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Abstract
This paper presents a method for semi-automatically building a corpus of full-text English-language biomedical articles an-
notated with part-of-speech tags. The outcomes are a semi-automatic procedure to create a large silver standard corpus of 5
million sentences drawn from a large corpus of full-text biomedical articles annotated for part-of-speech, and a robust, easy-
to-use software tool that assists the investigation of differences in two tagged datasets. The method to build the corpus uses
two part-of-speech taggers designed to tag biomedical abstracts followed by a human dispute settlement when the two taggers
differ on the tagging of a token. The dispute resolution aspect is facilitated by the software tool which organizes and presents
the disputed tags. The corpus and all of the software that has been implemented for this study are made publicly available.
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1. Introduction
Training and evaluating machine learning Natural Lan-
guage Processing (NLP) systems require benchmark
corpora annotated for the NLP task being learned.
Manually curated gold standard corpora, the language
resources that are typically used to train and test such
systems, are unfortunately, costly to produce especially
in domains requiring specialized knowledge to under-
stand the text.
Our goal is to provide a large corpus of biomedical text
annotated with part-of-speech (POS) using the Penn
Treebank Tagset to facilitate the training of a deep
learning model. Our current corpus, which we call Bio-
POSTAg, drawn from full-text biomedical articles, has
5 million sentences and we continue to work toward a
corpus containing 35 million sentences. Due to the size
of this corpus, no completely manual annotation is pos-
sible. An alternative to a gold standard annotated cor-
pus is a silver standard corpus (Rebholz-Schuhmann et
al., 2010). Therefore we have decided on a silver stan-
dard approach. The silver standard was first proposed
to be generated in a fully automatic way (Rebholz-
Schuhmann et al., 2011) using annotation systems and
some method to harmonize their resulting annotations.
Researchers continue with this practice (Sousa et al.,
2019), while others incorporate some manual annota-
tions (Eckart and Gärtner, 2016). Because our building
of the silver standard corpus uses only two automated
annotators, we need to have some human intervention
to make decisions when the annotators disagree. Since
this human intervention is added, the process that is de-
scribed herewith is termed semi-automatic.
The BioPOSTAg corpus is evaluated by comparing the
performance of a model trained on the silver standard
corpus versus the same model trained on a human-
annotated gold standard corpus on a POS tagging task.
We have chosen the CRAFT corpus (Verspoor et al.,
2012) as the gold standard training and test sets for this

comparison.
Our contributions can be summarized as follows: a
semi-automatic procedure to create a large silver stan-
dard corpus; a large corpus of complete biomedical ar-
ticles annotated for part-of-speech has been built and
is made available to the research community; and a ro-
bust, easy-to-use software tool that assists the investi-
gation of differences in two annotated datasets facili-
tating the human dispute resolution aspect of the semi-
automated procedure.

2. Background
Part-of-speech (POS) tagging assigns a POS to each to-
ken in a text. Modern POS taggers are trained using
some form of machine learning. Training requires an
annotated corpus. Training of a deep learning model re-
quires a corpus with a large number of samples, in this
case sentences with the tokens annotated for POS. The
manually tagged gold standard corpora that have been
built, e.g., the GENIA corpus (1997 abstracts) (Kim et
al., 2003) and the CRAFT corpus (97 full-text papers)
(Verspoor et al., 2012) are reasonably small. Having
larger tagged corpora may be beneficial. In addition,
while part-of-speech tagging in the biomedical litera-
ture genre has long been a topic of research (Kim et
al., 2003; Tateisi and Tsujii, 2004), the early focus has
been on POS tagging of article abstracts. POS tagging
of complete article texts provides some subtle differ-
ences due to sentence structure and other writing and
content issues (Cohen et al., 2010).
Complete biomedical article datasets are becoming
available to the research community, so having ma-
chine methods that work with full papers is both fea-
sible and critically important given the large amount
of literature produced in this socially significant re-
search field. Because manual annotation is costly, es-
pecially in the biomedical domain since it requires spe-
cialized knowledge, large annotated corpora of full text
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biomedical articles do not currently exist. The focus
of the current study is the semi-automatic curation of
a sufficiently large silver standard corpus of complete
article texts annotated with POS tags that might boost
the performance of deep learning trained POS taggers.
To provide the automatic aspect of this silver standard
corpus curation task, this study uses two top ranked
biomedical POS taggers: the popular Genia (Kim et al.,
2003; Tateisi and Tsujii, 2004) and a variant of Med-
Post (Smith et al., 2004) that we call PostMed so as
not to confuse it with the original but to pay homage
to the original name and work. Genia was trained on
a corpus of 1999 manually annotated MEDLINE ab-
stracts. In addition to POS tagging, Genia’s other abil-
ities (named-entity tagging and chunk parsing) are not
used in this study. MedPost is a POS tagger, but also of
importance for this study, it can work with .nxml files:
interpreting the xml tags, breaking the file into sen-
tences, and performing tokenization. It was designed to
work with MEDLINE abstracts, so a wrapper was pro-
vided by the second author giving PostMed, the modi-
fied version that works with full article texts (e.g., fig-
ures and tables are removed). These POS taggers have
achieved over 98% and 97% accuracy, respectively, on
MEDLINE citations.
Unlike other silver standard corpora building which use
techniques developed for the type of data that is rep-
resented in the silver standard corpus, the techniques
that we are using have been trained on MEDLINE ab-
stracts whereas the data that we are annotating with our
semi-automatic method are full-text articles. Full-text
articles contain language that is not found in abstracts,
such as references to figures and tables. So, the use
of these two taggers could be considered akin to cross-
domain tagging but obtaining good performance may
not be as difficult as sometimes is the case with cross-
domain tagging. Our hypothesis was that the outputs
of these two part of speech taggers would perform rea-
sonably well on this new type of data, that the number
of differences would be manageable, and that human
intervention would be able to enhance the final out-
come. The second part of our hypothesis, that the num-
ber of differences would be manageable was overly op-
timistic. As a result, we developed a software tool, a
data viewer, whose purpose was to organize these dif-
ferences along different dimensions thereby facilitating
our viewing of the differences in various ways.

