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Abstract
The application of span detection grows fast along with the increasing need of understanding the causes and effects of events,
especially in the finance domain. However, once the syntactic clues are absent in the text, the model tends to reverse the cause
and effect spans. To solve this problem, we introduce graph construction techniques to inject cause-effect graph knowledge for
graph embedding. The graph features combining with BERT embedding, then are used to predict the cause effect spans. The
results show our proposed graph builder method outperforms the other methods w/wo external knowledge.
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1. Introduction
Understanding cause and effect in financial documents
help us to comprehend the movement of the financial
market. Nevertheless, manual annotation is not feasi-
ble due to the massive volume of published financial
papers. It is necessary to develop an automatic causal-
ity extraction method to facilitate financial analysis.
Therefore, FinCausal (Mariko et al., 2020b) has been
proposed to be the benchmark for causality extraction
in the finance domain. The task description of Fin-
Causal 2022 is a relation detection task where we need
to identify a causal sentence or text block, the causal el-
ements, and the consequential ones in a given sentence.
For example, Given the sentence “Zhao found him-
self 60 million yuan indebted after losing 9,000 BTC
in a single day (February 10, 2014)”, we could iden-
tify “losing 9,000 BTC in a single day (February 10,
2014)” as the cause while we annotate “Zhao found
himself 60 million yuan indebted)” as the effect.
Recently, many methods have been proposed for Fin-
Causal (Mariko et al., 2020a; Mariko et al., 2021). In
FinCausal 2021, the system named DTGNN (Tan and
Ng, 2021) achieved the best results in this task. DT-
GNN incorporates dependency relation features from
a sentence through a graph neural network into BERT
(Devlin et al., 2018) token classifier with Viterbi de-
coding (Kao et al., 2020). As a result, the system
mainly focuses on adding syntactic features by the de-
pendency features. However, the cause-effect relation
of tokens is not explored yet. In this paper, we present
our approach built on top of DTGNN and incorporate
the cause-effect relation of tokens. We utilize external
knowledge, particularly cause and effect graph in the
financial domain (Li et al., 2021), to provide the cause-
effect relation.
The rest of the paper is organized as follows. We pre-
sented our system in Section 2. In Section 3, we dis-
cussed our experiment and results. This paper is con-

cluded in Section 4.

2. Proposed System
The competition task in FinCasual 2022 is to detect
the cause span and effect span from a given textual
span. The BIO scheme tags the Beginning tokens and
Inner tokens in the objective spans and tags Others in
the rest of the string. The scheme defines this task
as token classification, typically applied to Named En-
tity Recognition and Span Detection in the state-of-art
methods.

2.1. Baseline
In previous competitions, we noticed the highlighted
framework, DTGNN, proposed by the winner of Fin-
causal 2021 (Tan and Ng, 2021). This framework
is composed of different functional modules attached
to BERT architecture. We follow the major modules
as shown in Figure 1: BERT encoder, graph builder,
GNN+BiLSTM and Viterbi Decoder. Our contribution
is mainly located in the graph builder module and GNN
modules.

2.1.1. Graph Builder and GNN
In the baseline, the graph builder generates a subgraph
for each textual span. The SAGEConv (Hamilton et
al., 2017) operator embeds the subgraph into feature
representations. In this way, the weights of edges in
subgraph are neglected.
In our proposal, during the graph building process,
we add the knowledge from Cause-Effect Graph 1

(CEG)(Li et al., 2020) in different manners. Then
each subgraph would feed to the graph neural network
(GNN), which contains two graph convolutional lay-
ers with GCNConv (Kipf and Welling, 2017) operator.
In this way, not only do the connected nodes matter for

1https://github.com/eecrazy/CausalBank.

https://github.com/eecrazy/CausalBank
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Figure 1: Our method consists of four main components: The BERT encoder, graph builder, GNN+BiLSTM, and
Viterbi decoder. We proposed two approaches for the graph builder, which constructs a subgraph for GNN using
the external cause-effect graph.

Figure 2: Our graph builder generates four types of sub-graph: (a) The original dependency tree-based subgraph
in DTGNN, (b) the same subgraph with additional edges and weights (highlighted in red) for cause-effect relation-
ships, (c) cause and effect chains with cause-effect edges for training, and (d) a single chain connecting the whole
input sequence (except stopwords) for inference. All black edges in (b), (c), and (d) have the same small weight
(0.1). The green nodes are tokens in the cause span, and the blue nodes are tokens in the effect span.

message passing, but the weight of connections is taken
into account.

