
Proceedings of the EURALI Workshop @LREC2020, pages 36–41
Marseille, 20 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

36

Bringing Together Version Control and Quality Assurance of Language
Data with LAMA

Aleksandr Riaposov, Elena Lazarenko, Timm Lehmberg
Universität Hamburg
Hamburg, Germany

{aleksandr.riaposov, elena.lazarenko, timm.lehmberg}@uni-hamburg.de

Abstract
This contribution reports on work in process on project specific software and digital infrastructure components used along
with corpus curation workflows in the the framework of the long-term language documentation project INEL. By bringing
together scientists with different levels of technical affinity in a highly interdisciplinary working environment, the project is
confronted with numerous workflow related issues. Many of them result from collaborative (remote-)work on digital corpora,
which, among other things, include annotation, glossing but also quality- and consistency control. In this context several steps
were taken to bridge the gap between usability and the requirements of complex data curation workflows. Components of the
latter such as a versioning system and semi-automated data validators on one side meet the user demands for the simplicity
and minimalism on the other side. Embodying a simple shell script in an interactive graphic user interface, we augment the
efficacy of the data versioning and the integration of Java-based quality control and validation tools.

Keywords: corpus curation, quality assurance, workflow management

1. Introduction
Having started in 2016, the long-term project INEL
(Grammar, Corpora, Language Technology for In-
digenous Northern Eurasian Languages)1, spanning 18
years, aims at a broad and comprehensive empirical
analysis of language data coming from endangered lan-
guages and varieties of the Northern Eurasian Area2.
For this purpose it generates deeply annotated digital
language resources (language corpora and further ac-
companying resources) from existing as well as newly
acquired language material. As an integral part of the
project these resources are made long-term available
after their finalization and also become part of on-the-
fly analysis already during the process of their curation.
This unique property enriches the project research by
adding a dynamic momentum to the empirical work but
also puts high demands on the digital workflows and
tools being used along with the corpus creation.
In this paper we will first outline the corpus curation
workflows that have been established in the initial six
years of the project run-time by focusing on the estab-
lishment of a versioning and semi-automated quality
checks. Based on this we will present the latest de-
velopment steps that aim at a more user-friendly and
seamless integration of both aspects into linguists ev-
eryday work.

1https://www.slm.uni-hamburg.de/inel.html
2The project is funded by the German Federal Govern-

ment and Federal States in the Academies’ Programme, with
funding from the Federal Ministry of Education and Re-
search and the Free and Hanseatic City of Hamburg. The
Academies’ Program is coordinated by the Union of the Ger-
man Academies of Sciences and Humanities.

2. Preliminary work
Up to the present day corpora in Selkup (Brykina et
al., 2021), Dolgan (Däbritz et al., 2019), Kamas (Gu-
sev et al., 2019), and Evenki (Däbritz and Gusev, 2021)
languages have been finalized following strict quality
and consitency criteria and published under open ac-
cess conditions by the language specific sub-projects.
All resources as well as multiple graphic user interfaces
are available via the INEL-Portal3. Furthermore a com-
prehensive description of the project structure can be
also found at (Arkhipov and Däbritz, 2018). One of the
most important contributions that made this outcome
possible was the adaption of continuous integration
principles from software development projects to lin-
guistic data curation workflows as described by (Hede-
land and Ferger, 2020). Put simply, this includes the es-
tablishment of workflows and technologies, that allow
for a continuous manipulation of content (in this case
language data instead of programming code) whereas
the data itself is kept in a state that it can be used as an
empirical base for language analysis during the entire
process of its creation. In the following one important
core componemt of these these workflows, a versioning
system, is introduced.