3. Related Work
Research related to this study falls into three categories:
corpora annotated for POS, POS taggers, and stud-
ies of the performance on full-text articles of taggers
trained on article abstracts. Some small corpora an-
notated for POS based on clinical notes (Pakhomov
et al., 2006) and on patient records (Huseth and Rost,
2007) have been built, the latter one being annotated
semi-automatically. Because few biomedical corpora
with POS annotations exist, methods such as cross-

training have been used to circumvent this paucity of
data, but the resulting performance tends to be low
(Barrett and Weber-Jahnke, 2014). Adding a biomedi-
cal domain-specific corpus has been shown to improve
results (Coden et al., 2005). MedPost (Smith et al.,
2004) uses a lexicon that enumerates permitted POS
tags for the most frequently occurring 10,000 words in
MEDLINE to improve its performance (Smith et al.,
2006). And, some improvements with cross-trained
taggers have been reported by introducing specialized
lexicons to address the problems associated with un-
known words (Miller et al., 2007). It has been demon-
strated (Tateisi et al., 2006) that because biomedicine
has subdomains, performance drops when taggers are
required to tag a subdomain that differs from the train-
ing subdomain. And, some results show excellent per-
formance by off-the-shelf POS taggers (TnT (Brants,
2000)) for tagging clinical reports (Hahn and Wermter,
2004). Other POS taggers have been developed for the
biomedical domain, some being better performers than
others. dTagger (Divita et al., 2006), trained and tested
on the MedPost corpus, performs with 95.1% accuracy.
TcT (Barrett and Weber-Jahnke, 2014) performs with
96.7% accuracy on the MedPost corpus. These last two
taggers have not been used in the present study because
they are no longer available.
When using taggers that have been trained on biomed-
ical article abstracts, it is important to know how well
they scale up when they are used to tag full-text arti-
cles. Results suggest a 7-8 percentage point drop be-
tween testing the taggers on abstracts and testing them
on full-text journal articles (Verspoor et al., 2012).

4. Data Set and Curated Corpus
The dataset used in this study is the complete article
dataset that was first made available by The National
Center for Biotechnology Information (PubMed Cen-
tral) in 2009. It consists of the full text of articles pub-
lished in 288 biomedical journals. Our goal is to build
a corpus annotated for part-of-speech from the full set
comprising approximately 35 million sentences. The
current BioPOSTAg corpus1 has been built from a set
of 49 biomedical journals. The corpus comprises ap-
proximately 5 million sentences. These articles were
POS tagged by Genia and PostMed.
The corpus is part-of-speech tagged using the biomed-
ical update (Warner et al., 2012) of the Penn Tree-
bank Tagset (Marcus et al., 1993). The updated tagset
consists of the original 36 part-of-speech tags and 12
other tags for punctuation and currency symbols to-
gether with 4 additional tags added in the biomedical
update. Tagging guidelines (Santorini, 1995; Warner
et al., 2004; Warner et al., 2012) were consulted. The
MedPost (and hence, PostMed) tagset used here is the
original Penn Treebank Tagset. The Genia tagger uses
the enlarged tagset.

