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Abstract
Legal field is characterized by its exclusivity and non-transparency. Despite the frequency and relevance of legal dealings, legal
documents like contracts remains elusive to non-legal professionals for the copious usage of legal jargon. There has been little
advancement in making legal contracts more comprehensible. This paper presents how Machine Learning (ML) and Natural
Language Processing (NLP) can be applied to solve this problem, further considering the challenges of applying ML to the
high length of contract documents and training in a low resource environment. The largest open-source contract dataset so
far, the Contract Understanding Atticus Dataset (CUAD) is utilized. Various pre-processing experiments and hyperparameter
tuning have been carried out and we successfully managed to eclipse SOTA results presented for models in the CUAD dataset
trained on RoBERTa-base. Our model, A-type-RoBERTa-base achieved an AUPR score of 46.6% compared to 42.6% on the
original RoBERT-base. This model is utilized in our end to end contract understanding application which is able to take a
contract and highlight the clauses a user is looking to find along with it’s descriptions to aid due diligence before signing.
Alongside digital, i.e. searchable, contracts the system is capable of processing scanned, i.e. non-searchable, contracts using
tesseract OCR. This application is aimed to not only make contract review a comprehensible process to non-legal professionals,
but also to help lawyers and attorneys more efficiently review contracts.
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1. Introduction
As transactions and interpersonal or business relation-
ships are legalized to an extent greater than ever in
precedence, contracts have become one of the most
widely utilized legal documents today, enabling legal
repercussions, and thus, informed agreement is criti-
cal. For legal professionals, who work with numerous
clients and documents, the contract review process is a
routine and time-consuming task making it is easy to
overlook crucial information. For individuals without
legal knowledge and unable to attain legal services, the
process is esoteric.
Despite the advances of machine learning (ML) and
natural language processing (NLP), applied technol-
ogy in the legal industry which addresses these issues
are scarce. Majority of the legal documents, such as
judgment papers and contracts are in text format, some
even hundreds of pages in length, and difficult to re-
view quickly and accurately. (Hegel et al., 2021). Le-
gal AI is important in the legal industry because it helps
save time and effort by reducing the amount of work
lawyers have to perform (Dabass and Dabass, 2018).
In this paper we apply Machine Learning to contract
agreements in order to simplify contract understand-
ing process for the average person and attorneys. As
shown in Fig 1, our application allows users to input
a contract, and the model provides a labelled contract
with the types of clauses recognized, assisting users in
making educated legal decisions in a matter of minutes.

