
These are identified using tags in the orgmode lingua
which is a alphanumeric sequence within two colons
(:). When a word and token are the same, the node can
have both tags :word:token:. Tags can be concate-
nated to one other to indicate a set.
This structure somewhat represents a variation of an
abstract syntax tree. The nodes that are tagged as
:metanode: have an associated operator. In this case
it is shows as [0R] and [AND] They are used when
traversing the tree to get a sequence of tokens that
match the users requirement. For example the three
nodes (I, , ’m) that are children of [AND] will all
be selected during the traversal provided each of them
represents a specific signature—in this case a :token:
tag—if one is trying to read the tokenized version of the
utterance.
One of the powerful features of the orgmode data struc-
ture is that one can assign arbitrary number of (poten-
tial hierarchy of) tags AND property, name-value tu-
ples and configure their inheritability. A node with
many associated properties is shown in Figure 6. We

https://yamr.org
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   Tokens  Timed Words   Phone Alignment  Transcript 

Token Start End Word  Start Time End Time Word  Start End Phone Score  Word   
(index) (char) (char)   (seconds) (seconds)   (sample) (sample)       

0 0 2 Um  30.082 30.952 um  300700000 302300000 AH1 -597.189941  UM  um 
         302300000 309400000 M 517.626770     
 2 3 sp    sp  309400000 309400000 sp -0.156736  sp   
   {LS}  30.952 31.312 {LS}  309400000 313000000 ls -896.665771  {LS}  {lipsmack} 
   sp  31.312 31.502 sp  313000000 314900000 sp -76.367462  sp   
0 3 6 and  31.502 32.102 and  314900000 316300000 AE1 -131.814972  AND  and 
         316300000 320600000 N 248.685242     
         320600000 320900000 D -30.130604     
 6 7 sp    sp  320900000 320900000 sp -0.156736  sp   
1 7 11 that  32.102 32.402 that's  320900000 321700000 DH -34.681316  THAT'S  that's 
2 11 13 's      321700000 322000000 AE1 -109.149544     
         322000000 322500000 T -150.791061     
         322500000 323900000 S 45.310963     
 13 14 sp  32.402 32.702 sp  323900000 326900000 sp -517.184387  sp   
3 14 16 it  32.702 33.182 it.  326900000 328400000 AH0 -507.279114  IT  it. 
4 16 17 .      328400000 331700000 T -731.196716     
   sp    sp  331700000 331700000 sp -0.156736  sp   
   {LG}  33.182 33.692 {LG}  331700000 336800000 lg -160.172989  {LG}   
     33.692 33.782 sp  336800000 337700000 sp 1.512673  sp   
 
 
 

                

Figure 4: Further details (in addition to the syntactic parse) expected by a phonetician. sp represents tokens identifying space
character. These are explicitly marked in the output of the aligner; {LS} and {LG} respectively are equivalent to {lipsmack}
and {laugh} as understood by the aligner. Greyed out tokens represent that they are missing from that layer. We have not
identified space characters in the transcript column as they are typically invisible to the eye.

Figure 5: The abstract tree representation of an utterance
with both the raw and tokenized versions available using ap-
propriate means of traversal.

have added some comments (not part of the org syntax)
along with the properties so that the reader can better
interpret their meaning. This framework makes use of
the concept that hypergraphs are better than just graphs
for modeling relational data (Wolf et al., 2016).
Finally, Figure 7 shows how one can switch to a tabular
view where a selected group of properties are displayed
as columns and are editable similar to a spreadsheet.
Lack of space prohibits us to go into much details but
one can customize the values for a given property to
belong to a certain list of values which makes it easier
to change them while adhering to those constraints.
In essence this forms a stream of rich nodes intercon-
nected to form hypergraphs where a hyperedges can
represent the sequence of nodes satisfying a specific
use case without destroying its relation with other an-

notations, data and metadata, thus allowing one to
potentially re-insert a transformed/enriched version of
those nodes into the (richer) consistent whole.

7. Conclusion
In this article we have outlined a novel architecture that
uses established tools and technologies as well as vari-
ous time tested design principles that could streamline
and simplify the management of multiple layers of an-
notations across various media while keeping the bar-
rier to entry quite minimal without sacrificing future
extensibility while allowing multiple versions of data
and annotations to stay alongside each other and allow
easy export of meaningful slices of the whole that are
of interest to the end user.

8. Acknowledgements
We would like to thank Prof. Mitch Marcus for pro-
viding invaluable feedback on various design deci-
sions. He suggested the acronym GRAIL connecting
this work with the Treebank parser evaluation metric—
PARSEVAL19. Thanks also to Dr. Richard Stallman
(rms), founder of the Free Software Foundation, Chief
GNUisance of the GNU Project for creating GNU
Emacs, one of the oldest, extensible free software still
under active development. This work builds on its
many, carefully designed data structures and rich de-
sign concepts. Numerous discussions with him influ-
enced the design of this representation.