1https://github.com/nelder/Biomedical-POS-Tagger/

https://github.com/nelder/Biomedical-POS-Tagger/
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5. Building the Corpus
The first step in the building of the corpus is to gen-
erate the tagging of Genia and PostMed. PostMed is
used first to preprocess the .nxml files as described pre-
viously and to generate its tagged output. Genia then
takes the tokenized output of PostMed and performs its
tagging. These files can then be compared to discover
the POS differences. We now direct our discussion in
the next sections to how the POS differences are re-
solved with human intervention.

5.1. Part of Speech Tagging Difference
Because we were using only two POS taggers, our goal
to produce a silver standard corpus could not use a
scheme such as voting to decide a tagging outcome
when the tags from the two taggers differed. So, we
opted to have some human intervention to make deci-
sions when this situation arose. Due to the volume of
data and frequency of mismatch, it was not feasible to
manually verify the tagged text produced by each of
these taggers. As such we developed a software data
viewer, using which, as humans, we could navigate and
compare the outputs of these two taggers to identify
where they disagreed. Implicit in this approach is the
assumption that when Genia and PostMed specify the
same tag for a particular word, then they are correct.
While this might not be strictly true (see Section 6 for
details), this assumption has seemed not to be deleteri-
ous. We harnessed the discord between these two tag-
gers by assuming that one was correct and the other was
incorrect. Our main focus thus, was the part of speech
tagging difference (POSDiff). To illustrate, Genia and
PostMed assigned the following tags:

Committee for Animal Research
NNP IN NNP NNP (Genia)
NN IN NN NN (PostMed)

POSDiff instances exist, one for each of the words:
Committee, Animal, and Research. The POSDiff al-
lowed us to group like errors in an attempt to provide
human solutions to classes of problems as opposed to
individual instances of tagging errors. Our method to
find and correct errors is described later.

5.2. POSDiffs Discovered
With all of our tools in hand we began the process of
building a better corpus by analyzing the POSDiffs be-
tween Genia and PostMed tagged data for our 49 jour-
nal corpus. We discovered that 5% of POSDiffs ac-
count for 81% of the disagreements. This means that a
small handful of the POSDiffs disproportionally are re-
sponsible for the tagging errors which also means that
solutions to these POSDiffs would be highly valuable
for overall corpus quality. We also noted that across
our 5 million sentence corpus there were a total of 496
POSDiffs. As Table 1 outlines, the top 25 most fre-
quent POSDiffs accounted for 81.38% of the disagree-
ments. The full list of POSDiffs is included in https:
//github.com/nelder/Biomedical-POS-Tagger/ as a csv

file.

5.2.1. Decision Making
With all of the information now in hand we began to
look through the POSDiffs from most common to least
common and apply human judgement to correct each
of the POSDiffs. For each of the POSDiffs we as-
sessed a random sample of instances from the most
frequent words within each POSDiff to develop an
understanding of the cause. We took into consider-
ation the pattern, whether it be each example look-
ing consistent or more sporadic to decide when to di-
rect more energy into looking at additional examples.
For each of the 13 most frequent POSDiffs listed in
Table 1 we created a decision procedure which se-
lected between the taggers. The encoded procedure
(which is machine interpretable) indicates whether ei-
ther of the taggers is globally correct for a given
POSDiff. If not, it will indicate the preferred tag-
ger and a procedure of specific interventions to ap-
ply before using the default preferred tagger. These
interventions pattern match either words or word pat-
terns and apply an intervention. These interventions
can be a specific POS tag, a tagger to use, or a con-
text specific procedure. For instance, “positive = mix
: PRIOR WORD TAG@JJ|NN? postmed,genia”. In
this case the word “positive” is tagged using PostMed’s
tag when the tag on the prior word is either a JJ or
NN, otherwise it uses Genia’s tag. These decision pro-
cedures now exist for 70% of the POSDiff instances
that occurred and as such we’ve eliminated many of
the disagreements between the two taggers that were
originally present with these procedures. The remain-
ing 30% were eliminated by choosing the Genia tagger
as providing the correct tag.

5.2.2. Sample Decision Procedures: Globally
Correct Tagger

For Genia tagging VB (Verb, base form) and PostMed
tagging VBP (Verb, non-3rd person singular present),
we determined that Genia was tagging correctly in the
vast majority of the sampled cases we examined. In
all cases the syntactic structure involved a modal verb,
then base case verb, followed up by the participle form
of the verb. The issue was that PostMed was tensing
the base form of the verb and then making a mistake on
the main verb following this incorrectly tensed verb.
An example is outlined in Figure 1, where this particu-
lar POSDiff is highlighted in black and other POSDiffs
present in that selected sentence are highlighted in blue.
Given the consistent cause we saw across the 10 sam-
pled cases we assigned Genia to be the correct tagger
globally for this POSDiff.