*All authors contributed equally to this work

2. Literature Review

Legal judgment prediction, legal entity recognition,
document classification, legal question answering, and
legal summarization are some of the tasks which have
been explored using Machine learning and NLP. Legal
Artificial Intelligence (LegalAI) is a branch of artificial
intelligence that focuses on assisting lawyers with legal
duties.
Authors in (Zhong et al., 2020) demonstrate numer-
ous embedding- and symbol-based approaches and dis-
cuss LegalAI’s future path. They have gone through
three common applications in detail, including judg-
ment prediction, similar case matching, and legal ques-
tion answering, to show why these two types of tech-
niques are critical to LegalAI. Malik et al. (Malik et al.,
2021) introduce the INDIAN LEGAL DOCUMENTS
CORPUS (ILDC), a collection of Supreme Court of In-
dia case processes (SCI). Their best prediction model
presents a 78% accuracy compared to 94% for human
legal experts.
In another study (Holzenberger et al., 2020), the
authors present the Statutory Reasoning Assessment
dataset (SARA), which consists of a collection of rules
taken from the US Internal Revenue Code (IRC) laws,
as well as a set of natural language questions that can
only be answered properly by referring to the rules.
They have offered a legal statutes resource, a collection
of hand-curated natural language rules and cases, and
a symbolic solver capable of representing these rules
and solving the challenge task. This study is intended
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to be a contribution to legal-domain natural language
processing, in addition to the fascinating challenge pro-
vided by statutory reasoning.
In (Roegiest et al., 2018) the authors propose differ-
ent models for the due diligence problem to find spe-
cific clauses in legal contractual documents and quan-
tify the risk associated with each. They also introduce
a new dataset, a subset of their production dataset, with
15 million sentences in 4200 contracts. This goal is
quite similar to ours, however they did not approach the
problem with Deep Learning, rather with linear classi-
fiers, Conditional Random Fields (CRF), hybrid mod-
els of SVM and Hidden Markov Models. The best and
most reliable result was achieved through CRF.
In (Hendrycks et al., 2021) they’ve compiled a high-
quality dataset of annotated contracts to aid contract
analysis research and to learn more about how well
NLP models work in highly specialized domains. Over
13,000 annotations by legal experts are included in
CUAD through 41 labels. On CUAD, we tested ten pre-
trained language models and discovered that their per-
formance is promising, but there is still much space for
improvement. They have also discovered that data is a
major bottleneck, as reducing data by an order of mag-
nitude drastically reduces efficiency, emphasizing the
importance of CUAD’s large number of annotations.
They also discovered that model design has a signifi-
cant impact on efficiency, implying that algorithmic ad-
vances from the NLP group would aid in resolving this
issue. They concluded that the CUAD has the poten-
tial to speed up research into a major real-world issue
while also acting as a benchmark for evaluating NLP
models on specialized domains in general. The authors
in (Leivaditi et al., 2020) provide another dataset for
contract review, however, with fewer categories and an-
notations than CUAD.
One recent work done in this field, (Hegel et al., 2021),
shows that the visual cues like layout, style, and place-
ment of text in a document are significant elements that
are important to obtaining an acceptable degree of ac-
curacy on long documents.

3. METHODOLOGY
The system diagram, delineating the work flow of our
application, is shown in Fig-1. The dataset is first split
into three parts: training, validation and testing. Next,
the text of each of the parts is converted to tokens and
then the tokens are embedded to tensors. After this, the
dataset is trained using pretrained transformer models
and then evaluated. Subsequently, the best perform-
ing model is selected and quantized in order to deploy
the model with the backend. Finally, the user can do
inference on any legal contract. Each of the blocks be-
low will be briefly explained in this section, along with
their significance.

3.1. CUAD Dataset
We are using Contract Understanding Atticus Dataset
(CUAD) for training and evaluating our model. It con-

tains 510 contracts with 13101 labeled clauses. There
are 25 different types of contracts with varying lengths
ranging from a few pages to over one hundred pages.
But, most parts of a contract should not be highlighted.
Labeled clauses make up about 10% of each contract
on average. Since there are 41 label categories, this
means that on average, only about 0.25% of each con-
tract is highlighted for each label. We have divided
the dataset into two parts — 80% for training and 20%
for testing. In terms of feeding the data to our model,
there are 22450 training samples and 4182 test sam-
ples. Each sample has four keys: ’id’, ‘title’, ‘context’,
‘question’, ‘answers’. The ‘answers’ key has two parts:
the answer itself as text and the starting index of the
answer in the context. Our model will predict the start-
ing index and text of the answer after completion of its
training.

3.2. Tokenizing Inputs and Embedding
Tokens

Before feeding the texts of our document to any model,
we need to preprocess them. This is done by the Trans-
former Tokenizer (Wolf et al., 2019). Each model has
its own tokenizer, which converts input text to tokens,
including converting the tokens to their corresponding
IDs in the vocabulary and put it in a format the model
expects, as well as generate the other inputs that the
model requires. Since we will be using pre-trained
models, we will utilize the vocabulary and tokenizer
used while pre-training these models. The next step
in the workflow is to breathe meaning to the tokens so
that the model can understand the relationship among
the tokens and make sense out of them. This is done
by converting each token into a vector representation
of numbers called a tensor. But before embedding the
tokens into tensors, the tokens for very long documents
are handled by truncating the context to the max length
that our model can fit. Moreover, in order to account
for the case in which the answer lies at the point we
split a long context, we allow some overlap between
the features.