2.1. Version control systems
In recent years the use of version control systems
(VCS) such as Git4 or Apache Subversion5 has estab-
lished as a popular way for collaborative data manage-
ment and exchange. VCS help to track down changes
in the data one is working with and make snapshots

3https://inel.corpora.uni-hamburg.de/portal/
4https://git-scm.com/
5https://subversion.apache.org/

https://www.slm.uni-hamburg.de/inel.html
https://inel.corpora.uni-hamburg.de/portal/
https://git-scm.com/
https://subversion.apache.org/


37

of those changes over time; therefore, they are highly
beneficial for collaborative work. Originally stemming
from software development, principles of versioning
have the potential for improving the quality of collab-
orative work on textual content like in the case of lan-
guage data curation. As mentioned above, INEL places
a high value on the quality and consistency of the cor-
pus data and thus, on data curation and control. In this
context versioning with the means of Git has been con-
sidered vital for the project workflows. However, this
decision naturally leads to a question of how to seam-
lessly integrate usage of such a highly technical tool
into the linguistic research routine. To do so, following
aspects should be overseen:

• Functionality: Because Git is primarily a tool in-
tended for software development, it encompasses
by far more functions than it would be needed to
synchronize the process of linguists’ work. More-
over, Git commands have a tendency to transcend
into being “cryptic” and hard to remember. Thus,
a technically inexperienced person might find it
hard to use them fully intuitively without diving
into the theoretical background behind them and
surrounding oneself with cheat-sheets and refer-
ences. Furthermore, there is a high risk of data
damage and even loss if a certain command is mis-
used.

• Interface. There are two main ways to interact
with Git - by the means of a command-line inter-
face (CLI) or a graphic user interface (GUI). Fol-
lowing on from the functionality aspect, out-of-
the-box Git GUI as well as further popular GUI
solutions may seem over-saturated with various
options and functions. This can lead to a more
complex learning curve during the first encoun-
ters with VCSs and result into reluctance to use
them. On the other hand, using Git CLI may seem
to be confusing for those who have little to no pre-
vious experience with command-line shells. The
confusion provoked by an unfamiliar working en-
vironment (merely a terminal window with which
non tech-savvy rarely work) combined with the
requirement to type in the terminal various com-
mands, in turn, could lead to even more reluctance
to learn Git CLI than the Git GUI.

Consequently, while Git could potentially bring quality
control workflows on a new level, its full functional-
ity can simultaneously become a reasonable disadvan-
tage when users with a non-technical background are
challenged to use it. To overcome this obstacle, it has
been decided to develop a Git tool that fulfills several
project-specific criteria. First of all, it should operate
only with basic Git commands determined as necessary
for the linguists’ collaborative work and be easy-to-use.
This would provide linguists immediate access to the
tool and spare time on learning esoteric Git functional-
ity. Secondly, its looks should be balanced and concen-

trated only on what is really important for the current
work: not as “frightening” as the standard CLI and at
the same time, not over-saturated with various buttons
and working tree visualizations that do not benefit the
linguist and could be potentially distracting. Finally,
the tool should have a potential to be integrated into
existing workflows and complement them.

2.2. LAMA - Linguistic Automation
Management Assistant

To satisfy the above listed criteria, a minimalistic
Git client LAMA (Linguistic Automation Management
Assistant) has been developed in previous years (Ferger
and Jettka, 2021a; Ferger and Jettka, 2021b). Although
still being a Bash script running in a terminal window,
at that point LAMA offered a simple user interface. It
was no longer crucial to keep in mind all the necessary
Git commands and type them manually because of a
simple user menu. Moreover, since LAMA was de-
signed to run in a Unix shell, it did not depend on fur-
ther software other than Git itself. The tool was a cross-
platform and ready-to-use solution, and an immediate
and straightforward introduction of LAMA into the re-
search workflows was possible.

Figure 1: Previous LAMA version.

Unlike other Git clients that are aimed at broader user
communities, LAMA’s functionality was concentrated
explicitly on what linguists need when working within
INEL. This includes such basic functions as checking
the status of the repository, pulling changes from the re-
mote, staging and committing local changes and push-
ing them to the remote. At first, the restricted func-
tionality of LAMA may seem rigid and and not suf-
ficient. However, it corresponds with the established
workflows and strictly follows the principles of linguis-
tic data curation in INEL. For example, since all the
linguistic data curation is done on a single Git branch,
LAMA does not support branch functionality, which
prevents linguists from accidental checkout of their
data onto a separate branch and allows for transparent
tracking of the work process. For similar reasons, var-



38

ious complex Git operations are not supported as well.
The script is designed in such a way that one does not
have to manually type any commands, but choose an
option from the text-based menu. Moreover, LAMA
could be easily integrated into other software used in
the project:

• Messenger platforms (currently integrated within
Mattermost6 and Microsoft Teams) via API calls
to webhooks in order to automatically report about
errors and their origin;

• The Corpus Services framework (see section 2.3)
for further quality-assurance. Earlier versions
of LAMA were already able to carry out local
pretty-printing of XML files before publishing the
changes, moreover, there was potential to inte-
grate other, more complex, Corpus-Services func-
tions that was tackled at latter stages of LAMA
development.