5.2.3. Sample Decision Procedures: Word Specific
Solution

For Genia tagging NN (Noun, singular or mass) and
PostMed tagging JJ (Adjective), we noted that neither
tagger was exclusively correct. This tagging error was

https://github.com/nelder/Biomedical-POS-Tagger/
https://github.com/nelder/Biomedical-POS-Tagger/
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Table 1: POSDiffs discovered (subset of most frequent 25).

POSDiff Instances Freq. Cumulative Unique Instances
(%) Freq. (%) Words per Word

G:NNP | P:NN 572,633 15.60% 15.60% 65607 9
G:JJ | P:NN 430,673 11.73% 27.33% 42387 10
G:VB | P:VBP 338,190 9.21% 36.54% 2312 146
G:VBN | P:JJ 270,197 7.36% 43.90% 4666 58
G:VBG | P:JJ 162,882 4.44% 48.34% 3727 44
G:NN | P:JJ 156,541 4.26% 52.60% 8360 19
G:NN | P:SYM 142,748 3.89% 56.49% 9 15861
G:VBG | P:NN 120,278 3.28% 59.77% 4290 28
G:VBN | P:VBD 91,012 2.48% 62.25% 1968 46
G:DT | P:PRP 87,779 2.39% 64.64% 22 3990
G:NNS | P:VBZ 63,313 1.72% 66.36% 2755 23
G:NNS | P:NN 54,028 1.47% 67.83% 4667 12
G:VBD | P:VBN 53,115 1.45% 69.28% 1762 30
G:RB | P:WRB 48,486 1.32% 70.60% 5 9697
G:NN | P:VBP 46,106 1.26% 71.86% 2090 22
G:FW | P:NN 46,018 1.25% 73.11% 1458 32
G:RBR | P:RB 44,569 1.21% 74.32% 22 2026
G:NNP | P:JJ 41,995 1.14% 75.46% 2586 16
G:CD | P:NN 36,809 1% 76.46% 7496 5
G:JJ | P:RB 35,246 0.96% 77.42% 2763 13
G:JJ | P:DT 32,357 0.88% 78.30% 11 2942
G:NNP | P:NNS 31,441 0.86% 79.16% 4178 8
G:VBD | P:JJ 28,888 0.79% 79.95% 1816 16
G:NN | P:NNS 27,213 0.74% 80.69% 2494 11
G:VBZ | P:NNS 25,422 0.69% 81.38% 2150 12
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energy into looking at additional examples. For each of the 13 most frequent POSDiffs (listed in 
Exhibit G) we created a decision procedure (machine interpretable, captured in Exhibit F) which 
selected between the taggers. These decision procedures now exist for 70% of the errors that 
occurred and as such we’ve improved many of the errors present in the corpus.  

Sample Decision Procedures: Globally Correct Tagger 
For Genia tagging VB (Verb, base form) and Postmed tagging VBP (Verb, non-3rd person singular 
present) we determined that Genia was tagging correctly in the vast majority of the sampled 
cases we examined. In all cases the syntactic structure involved a modal verb, then base case 
verb, followed up by the participle form of the verb. The issue was that Postmed was tensing the 
base form of the verb and then making a mistake on the main verb following this incorrectly 
tensed verb. An example is outlined in Figure Ten. Given the consistent cause we saw across the 
10 sampled cases we assigned Genia to be the correct tagger globally for this POSDiff.  

Figure Ten: Example of G: VB | P: VBP POSDiff 

Sample Decision Procedures: Word Specific Solution 
For Genia tagging NN (Noun, singular or mass) and Postmed tagging JJ (Adjective) we noted that 
neither tagger was exclusively correct. This tagging error was related to the use of a noun an an 
adjective in English such as the word soup in the phrase “soup spoon.”  In this case the noun acts 7

as an adjective though is in fact a noun. In this case we sampled the more frequent words and 
assigned correct taggers on a word by word basis. We also noted that words ending in “ing” 
were in fact to be tagged as VBG (Verb, gerund or present participle) and as such we overrode 
both taggers and used our own tag. In this process we worked with a random sample of 5 
examples for 10 different words. We noted that Genia was correct more often than Postmed and 
as such assigned it as the tagger to side with for less frequent words we were not able to assign 
a solution to. An example of this tagging error is illustrated in Figure Eleven. In this case our 
decision procedure for the correct tag is based upon the word within the POSDiff.  