3.3. Training and Evaluating Pretrained
Transformer Models

Pretrained models are models that have already un-
dergone extensive training on massive datasets, which
are then applied to downstream tasks through fine-
tuning. We are using pre-trained transformer models
since these significantly improve results, compared to
training from scratch, for many NLP tasks like Ques-
tion Answering, Machine Translation, Named Entity
Recognition, etc. We aim to fine-tune pre-trained trans-
former models by retraining them for Question An-
swering Task since our CUAD dataset is based on it.
Besides, we perform various experiments by trying dif-
ferent combinations of hyperparameters to evaluate and
improve the performance of these models, which are
broadly explained in the experiment and results section.
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Figure 1: System Diagram of Our Project.

3.4. Quantization
Quantization refers to a method of computing and stor-
ing tensors with smaller bitwidths instead of float-
ing point precision to enable deep learning models to
run quicker and use less memory. There are 3 types
of quantization: 1) Dynamic Quantization 2) Static
Quantization 3) Quantization-Aware Training. We im-
plemented dynamic quantization which quantizes the
weights beforehand whereas the activations are quan-
tized at runtime (Peng et al., 2007). We have used Dy-
namic quantization as it is the most simple one of the
three and can be applied on-the-fly without requiring to
retrain the model.

3.5. Application
3.5.1. Backend
In order to make the trained model useful in the real
world an end to end system was implemented wherein
users may upload their contracts and perform clause-
wise inference on the contracts to allow them to easily
and quickly evaluate the contract and perform due dili-
gence.
The web application returns inferences from our
trained model underneath the user interface. The user
may upload their contract and select out of the 41
clauses they wish to quickly identify, starting the back-
end inference process. When the user uploads their
PDF it goes straight to our text extraction module with
PDFMiner Library. It extracts text from PDF docu-
ments with 97% accuracy calculated using Levenshtein
Distance compared to the extracted texts in the test set

of original CUAD dataset. If, however, the PDFS are
scanned, i.e. non searchable, they are passed to OCR
PDF conversion function to generate a searchable PDF.
This PDF is passed to the PDFMiner module like be-
fore, the consequent processes being identical.
The extracted text is passed as the context along with
the selected clause or question query to the trained
Roberta-Base model as features. It performs the infer-
ence and returns it to our Highlighting module which
calculates the rectangular positions of the answers
within the user’s PDF and draws highlights around it.
The app is reloaded to show the user the answer.1

3.5.2. Searchable PDF Conversion
In order for the model to deliver an inference, the
extracted texts from the input contract must be fed
into it. To extract the contract’s contents, we uti-
lized PDFminer. However, this approach only works
with native/searchable PDF files, not scanned/non-
searchable ones. We tested Tesseract (Tesseract-Ocr,
) and EasyOCR (JaidedAI, ) and compared their ac-
curacy to guarantee that the texts are accurat5ely re-
trieved from scanned files. For Tesseract to perform
well, it is essential that the quality of the images are
enhanced before it is input into the OCR. To provide a
general solution, image preprocessing techniques were
used to eliminate any distorted or potentially poor im-
ages. As shown in the Fig-2 below, converting the im-
age to grayscale, binarization, noise removal using di-

1The web application and model are available at
github.com/afra-tech/defactolaw
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Figure 2: Flowchart of Image Preprocessing.