9. Bibliographical References
Bacon, D. F., Bales, N., Bruno, N., Cooper, B. F., Dick-

inson, A., Fikes, A., Fraser, C., Gubarev, A., Joshi,
M., Kogan, E., et al. (2017). Spanner: Becoming a
sql system. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data, pages
331–343.

19Percival was one of the Grail knights in numerous me-
dieval and modern stories of the Grail quest.



179

Figure 6: The properties associated with one particular node—the word “What”

Figure 7: The column view which allows a columnar representation of the nodes and properties. A hyperedge with set of
node IDs 02, [03,] 06, [22,] 23, [24,] 27 represent the untokenized sentence and 02, [03,] 08, [09,] 10, [22,] 23, [24,] 29, [30,]
31 represent the tokenized version. The node IDs inside square brackets represent the whitespace nodes.

Banarescu, L., Bonial, C., Cai, S., Georgescu, M.,
Griffitt, K., Hermjakob, U., Knight, K., Koehn, P.,
Palmer, M., and Schneider, N. (2013). Abstract
meaning representation for sembanking. In Pro-
ceedings of the 7th linguistic annotation workshop
and interoperability with discourse, pages 178–186.

Bateman, J. A., Kasper, R. T., Moore, J. D., and Whit-
ney, R. A. (1990). A general organization of knowl-
edge for natural language processing: the penman
upper model. Technical report, Technical report,
USC/Information Sciences Institute, Marina del Rey,
CA.

Bateman, J. A. (1990). Upper modeling: Organizing
knowledge for natural language processing. Techni-
cal report, University of Southern California Marina
del Rey Information Sciences Institute.

Bird, S. and Liberman, M. (2001). A formal frame-
work for linguistic annotation. Speech Commun.,
33(1-2):23–60.

Bird, S., Day, D., Garofolo, J. S., Henderson, J.,
Laprun, C., and Liberman, M. (2000). ATLAS: A
flexible and extensible architecture for linguistic an-

notation. In Proceedings of the Second International
Conference on Language Resources and Evaluation,
LREC 2000, 31 May - June 2, 2000, Athens, Greece.

Boersma, P. et al. (2014). The use of praat in corpus re-
search. The Oxford handbook of corpus phonology,
pages 342–360.

Calhoun, S., Carletta, J., Brenier, J. M., Mayo, N., Ju-
rafsky, D., Steedman, M., and Beaver, D. (2010).
The nxt-format switchboard corpus: a rich resource
for investigating the syntax, semantics, pragmatics
and prosody of dialogue. Language resources and
evaluation, 44(4):387–419.

Carletta, J., Evert, S., Heid, U., and Kilgour, J. (2005).
The nite xml toolkit: data model and query language.
Language resources and evaluation, 39(4):313–334.

Chiarcos, C., Ritz, J., and Stede, M. (2012). By
all these lovely tokens... merging conflicting to-
kenizations. Language resources and evaluation,
46(1):53–74.

Cunningham, H. (2002). Gate, a general architecture
for text engineering. Computers and the Humanities,
36(2):223–254.



180

De Marneffe, M.-C., Manning, C. D., Nivre, J., and
Zeman, D. (2021). Universal dependencies. Com-
putational linguistics, 47(2):255–308.

Dipper, S., Götze, M., Stede, M., and Wegst, T.
(2004). Annis. Interdisciplinary studies on informa-
tion structure: ISIS; working papers of the SFB 632,
(1):245–279.

Driscoll, J. R., Sarnak, N., Sleator, D. D., and Tar-
jan, R. E. (1989). Making data structures persistent.
Journal of computer and system sciences, 38(1):86–
124.

Ferrucci, D. and Lally, A. (2004). Uima: an architec-
tural approach to unstructured information process-
ing in the corporate research environment. Natural
Language Engineering, 10(3-4):327–348.

Götze, M. and Dipper, S. (2006). Annis: Com-
plex multilevel annotations in a linguistic database.
In Proceedings of the 5th Workshop on NLP and
XML (NLPXML-2006): Multi-Dimensional Markup
in Natural Language Processing.

Ide, N. and Pustejovsky, J. (2017). Handbook of lin-
guistic annotation, volume 1. Springer.

Ide, N. and Romary, L. (2004). International standard
for a linguistic annotation framework. Natural lan-
guage engineering, 10(3-4):211–225.

Ide, N. and Suderman, K. (2007). Graf: A graph-based
format for linguistic annotations. In proceedings of
the Linguistic Annotation Workshop, pages 1–8.

Ide, N. and Suderman, K. (2014). The linguistic an-
notation framework: a standard for annotation inter-
change and merging. Language Resources and Eval-
uation, 48(3):395–418.
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