 “Part-of-Speech Tutorial: JJ vs NN”, Part of Speech Help, https://sites.google.com/site/7

partofspeechhelp/home/jj_nn

Figure 1: Example of a POSDiff that can be corrected
globally

related to noun compounds: the use of a noun as a noun
premodifier in English. In this case the noun acts as an
adjective though is in fact a noun. In this case we sam-
pled the more frequent words and assigned correct tag-
gers on a word by word basis. We also noted that words

ending in “ing” were in some cases (Manning, 2011) to
be tagged as VBG (Verb, gerund or present participle)
and as such we overrode both taggers and used our own
tag. In this process we worked with a random sample of
5 examples for 10 different words. We noted that Ge-
nia was correct more often than PostMed and as such
assigned it as the tagger to side with for less frequent
words we were not able to assign a solution to. An
example of this tagging error is illustrated in Figure 2,
where the POSDiff of interest is highlighted in black
and other POSDiffs present in that selected sentence
are highlighted in blue. In this case our decision proce-
dure for the correct tag is based upon the word within
the POSDiff.

5.2.4. Sample Decision Procedures: Context
Specific Solution

For Genia tagging NNS (Noun, plural) and PostMed
tagging NN (Noun, singular or mass), we noted that
there were cases in which both taggers were correct.
This POSDiff was caused by tags for irregular plural
forms of nouns. We selected correct taggers for 12
of the most common words, set a tag override to NNP
(Noun, proper) for one word, but had a more complex
pattern necessary for the word bacteria. After examin-
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Figure Eleven: Example of G: NN | P : JJ POSDiff 

Sample Decision Procedures: Context Specific Solution 
For Genia tagging NNS (Noun, plural) and Postmed tagging NN (Noun, singular or mass) we 
noted that there were cases in which both taggers were correct. This POSDiff was caused by 
tags for irregular plural forms of nouns. We selected correct taggers for 12 of the most common 
words, set a tag override to NNP (Noun, proper) for one word, but had a more complex pattern 
necessary for the word bacteria. After examining 5 samples for the word bacteria we concluded 
that if the following word after bacteria was either a NNP or NN we would use the Postmed tag, 
and otherwise use the Genia tag. These contextual based decision procedures were used in a 
number of other instances to handle complex errors. Genia was selected as the default tagger for  
words which were not captured by our rules set.  

Figure Twelve: Example of G: NNS | P: NN POSDiff 

  

Decision Procedure Language 
In order to encode the decision procedure model we were building for each POSDiff we 
developed a machine interpretable language which was quick for us to type. This language was 
later interpreted by software when it was understanding the decisions we had made for each 
POSDiff so that we could build the new corpus.  

Figure 2: Example of a word specific POSDiff

ing 5 samples for the word bacteria we concluded that
if the following word after bacteria was either a NNP
or NN we would use the PostMed tag, and otherwise
use the Genia tag. These contextually based decision
procedures were used in a number of other instances to
handle complex errors. Genia was selected as the de-
fault tagger for words which were not captured by our
rules.

5.2.5. Decision Procedure Language
In order to encode the decision procedure model we
were building for each POSDiff we developed a ma-
chine interpretable language which was quick for us to
type. This language was later interpreted by software
when it was understanding the decisions we had made
for each POSDiff so that we could build the new cor-
pus. An example of this language was previously seen
in Section 5.2.1.

5.3. The BioPOSTAg Corpus
The current BioPOSTAg corpus consists of
119,348,590 words, 4,790,737 sentences, part-
of-speech annotated with the biomedical update
(Warner et al., 2012) of the Penn Treebank Tagset
(Marcus et al., 1993). It is publicly available at
https://github.com/nelder/Biomedical-POS-Tagger/.

5.4. The Data Viewer
5.4.1. Comparison of Taggers
To construct this set of POSDiffs we built software
which processed the tagged output from Genia and
PostMed. The corpora these taggers had annotated
was full-text data from 49 biomedical journals, as men-
tioned previously. We then kept track of each instance
of a POSDiff, the particular word on which it occurred,
and an address to the original article which would allow
us to view the context in which this POSDiff occurred.
In the example shown in abbreviated form in Figure
3 we can see the case where Genia tagged AFX and
PostMed labeled JJ. This POSDiff occurred 12 times, 8
times on the word “non”. We also can see the address
of each instance of this difference in the form of a file

path to the Genia and PostMed tagged journal papers
including the line and word number ( FILEPATH —
line number / word number ).