lation and erosion, median blur, and thinning or thick-
ening the fonts using dilation, erosion, and bitwise in-
vert methods were all part of the preprocessing.
The adaptive threshold was chosen for the experiment
because it is considerably better for situations involv-
ing text extraction. The block size, which is one of
the parameters in adaptive threshold, determines the
size of the neighbourhood area and C is a constant that
is subtracted from the mean or weighted sum of the
neighbourhood pixels. To determine these two param-
eters has been a challenge. Since, low noise (Higher
value of C) resulted in fainted texts and higher noise
(Low value of C) resulted in illegible images. Because
only certain noise is required for proper text readabil-
ity, it was necessary to eliminate it using morpholog-
ical operations such as dilation and erosion. In order
to remove pixels that do not correspond to text that are
still surrounding text items or perhaps the noise, the bi-
narized images were first dilated and then eroded. In
the dilation, A 2x2 kernel or matrix was created, and
the entire image was convolutioned. Dilation increases
the amount of whitespace in the image, which reduces
noise and tiny dark areas. Erosion works in a similar
way, except it increases the darkness of the letters and
makes them easier to read. For erosion, the same kernel
size was utilized. The image was slightly blurred after
the two processes and the overall salt and pepper noise
in the image was eliminated as a result of this. For
thinning/thickening the font, the image was initially in-
verted to make dilation and erosion make sense. The
background is now black, but the text is white. Now,
erosion with a kernel size of 2x2 was employed to make
the typefaces narrower. The same technique was used
to thicken the font size, only the erosion process was
substituted with dilation with the same kernel size.
However, the extracted texts’ accuracy was not suffi-
cient (less than 50%). Various issues in the input data,
such as different layouts, skewness, and typefaces, hin-
dered successful recognition. In comparison to Tesser-
act, EasyOCR did slightly better at extracting texts.

Figure 3: Scanned to Searchable PDF Conversion
Time.

Using EasyOCR speeds up the process since Tesser-
act requires pre-processing of non-scanned images to
make them seem like scanned images in order to func-
tion well, which increases the overall inference time.
However, the accuracy of the retrieved texts can not
always be guaranteed. The overall application time
is increased since extracting texts from scanned PDF
takes time and converting the scanned PDF to a search-
able PDF for highlighting the text clauses also takes
some time. As a result, a general approach was offered,
which is described below.
We have tested the use of tesseract output HOCR.
HOCR is an open data representation standard for
structured text generated by optical character recogni-
tion (OCR). Because the text, style, layout information,
recognition confidence metrics, and other data are en-
coded using Extensible Markup Language (XML) in
the form of Hypertext Markup Language (HTML) or
XHTML (Breuel, 2007), this worked perfectly for our
system. The scanned PDF is converted to searchable
PDF using tesseract output in HOCR and storing the
result as PDF. This is now used for text extraction by
applying the corresponding implementation of extract-
ing texts from searchable PDF as discussed before. The
retrieved texts using this technique have an accuracy
that ranges from 93.99% to 99.09%. Fig-3 illustrates
the time it takes to convert a scanned PDF to search-
able PDF vs. the amount of pages it contains. As it can
be observed, the time grows exponentially as the PDF’s
content increases. This is due to the internal process of
converting the PDF to images, and subsequently from
images to HOCR and lastly to a searchable PDF.

4. Experiments and Results
4.1. Transformer Models
4.1.1. Evaluation Metric
We have used four evaluation metrics which are: Exact
Match, F1 Score, Area under Precision Recall Curve
(AUPR) and Precision @80% Recall. In the dataset’s
paper (Hendrycks et al., 2021), Precision @90% Re-
call is only non-zero for DeBERTa x-large, which we
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have not trained due to insufficient resources, hence the
metric is not evaluated.

1. Exact Match: This metric is as simple as it
sounds. For each question-answer pair, EM=1 if
the characters of the model’s prediction exactly
match the characters of the True Answer, other-
wise EM=0.

2. F1 Score: F1 score is a typical metric for classi-
fication problems and is generally utilized in QA.
The number of shared words between the predic-
tion and the truth is the basis of the F1 score: pre-
cision is the ratio of the number of shared words
to the total number of words in the prediction, and
recall is the ratio of the number of shared words
to the total number of words in the ground truth.
We will be evaluating F1 Scores of questions that
have answers since this tells us how accurately
our model could highlight the desired labels in the
contract. F 1 Score =2 ×Precision×Recall

Precision+Recall

3. Area Under Precision Recall Curve (AUPR):
A precision-recall curve shows the relationship
between precision (= positive predictive value)
and recall (= sensitivity) for every possible se-
lected cut-off. The area under this curve is called
AUPR. It represents the average precision of a
model. The more the area the better the model.
AUPR is suitable for imbalanced datasets as this
metric is not affected by a large no. of negative or
positive examples compared to their counterparts.