Figure 2: General LAMA workflow

Compared to the use of standardized Git clients, be it
CLI or GUI, initial setup and launch of LAMA was
project-specific as well. To begin with, users had to
clone a corpus locally without using LAMA itself, but
a default Git solution instead; afterwards they had to
place the LAMA script in the respective local file struc-
ture (the script can operate only within a working direc-
tory). Another setup challenge that linguists were fac-
ing was creating a proper folder hierarchy within their
working directories. This required a download (and
regular updates) of Corpus Services JAR and placing
it always one folder above the corpus clone to ensure
the functionality of the Corpus Services pretty-printing
function (see 2.3). Upon the first LAMA launch it was
required to provide user credentials and afterwards the
LAMA setup was ready to use, however, certain steps
like repository cloning could have been repeated mul-
tiple times if work with several corpora was done si-
multaneously. Although initially such a setup was not
considered a obstacle as long as LAMA nonetheless
boosted up the performance and improved interaction
with Git, later we could notice that this was a consid-
erable shortcoming of the CLI version of LAMA. We

6https://mattermost.com/

will address this in the following sections of this paper.

Figure 3: Algorithm of the previous LAMA version

2.3. Quality Checks
A significant part of the data curation is covered by
the Corpus Services framework, a set of customized
Java-based data validators initially developed at Ham-
burg Center for Language Corpora (HZSK)7 as the
result of longtime curation work on spoken language
corpora (Ferger et al., 2020) using the EXMARaLDA
System8 (Schmidt and K., 2014) and its XML-based
data formats. In the following the framework has
been utilized and further developed by several projects;
whereas in the infrastructure initiatives CLARIAH-
DE9, CLARIN-D10 and the project QUEST11 rather
generic application scenarios were in the centre, de-
velopment work in INEL followed project-specific
tasks. The result of this effort (see https://gitlab.rrz.uni-
hamburg.de/corpus-services/corpus-services) can be
grouped as follows:

• Whenever a linguist working on data pushes lo-
cal changes to on of the projects Git repository
via LAMA, the data is automatically being pretty
printed to assure unified formatting between dif-
ferent local copies (see Figure 2).

• Being a part of the automated INEL workflows
(see Figure 4), every night a battery of scripted
checks is performed on each corpus via cronjob;
as a result, an updated report containing errors to
be fixed and warnings to be watched out for is cre-
ated. About a third of the checks in the battery are
relatively simple cleanup and replacement tasks,
and we run those in fully automated fixing mode,

7https://corpora.uni-hamburg.de/
8https://exmaralda.org
9https://www.clariah.de

10https://www.clarin-d.net
11https://www.slm.uni-hamburg.de/

ifuu/forschung/forschungsprojekte/quest.html

https://mattermost.com/
https://gitlab.rrz.uni-hamburg.de/corpus-services/corpus-services
https://gitlab.rrz.uni-hamburg.de/corpus-services/corpus-services
https://corpora.uni-hamburg.de/
https://exmaralda.org
https://www.clariah.de
https://www.clarin-d.net
https://www.slm.uni-hamburg.de/ifuu/forschung/forschungsprojekte/quest.html
https://www.slm.uni-hamburg.de/ifuu/forschung/forschungsprojekte/quest.html


39

meaning that such a check would not only spot an
error in the data, but also repair it on the fly.

• Some other Corpus Services functions are meant
to be run sparsely, and are used as a part of our
corpus publication workflow, e.g. a converter of
EXMARaLDA EXS files to the ISO/TEI stan-
dard “Transcription of Spoken Language” (ISO,
2016)12.