5.4.2. Complementary POSDiffs
Having collected this information we also considered
the significance of the concept of a complementary part
of speech difference (POSDiff-C). So far we have con-
sidered Genia saying tag A, and PostMed saying tag B
to be entirely distinct from PostMed saying tag A and
Genia saying tag B. While this was a valid assump-
tion to make in pursuit of grouping likely similar errors
together under each POSDiff (combining POSDiff &
POSDiff-C likely would just create more complex de-
cision criteria to pick the correct tagger later on) we
may want to consider this data elsewhere in our assess-
ment. As such we were interested in seeing the car-
dinality in terms of frequency of occurrence of each
POSDiff versus its POSDiff-C. Within each POSDiff
we also wanted to understand if particular words ap-
peared in both POSDiff and POSDiff-C. If for exam-
ple there was a case that for the word “web” Genia
said common noun and PostMed said adjective as well
as there existing cases where Genia said adjective and
PostMed said common noun, then the decision crite-
ria for selecting between taggers in these cases would
need to be more nuanced. Otherwise if there were not
many of these cases we could likely select with more
basic criteria. The significance of this information was
better understood as the decision making model is put
together.

5.4.3. Context to POSDiff
We also constructed a tool to enable us to understand
the window of context surrounding each POSDiff oc-
currence for a given POSDiff. By understanding the
preceding and following words and POS tags around
each instance, we were able to get a better understand-
ing of the cause of each error. This information aided
in our construction of a model for addressing the POS-
Diffs.

5.4.4. Data Explorer Tool
Having generated a large dataset of POSDiffs as well as
a complementary data set around the number of occur-
rences of POSDiff-Cs we developed a viewing frame-
work to enable easy traversal of this information. Us-
ing a HTML/CSS front-end, we were able to leverage
libraries like JQuery and Bootstrap Data Tables to ex-
pedite our development process.
As illustrated in Figure 4 our table library made it easy
to sort the information by any attribute and traverse our
large data set. The first view enables a top level look
at all POSDiffs. Clicking on any of the particular POS-
Diffs reveals information about the words on which a
particular POSDiff occurred. This page also allows us
to collect notes on which of the taggers was correct.
This notes field will serve as the basis of our decision
making model. Figure 5 reveals the frequency of each

https://github.com/nelder/Biomedical-POS-Tagger/
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PROCESS 

Comparison of Taggers  
To construct this set of POSDiffs we built software which processed the tagged output from 
Genia and Postmed. The corpora these taggers had annotated was abstract data from 49 
biomedical journals, as mentioned previously. We then kept track of each instance of a POSDiff, 
the particular word on which it occurred, and an address to the original article which would allow 
us to view the context in which this POSDiff occurred. In the following example we can see the 
case where Genia tagged AFX and Postmed labeled JJ. This POSDiff  occurred 12 times, 8 times 
on the word “non.” We also can see the address of each instance of this difference in the form of 
a file path to the Genia and Postmed tagged journal abstracts including the line and word number 
( FILEPATH | line_number / word_number ). This comparison code is included in Appendix B.  

"G:AFX|P:JJ": { 
    "pos_frequency": 12,  
    "words": [ 
        [ 
            "non",  
            "Acta_Vet_Scand/
Acta_Vet_Scand-42-1-2202332.nxml.genia.tagged|31/29",  
            "Acta_Vet_Scand/
Acta_Vet_Scand-42-1-2202332.nxml.postmed.tagged|31/29" 
        ],  
        [ 
            "non",  
            "Acta_Vet_Scand/
Acta_Vet_Scand-43-2-1764189.nxml.genia.tagged|99/15",  
            "Acta_Vet_Scand/
Acta_Vet_Scand-43-2-1764189.nxml.postmed.tagged|99/15" 
        ],  
        
.. abbreviated .. 

    ],  
    "words_freq": [ 
        [ 
            "non",  
            8 
        ],  
        [ 
            "anti",  
            4 
        ] 
    ],  
    "words_freq_alpha": { 
        "anti": 4,  
        "non": 8 
    } 
}, 