4. Precision at 80% Recall: As our main goal is to
review legal contracts, it is of huge importance
that our model does not misclassify any positive
labels (important parts which are required to be
highlighted). For this reason, a high recall (no. of
positives predicted correctly out of all the actual
positives in the dataset) is necessary and so we fix
our recall at 80% threshold and then measure pre-
cision which is a good indicator of how well our
model can review contracts.

4.1.2. Major Contributions in Improving
Performance of Models

1. Training Large No. of Models:We have trained
a total of 75 models of different types using
various hyperparameters to find out the best
model. Fig-4 shows the performance (Exact-
Match Score) of all the 75 models trained dur-
ing this process. Observing the figure we see that
there are a lot of models with very good, very bad
as well as average performances. So we set a base-
line score of 60% shown by the red line in Fig-4.
So, in this paper we will broadly explain only the
models that have an Exact Match score of 60% or
more.

2. Balancing Features:A contract, on average, has
10% of labeled clauses. So, after converting to

features, more than 99% of them do not contain
any of the 41 relevant labels. To mitigate this im-
balance, we drop a significant portion of the fea-
tures that do not contain any relevant labels so that
features are approximately balanced between hav-
ing highlighted clauses and not having any high-
lighted clauses. As a result, we see a significant
improvement in training times and performance
gains as there is a balance between highlighted
and unhighlighted parts. To be more specific, ob-
serving Fig-5 we can see that training time was
reduced by 48 times and performance of models
also increased by 1.5 times. So balancing fea-
tures played a crucial role in training the models
in a resource-efficient manner as well as improv-
ing performance scores.

4.1.3. Optimal Hyper-parameters
The optimal hyperparameters for all our experiments
are shown in Table-1. We have tried numerous combi-
nations of various hyperparameters as shown in Table-2
and observed that the hyper-parameter values in Table-
1 give the best results. It is important to note that all the
optimal values are based on a single GPU with 12GB or
16GB VRAM. Besides, all our experiments were con-
ducted in a resource constrained environment.

Table 1: Optimal Hyperparameters
Hyperparameter Default Value
Learning Rate 3x10-5
Batch Size 16
Epochs 4
Weight Decay 0.01
Gradient Accumulation Step 2
Eval Accumulation Steps 1
Max Length 384
Doc Stride 128

Figure 4: Scatter plot of Exact Match Performances of
All Models Trained
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Figure 5: Before-After Plot of Performance and Train-
ing Time for Balancing Features.

Table 2: Range of Hyperparameters Tested to Find Op-
timal Hyperparameters

Hyperparameter Range of Values
Learning Rate 1x10-4, 3x10-4,

3x10-3, 3x10-5,
3x10-7

Batch Size 2, 4, 8, 16, 24
Epochs 2, 4, 8
Weight Decay 0.01
Gradient Accumulation Step 1, 2, 4, 8, 16, 20
Eval Accumulation Steps 1, 2, 4, 8, 16, 20
Max Length 256, 384, 512
Doc Stride 128, 256

4.1.4. Original Models
Original models are the ones provided by the own-
ers of the CUAD dataset. They have performed grid
search to find out optimum parameters and then trained
these models on their dataset. Table-3 shows the per-
formance of these models and Table-4 shows the opti-
mum hyperparameters. They have used multiple GPUs
in parallel for achieving such results with no limit on
computational power.

Table 3: Original CUAD Models
Model Name AUPR Precision

at
80%
Recall

Exact
Match

F1
Score

albert-xlarge 37.8 20.5 - -
roberta-base 42.6 31.1 73.5 81.8
roberta-large 48.2 38.1 74.0 84.8