• From time to time a need to perform some
manual task arises (e.g., conversion of corpus
data between different formats such as FLEX13,
ELAN(Sloetjes and Wittenburg, 2008) and EX-
MARaLDA, or replacement of a certain grammat-
ical or lexical gloss in the whole corpus).

Figure 4: Infrastructure of the automated workflows

As mentioned above, although LAMA and Corpus Ser-
vices until now have been contributing to the same
workflows, they have not yet been integrated into one
another and the coordination of the use of both compo-
nents had to be coordinated separately by the technical
staff of the project. Therefore, a potential of bringing
the two tools closer to each other was considered ben-
eficial for the further improvement of the project road
map.

3. Putting workflows to a new level
A simple, lightweight, cross-platform Bash script al-
lowing non-technical users to enjoy the basic function-
ality of Git without delving deep inside the intricacies
of version control systems was a welcome addition to
the project’s workflow, however, after considering the
feedback from the users, it became clear that some par-
ticularities of its implementation left us room for con-
siderable improvement. First, we underestimated how
cautious some people are about working with CLI as a
tool, as it subjectively feels dangerous, looks impene-
trable and thus falls outside their comfortable limits of
control. Second, we ran into issues caused by the out-
put produced in the command line in case something
went wrong: instead of simply pointing out to the user
what the problem was, the script returned what essen-
tially was a log with the lifespan of a CLI window; un-
fortunately, in some cases it managed to confuse less

12http://www.iso.org/iso/cataloguedetail.htm?csnumber=37338
13https://software.sil.org/fieldworks/

tech-savvy users possessing pauce log-reading compe-
tence, which in turn resulted in avoidable data loss, ex-
acerbated by the fact that the log was not actually stored
anywhere. Third, the initial version was hindered by its
rigid “choose a stock option” design, which effectively
prohibited the user from interacting with the script in
a more complex way – e.g., it was not quite up to the
task of automatizing common quality control scenar-
ios. Here is how we addressed each of the development
challenges specified above:

3.1. The challenge of usability: providing a
GUI

An intuitive clickable GUI alleviates many worries
about the use of command line. Having in mind that
we would like to keep our GUI simple to use and easy
to develop while staying cross-platform, we surveyed
some options as to the implementation of said interface
such as the popular framework Electron14 or Swing
Application Framework in Java, but eventually settled
on Zenity15, a toolkit built-in in many current Linux
distributions that creates GTK dialogue boxes for shell
scripts. While not sophisticated enough to provide a
list of features common in fully-fledged applications,
it satisfies our simplicity criterion and does the job
nonetheless.

Figure 5: The main dialogue box.

Another usability goal was to eliminate the needlessly
abstruse installation procedure one had to go through
before launching the script for the first time. Among
the requirements were the need to have a working clone
of one of our corpora and an up-to-date JAR package
file containing Corpus Services; then on the first launch
the user had to remember to provide their credentials
(in the INEL case - GitLab) without a script prompt to
do so. Seeing how the users - quite rightfully - strug-
gled to complete the installation on their own, we de-
cided to automatize the process where possible, striv-
ing to provide a solution that would work “out of the
box”. Since Zenity, not available natively on Windows
and MacOS, is now required to run the script, a step
where Zenity is downloaded and installed was added
as well. The result is that the matured script walks
the user through its installation, and is able to clone

14https://www.electronjs.org/
15https://help.gnome.org/users/zenity/stable/

http://www.iso.org/iso/cataloguedetail.htm?csnumber=37338
https://software.sil.org/fieldworks/
https://www.electronjs.org/
https://help.gnome.org/users/zenity/stable/


40

a repository or fetch the JAR file on its own, thus mak-
ing this once-esoteric procedure, which often required
guidance, as smooth as possible. In addition to that,
LAMA acquired the ability to update its core depen-
dencies, Git and Corpus Services, as well as LAMA
itself, within the script. Our users were happy to see
that they gained an ability perform the operations de-
scribed above by themselves, without having to ask a
member of the technical team.