Figure 3: View of the database containing the POSDiff information
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Complementary POSDiffs  
Having collected this information we also considered the significance of the concept of a 
complementary part of speech difference (POSDiff-C). So far we have considered Genia saying 
tag A, and Postmed saying tag B to be entirely distinct from Postmed saying tag A and Genia 
saying tag B. While this was a valid assumption to make in pursuit of grouping likely similar errors 
together under each POSDiff (combining POSDiff & POSDiff-C likely would just create more 
complex decision criteria to pick the correct tagger later on) we may want to consider this data 
elsewhere in our assessment. As such we were interested in seeing the cardinality in terms of 
frequency of occurrence of each POSDiff versus its POSDiff-C. Within each POSDiff we also 
wanted to understand if particular words appeared in both POSDiff and POSDiff-C. If for example 
there was a case that for the word “web” Genia said common noun and Postmed said adjective 
as well as there existing cases where Genia said adjective and Postmed said common noun, then 
the decision criteria for selecting between taggers in these cases would need to be more 
nuanced. Otherwise if there were not many of these cases we could likely select with more basic 
criteria. The significance of this information was better understood as the decision making model 
is put together. The code in Appendix C was used to compile this complementary POSDiff 
information.  

Context to POSDiff 
We also constructed a tool to enable us to understand the window of context surrounding each 
POSDiff occurrence for a given POSDiff. By understanding the preceding and following words 
and POS tags around each instance, we were able to get a better understanding of the cause of 
each error. This information aided in our construction of a model for addressing the POSDiffs. The 
code for this context analysis is included in Appendix D.  

Data Explorer Tool  
Having generated a large dataset of POSDiffs as well as a complementary data set around the 
number of occurrences of POSDiff-Cs we developed a viewing framework to enable easy 
traversal of this information. Using a HTML/CSS front-end, we were able to leverage libraries like 
JQuery  and Bootstrap Data Tables  to expedite our development process.  5 6

Figure Seven: POSDiff View on data viewer.  

 “jQuery,” jQuery, https://jquery.com/.5

 “DataTables | Table plug-in for jQuery,” DataTables, https://datatables.net/.6 Figure 4: Summary of the POSDiffs provided by the data viewer

word within this POSDiff as well as information about
the POSDiff-C.

An additional page for each word provides links to
view the particular source for each instance of a POS-
Diff which is displayed on a page as illustrated in Fig-
ure 6. Note this particular POSDiff is highlighted in
black and other POSDiffs present in that selected sen-

tence are highlighted in blue. Each word is followed
by the POS tag it received from each of the taggers.
Source data can be viewed at the bottom of this page.
Other views of the database have been presented earlier
in Figures 1 and 2.
The software tool organizes and displays the differ-
ences in the tagging provided in two files. The tool
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Page   of  12 65

As illustrated above our table library made it easy to sort the information by any attribute and 
traverse our large data set. The first view enables a top level look at all POSDiffs. Clicking on any 
of the particular POSDiffs reveals information about the words on which a particular POSDiff 
occurred. This page also allows us to collect notes on which of the taggers was correct. This 
notes field will serve as the basis of our decision making model. The illustration below reveals the 
frequency of each word within this POSDiff as well as information about the POSDiff-C.  

Figure Eight: POSDiff View of data viewer.  

An additional page for each word provides links to view the particular source for each instance of 
a POSDiff which is displayed on a page as illustrated below. Note this particular POSDiff is 
highlighted in black and other POSDiffs present in that selected sentence are highlighted in blue. 
Each word is followed by the POS tag it received from each of the taggers. Source data can be 
viewed at the bottom of this page. 
  

Figure 5: Example of a POSDiff view provided by the data viewer

Page   of  13 65

Figure Nine: Single POSDiff instance view in the data viewer.   

Figure 6: Example of a POSDiff, the document that it occurs in, and the Part-of-Speech tagging by Genia and
PostMed

is very versatile. It was initially designed to compare
the output given by two part-of-speech taggers but it is
easily convertible to comparing any two files, so it can
be used for human analysis of the differences between
a machine tagged output and gold standard tags.