4.1.5. RoBERTa
We have selected RoBERTa (Liu et al., 2019) since it is
an improved version of BERT and the base version has
suitable parameters for our computationally restricted

environment. The RoBERTa models performed best
on both AUPR scores and Exact Match scores. Since
we will be reviewing contracts, the AUPR score and
Precision at 80% recall is quite important. Compar-
ing RoBERTa with other models like Longformer and
ALBERT in Fig-6 we see that no other transformer
type comes close to RoBERTa in terms of AUPR. Ob-
serving Table-3 and Table-5, we can see that, the B-
type-roberta-base (AUPR-46.8) has eclipsed the AUPR
score of the original SOTA RoBERTa base (AUPR-
42.6) by a healthy margin of 4.2% which is com-
mendable. This was possible due to the proper tun-
ing and optimal selection of hyperparameters from var-
ious combinations. The original SOTA score for pre-
cision at 80% recall is 31.1% for RoBERTa-base and
we have managed to get a score of 29.6% which is also
quite good. If we compare these scores to the origi-
nal SOTA RoBERTa-large, we see that the RoBERTa-
large has an AUPR of 48.2% which is 1.4% higher
than our RoBERTa base. But if we check the Pre-
cision at 80% Recall scores then our best RoBERTa-
base model is behind by a lot. The RoBERTa-large
model has a Precision at 80% Recall score of 38.1%
whereas our best model has a score of 29.6%. Now,
if we come to the Exact Match scores, we see that
the SOTA RoBERTa-base model has an exact match
score of 73.5% whereas our best model (roberta-base-
squad2) has an exact match score of 74% which is a
minor improvement. Now, in order to get these results,
we had to specifically tune the model to get best re-
sults at that particular metric. This resulted in multiple
models each giving high scores at a particular metric.
For example: best AUPR score of 46.8% was given
by B-type-roberta-base model, best Exact Match score
of 74% was given by roberta-base-squad2 model and
best Precision at 80% Recall of 29.6% was given by A-
type-roberta-base model. However, if we were to select
a model which gives decent scores in all of the criteria
then roberta-base-squad2-nq model should be selected.
This model has an AUPR score of 43.4%, Precision at
80% Recall score of 28.1% and Exact Match score of
70.12%

4.1.6. ALBERT

We tried our dataset on Albert (Lan et al., 2020) since
it has a good record in question-answering tasks and
performs pretty well in the SQUAD-v2 dataset outper-
forming BERT. But unfortunately, we see that the re-
sults are not quite satisfactory. We have tried various
ALBERT models and the best performing one among
them is ALBERT-xlarge-v2. It has an AUPR of 37.5%,
Precision at 80% Recall of 25.2% and Exact Match of
72% as shown in Table-5. Out of all, only the Ex-
act Match score is close to the SOTA model. The
rest are quite far off. So, we stopped further pursu-
ing this model due to poor performance and resource
constraints.
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Table 4: Hyperparameters of Models Used in Experiments
Hyperparameter

————
Model

Learning Rate Batch Size Epochs Decay Gradient Accumulation Step Eval Accumulation Steps Max Length Doc Stride

DistilRoBERTa-
base 3x10-5 4 4 0.1 8 8 384 128

Longformer-base-
squad2

ALBERT-xlarge-v2
RoBERTa-base-

squad2
RoBERTa-base-

squad2-nq
A-typeRoBERTa-
base-squad2-nq 3x10-5 16 4 0.1 2 1 384 128

A-type-RoBERTa-
base

B-type-RoBERTa-
base 3x10-5 24 4 0.1 1 1 384 128

Table 5: Performance of All Models

Model Names AUPR Precision @
80% Recall Exact Match F1 Score

DistilRoBERTa-base 35.9 18.6 67.8 79
Longformer-base-squad2 36.4 21.3 73.1 84.3

ALBERT-xlarge-v2 37.5 25.2 72 83.6
RoBERTa-base-squad2 41.4 22.3 74 84.5

A-type-RoBERTa-base-squad2-nq 42.7 27.3 72.7 83
RoBERTa-base-squad2-nq 43.4 28.1 70.12 80.9

A-type-RoBERTa-base 46.6 29.6 65 74.4
B-type-RoBERTa-base 46.8 25 59.6 68.2

Figure 6: Comparison of AUPR Scores of All Models

4.1.7. Longformer

Longformer (Beltagy et al., 2020) is the extended ver-
sion of the RoBERTa specifically trained on long doc-
uments from where the checkpoint of the RoBERTa
model ends. Since legal documents can be very long
and our dataset has documents that consist of more
than 100 pages, we decided to use the Longformer
model. The results from the Longformer model is
also not upto the mark. We experimented with vari-
ous longformer models and are reporting only the best
one among them. The best longformer with our de-
fault hyperparameters is longformer-base that has been

fine tuned on squad-v2 and then trained on our dataset.
It has an AUPR score of 36.4%, Precision at 80%
Recall of 21.3% and Exact Match score of 73.1% as
shown in Table-5. This model has a noteworthy Exact
Match score since it is only 0.4% behind the original
RoBERTa base model. The results of the other metrics
are very poor.