2.1.2. Viterbi Decoder
For token classification tasks, labels tend to be indepen-
dent and discontinuous. Viterbi decoder (Kao et al.,
2020) solves this problem by using the transition and
emission matrices for those labels during the evaluation
step, which correct predictions for continuous span la-
bels. Thus we will applly this techniques as well in our
framework.

2.2. Structure of knowledge injection

We expect this framework to use linguistic features to
train the model. However, once the textual spans do not
include the clear syntactic clues, e.g., because or as, the
prediction of cause and effect spans can be reversed, re-
sulting in the wrong prediction. We resort to injecting
extra knowledge to distinguish cause spans and effect
spans. Cause-Effect Graph (Li et al., 2020) stores the
causality relations and weights between tokens pairs.
In sentences, cause spans could potentially contain the
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tokens that have directed causality to the tokens inside
effect spans. This section proposes two approaches
to insert the target knowledge into embeddings using
graph neural networks: sentence chain structure and
dependency tree structure.

2.2.1. Dependency Tree Structure
For dependency tree structure, one sentence could be
organized by the dependency tree relations, as shown
in Figure 2(a). In this manner, tokens in the same sub-
sentence tend to connect closer than those in the oppo-
site. To insert causality knowledge, in Figure 2(b), we
add the directed linkage between causality token pairs
and assign weights for these relations. For the weights
of dependency tree connections, we would equally as-
sign them with the same low value (e.g., 0.1). Com-
paratively, the structure idea of the dependency tree
has been implemented by previous work (Tan and Ng,
2021). In their work, the relation weights between to-
kens are not considered, which neglects much useful
information.

2.2.2. Sentence Chain Structure
In sentence chain structure, cause span and effect span
are separated into two chains. In each chain, tokens are
linked to reserve their orders from beginning to end.
In Figure 2(c), between two chains, the tokens holding
causality relations are connected unidirectionally with
the corresponding weights. As for the connection in-
side a chain, their weights are equally assigned with
the same low value (e.g., 0.1). However, in the valida-
tion or test steps, we transform the textual span into an
entire chain because of the lack of labels, the causality
tokens pairs would be connected with the intra-chain
links in Figure 2(d).

3. Experiments and Results
3.1. Data Preparation
We combined 2020, 2021, and 2022 versions of the
FinCausal dataset for training, including both practice
and trial sets. As we noticed several duplicate samples,
we searched for and removed those with the exact input
text and answers to ensure the reliability of our cross-
validation data, resulting in 2,775 samples. We then
split the reduced dataset into ten folds, nine of which
were for training (2,497 samples) and one for validat-
ing (278 samples). While a sample may have multiple
answer spans, the dataset format (csv) does not allow
flexible multi-span labeling. As a result, a sample with
multiple answers is split into multiple samples with the
same input text. Therefore, we merged these samples
and obtained the final 2,290 training samples and 255
samples for validation.

3.2. Replication Settings
Device and Time We used NVIDIA RTX 3090-24G,

and it took 1h11min to simultaneously train three
models, refer to the idea presented in sub-figure
a,b,c of Figure 2. The best scores were achieved

F1 Recall Precision EM

gnn.dpt 93.58 93.56 93.66 82.53
gnn.dpt.k 93.41 93.37 93.50 81.99
gnn.sent.k 93.90 93.89 93.95 82.64

Table 1: The best scores achieved on blind test set.

F1 Recall Precision EM

gnn.dpt 89.70 89.66 89.77 73.38
gnn.dpt.k 88.38 88.36 88.42 73.02
gnn.sent.k 90.22 90.20 90.25 75.90

Table 2: The best scores achieved on our validation
set.

with random seed 123, 456, 123 for these models
respectively.

Hyperparameter The pre-trained BERT model (bert-
base-cased) is initialized by Huggingface 2. All
models were trained with ten epochs, learning rate
5e-5, and dropout 0.1. The maximum sequence
length is set to 350, and the train batch size is 4.
For GNN, the hidden and out graph dimension is
1024 and 512, respectively.