6. Evaluating the Quality and
Effectiveness of the Corpus

Much interest in having POS taggers for biomedical
text (Kim et al., 2003; Smith et al., 2004; Nguyen and
Verspoor, 2019) and to have full-text corpora (Verspoor
et al., 2012) to train from is evident. An in-depth man-
ual study of a representative portion of the full-text sil-
ver standard corpus that we have developed here to de-
termine the quality of the corpus is our ultimate goal
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and is our intention in future work. In the meantime,
we have provided two evaluations of the silver stan-
dard corpus. First, we evaluate on a small sample, the
percentage of correct tags provided by the Genia and
PostMed taggers. In addition, we are interested in our
assumption that the two taggers provide the correct tag
when they agree. We have chosen a representative por-
tion of the CRAFT corpus (Verspoor et al., 2012) for
this test. The second evaluation method is to compare
a model trained on the silver standard corpus compared
to the same model trained on a human-annotated gold
standard corpus on the downstream task of interest, i.e.,
POS tagging. We have chosen the CRAFT corpus (Ver-
spoor et al., 2012) as the gold standard training and test
sets for this comparison. There is no overlap between
the papers in the CRAFT corpus and the papers used to
build the silver standard corpus.
For the first test, we have chosen one paper from the
CRAFT corpus consisting of approximately 8,700 to-
kens. With this subset of tokens the Genia tagger cor-
rectly predicts 87% and PostMed predicts 84%. These
scores are approximately 10 percentage points below
their scores when tagging abstracts. Of course, the
human intervention that we have described previously
improves this performance. When these two taggers
agree, they disagree with the CRAFT corpus tag on
about 1% of the tags. While this seems high (and
higher than we expected), approximately half of these
disagreements are between the JJ and NN tags when
the word is used as a modifier. However, as we dis-
cuss below, this mistagging (since the human interven-
tion does not correct these mistags) does not seem to be
deleterious.
Second, to evaluate the effectiveness of this silver cor-
pus, we have conducted two experiments to provide
the comparison. In the first experiment, we have
done a 5-fold cross-validation by training a third party
BioRoBERTa-based POS-tagger (Trevett, 2021) with
the training data portion of the CRAFT dataset and
tested it against the test set portion of the CRAFT
dataset. This experiment achieves an average 97.89%
test set accuracy with a standard deviation of 0.04. In
the second experiment, the same model is trained with
the silver standard corpus and tested against the same
five test set portions of the CRAFT corpus that were
set aside in the 5-fold cross-validation evaluation. It
achieves an average accuracy of 98.09% with a stan-
dard deviation of 0.05. The silver standard trained
model outperforms the gold standard trained model
used in the first experiment by a noteworthy, for this
level of accuracy, 0.2 percentage point improvement.
This performance gain is statistically significant, p <
0.0001. This evaluation is summarized in Table 2.
We provide the following information about the model
and the training. The original BERT-based model
(Trevett, 2021) consists of a BERT-based embedding
layer followed by a linear layer to predict the POS tag
of the input sentence. For the two biomedical text based

Accuracy
Tagger trained on: (mean and s.d.)
the CRAFT dataset 97.89± 0.04
the BioPOSTAg dataset 98.09± 0.05

Table 2: Evaluation on the CRAFT dataset of a third
party BioRoBERTa-based POS-tagger (Trevett, 2021)
trained on the CRAFT dataset and the BioPOSTAg
dataset, mean and standard deviation from 5-fold cross-
validations, p < 0.0001

experiments, we fine-tuned a BioRoBERTa embedding
layer. The learning rate was initialized to 0.01 and it
was decayed by 80% after any epoch if the validation
accuracy decreased. The model was fine-tuned for 20
epochs in both experiments.

7. Conclusions
Our goal to provide a large silver standard corpus of
biomedical text annotated with part-of-speech using the
Penn Treebank Tagset to facilitate the training of deep
learning models has been partially fulfilled. Our cur-
rent corpus, drawn from full-text biomedical articles,
has 4,790,737 sentences comprised of 119,348,590 to-
kens annotated for part-of-speech, and we continue to
work toward a corpus containing 35 million sentences.
The corpus is available online at elder.ca/research/
biomed pos corpus.txt. In addition to this language
resource, we have also designed, implemented, and
made available a robust, easy-to-use software tool that
assists the investigation of differences in two tagged
datasets. It is available at https://github.com/nelder/
Biomedical-POS-Tagger/.

8. Future Work
As stated earlier, the goal is to completely annotate 35
million sentences drawn from 288 biomedical journals
with POS tags. These journals represent both exper-
imental and clinical research. Having a corpus com-
prised of writing styles across a wide variety of jour-
nals will facilitate having a more robust deep learning
trained POS tagger.
When correcting the POSDiffs, some decisions were
made for purposes of expediency. A more careful anal-
ysis of the word specific and context specific solutions
needs to be carried out. As part of its functionality, the
data viewer captures both the language that describes
how modifications to the corpus are to be carried out by
the associated software and notes discussing the ratio-
nale for these modifications. With these sources of in-
formation, the corpus can be easily modified after care-
ful consideration of the discussion.
To enhance our understanding of quality of the cor-
pus beyond the small study reported above, an in-depth
manual study of a representative portion of the full-text
silver standard corpus to provide measures of the qual-
ity of the corpus will be done.

elder.ca/research/biomed_pos_corpus.txt
elder.ca/research/biomed_pos_corpus.txt
https://github.com/nelder/Biomedical-POS-Tagger/
https://github.com/nelder/Biomedical-POS-Tagger/
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