4.2. Distil-RoBERTa-base
Knowledge distillation is the process of transferring
knowledge from a large model to a smaller model with-
out loss of validity. Distil-RoBERTa-base is a model
where the knowledge of RoBERTa-base was trans-
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Table 6: Quantization Results

Roberta Base Exact
Match

F1
Score

Size

Before Quantization 65 74.4 500MB
After Quantization 41.4 44.7 240MB

ferred to it while reducing the number of trainable pa-
rameters and size. So, for our case the model size was
reduced by about 160MB and parameters decreased by
28M compared to the regular RoBERTa-base model.
The performance of this model with respect to its re-
duced size and parameters is good but not sufficient
enough. It has an AUPR score of 35.9%, Precision at
80% Recall of 18.6% and Exact Match score of 67.8%
as shown in Table-5.

4.2.1. Comparison Among All Models
Since the main purpose of these models is to review
contracts, a high recall is a must. We don’t want
the model to misclassify any positive labels (important
parts which are required to be highlighted). For this
reason, a high recall (no. of positives predicted cor-
rectly out of all the actual positives in the dataset) is
necessary along with high precision (no. of positives
predicted correctly out of all the positives predicted by
the model). For this reason, the models with high Preci-
sion@ 80% Recall and high AUPR (average precision
of the model) should be selected. Analyzing Fig-6 and
Table-5, we can come to a conclusion that for our task,
A-type-RoBERTa-base is the best model as it has the
highest Precision @80% Recall of 29.6% and second-
highest AUPR score of 46.6% (highest 46.8%). Al-
though A-type-RoBERTa-base has the highest AUPR
score of 46.8% it falls significantly behind in the Pre-
cision @80% Recall metric with a score of 25%. So,
we decided to use the A-type-RoBERTa base model for
our project.

4.2.2. Quantized Model Performance
To reduce the model size for more space conscious de-
ployment, we applied quantization on our best model,
A-type-RoBERTa-base model. This allowed reduction
of the model size from 500mb to 240mb which is a
50% decrease in size just by quantizing the linear lay-
ers. However, while evaluating the results are not quite
up to the mark. The results in Table-6 are for dynamic
quantization which quantizes the weights beforehand
whereas the activations are quantized at runtime. So
we see that, the exact match score decreases by 36%
and the F1 Score decreases by 39%.

5. Conclusion
In this paper, we present a machine learning and
NLP powered application for automatic contract re-
view utilizing the open source CUAD question answer-
ing dataset. We presented the logical workflow of the

application along with our trials and experiments and
with different tools and technologies for each func-
tional step.
Legal documents are inherently lengthy, and we’ve out-
lined the challenges of applying ML and NLP process-
ing to them under resource constraints, due to which
we were unable to carry out our experiments utilizing
larger transformers, such as DeBERTa-xlarge. Nev-
ertheless, we achieve a higher AUPR score for the
RoBERTa base model compared to the results of the
CUAD paper (Hendrycks et al., 2021). We also present
our experiments into text extraction from contracts
which are both searchable, i.e. digitally created or text
overlaid documents, and non-searchable i.e. scanned
documents to allow users to upload contracts from dif-
ferent sources.
Our application is open source and available on github,
as cited in section 3.5.1. With our work we aim to con-
tribute towards open source tools and technologies in
the legal field for legal professionals and the general
public without legal education and means to afford le-
gal services for professional contract review.

Appendix: Application Overview
Fig-7 portrays the pictorial shots of our front-end.

Figure 7: Screenshot of Legal Contract Review Appli-
cation
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