3.3. Results
Table 1 shows the best results in the test set. We notice
that all models achieve similar high scores, but the sen-
tence chain structure (gnn.sent.k) outperforms others
by around 0.3% to 0.5% F1 score. As for knowledge in-
jection variant gnn.dpt.k, it fails to improve the perfor-
mance with the addition of extra knowledge compared
to the original dependency tree structure (gnn.dpt). To
sum up, the knowledge injection works well on our pro-
posed sentence chain structure but not on the depen-
dency tree structure. Ultimately, the inclusion of the
Cause-Effect Graph in our proposed graph builder en-
hances the performance of span prediction tasks.
It is also worth mentioning that Table 2 shows the best
scores achieved in the validation set. Surprisingly, we
got lower values than the test set in general. We at-
tribute this variance to the different evaluation metrics,
in which the scikit-learn metrics that we applied in the
validation set have stricter rules than used in competi-
tion.
Moreover, we experimented with 3-fold Cross-
Validation (CV) and anticipated achieving higher per-
formance. The precision on the train and validation set
can be as high as 98% precision and 97% F1 score.
However, on the test set, these models cannot reach
the peak. They lay behind around 1% of those models
without CV. Given these points, the application of CV
introduces the over-fitting problem. It is not unsuitable
for our models.

2https://huggingface.co/

https://huggingface.co/
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4. Conclusion
We focus on generating better graph embedding with
the proposed graph builders. Accordingly, the sentence
chain structure with the injection of the Cause-Effect
Graph outperforms the other structures w/wo knowl-
edge, which helps distinguish between cause spans and
effect spans. In the future, we will attempt to inject
knowledge into different GNN variants to find the op-
timal way for knowledge embedding.

5. Bibliographical References
Devlin, J., Chang, M.-W., Lee, K., and Toutanova,

K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv
preprint arXiv:1810.04805.

Hamilton, W. L., Ying, Z., and Leskovec, J. (2017).
Inductive representation learning on large graphs. In
NIPS.

Kao, P.-W., Chen, C.-C., Huang, H.-H., and Chen,
H.-H. (2020). NTUNLPL at FinCausal 2020, task
2:improving causality detection using Viterbi de-
coder. In Proceedings of the 1st Joint Workshop
on Financial Narrative Processing and MultiLing
Financial Summarisation, pages 69–73, Barcelona,
Spain (Online), December. COLING.

Kipf, T. and Welling, M. (2017). Semi-supervised
classification with graph convolutional networks.
ArXiv, abs/1609.02907.

Li, Z., Ding, X., Liu, T., Hu, J. E., and Van Durme,
B. (2020). Guided generation of cause and ef-
fect. In Christian Bessiere, editor, Proceedings of
the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI-20, pages 3629–3636.
International Joint Conferences on Artificial Intelli-
gence Organization, 7. Main track.

Li, Z., Ding, X., Liu, T., Hu, J. E., and Van Durme,
B. (2021). Guided generation of cause and effect.
arXiv preprint arXiv:2107.09846.

Mariko, D., Abi-Akl, H., Labidurie, E., Durfort, S.,
De Mazancourt, H., and El-Haj, M. (2020a). The
financial document causality detection shared task
(FinCausal 2020). In Proceedings of the 1st Joint
Workshop on Financial Narrative Processing and
MultiLing Financial Summarisation, pages 23–32,
Barcelona, Spain (Online), December. COLING.

Mariko, D., Labidurie, E., Ozturk, Y., Akl, H. A., and
de Mazancourt, H. (2020b). Data processing and
annotation schemes for fincausal shared task. arXiv
preprint arXiv:2012.02498.

Mariko, D., Akl, H. A., Labidurie, E., Durfort, S.,
de Mazancourt, H., and El-Haj, M. (2021). The
financial document causality detection shared task
(FinCausal 2021). In Proceedings of the 3rd Finan-
cial Narrative Processing Workshop, pages 58–60,
Lancaster, United Kingdom, 15-16 September. As-
sociation for Computational Linguistics.

Tan, F. A. and Ng, S.-K. (2021). NUS-IDS at Fin-
Causal 2021: Dependency tree in graph neural net-

Figure 3: The example for which the
model(gnn.sent.k) predict correctly.

work for better cause-effect span detection. In Pro-
ceedings of the 3rd Financial Narrative Processing
Workshop, pages 37–43, Lancaster, United King-
dom, 15-16 September. Association for Computa-
tional Linguistics.

6. Appendix
This section shows the typical examples when the mod-
els (gnn.dpt and gnn.dpt.k) mix up the cause span and
effect span in Figure 3. In the opposite, with the addi-
tion of cause-effect knowledge, the model (gnn.sent.k)
trained on sentence chain structure are able to predict
the cause and effect span correctly.
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