3.2. The challenge of output: logging
Since LAMA logging was not ideal in the previous ver-
sion, our users ran into issues, e.g. they would mis-
handle a Git merge conflict, snowballing it into some-
thing pernicious and data-damaging. Having that in
mind, we modified the way LAMA keeps track of its
past activities: in case of an error the user will be pre-
sented with a concise message saying what the error
was about, while the complete log is now being col-
lected in the background. That simple feature allowed
us to deal with problems more efficiently.

3.3. The challenge of quality control: Corpus
Services implementation

In older versions of LAMA, only the first part of our
workflow delineated in 2.3 was implemented in the
script; anyone wishing to run Corpus Services for other
tasks had no options but to call it from the command
line using specific syntax which is not immediately
clear to a linguist. That in turn severely hindered wider-
scale propagation of Corpus Services as a quality con-
trol tool in non-INEL environments. In other words,
we needed a user-friendly interface for it. A web in-
terface for Corpus Services is in the works, but it has
some downsides rendering it unfit to use with our cor-
pora, namely a) it is not possible to run checks in fixing
mode via the web interface; and b) there is an upper
limit of 2 GB on the amount of data one can upload to
be checked there, and the INEL corpora sit well outside
that limit (e.g., the INEL Selkup Corpus has nearly 12
GB of files). However, Zenity-powered LAMA proved
to be the solution we were looking for in the first place,
as the script has already had basic Corpus Services sup-
port with none of the web interface downsides, and
simply needed a GUI to let a user navigate quality con-
trol tasks gracefully.
In order to facilitate the use of the interface, we identi-
fied three large groups of tasks one might want to per-
form there:

• Common tasks, which include pretty printing and
the ability to manually run automated checks and
fixes specified in our workflow above;

• Simple tasks, or Corpus Services functions which
do not require any parameter;

• Complex tasks, on the other hand, require at least
one parameter such as a tier name.

Figure 6: Quality control functions.

To run simple and complex tasks the user is asked to se-
lect a desired Corpus Services function and parameters
if necessary. Common tasks are meant to be run much
more often than the other tasks - hence the name; each
such task comes with a description of what it does, and
has some of the parameters filled in by default. The
list of common tasks is curated by our technical team
based on feedback received from linguists.
All in all, a GUI solution, however simple, helped us
reduce overhead efforts incurred by substantial impreg-
nability of the previous version of our toolset, thus
bridging the gap between the tools we develop and the
people actively using them: hence the positive feed-
back received from our users, who are now able to per-
form quality control operations on their own. Autom-
atizing existing quality control and data manipulation
procedures in the GUI allows us to focus our future de-
velopment on new, as-yet-untrodden ways to improve
and enrich the quality of linguistic data produced in the
project.

Figure 7: Algorithm of the current LAMA version

4. Conclusion and future work
In our paper we outlined technical workflows and pre-
sented internal tools used in the INEL project to pro-
cess transcribed spoken language data, described the
challenges we have met, and the solutions we have im-
plemented to achieve and maintain continuous qual-
ity control of language resources being created in the
project.
When devising best practices for language data-
oriented tools, intended both for in-house use and the



41

wider scientific community, it is prudent to know what
the users need and build the tools according to their
needs and technical competences. An unnecessarily
difficult to use tool, no matter how good, is unfortu-
nately doomed to be rejected by some prospective users
simply because the learning curve was too steep. Im-
plementing GUI is a surefire step to flatten the curve,
thus widely improving usability of the tool for many a
user. We stand however by the “easy to use, easy to
develop” motto for simple tools such as LAMA, where
allocating extra resources to make it into a full-fledged
application would not increase its usability and func-
tionality proportionally to the efforts required.
Corpus Services finally getting a GUI, along with a
web-based interface underway, is a welcome develop-
ment that we hope would further increase its applica-
bility beyond the INEL context. That being said, wider
rates of community uptake require Corpus Services to
evolve from a project-oriented quality control tool to
something wider as well; absorbing both the availabil-
ity to conform to commonly used “generic” standards
of data quality as well as looking for implementations
for other kinds of language data, i.e. audiovisual cor-
pora. The development is continuously ongoing and
both INEL and outside researchers are always welcome
to test new tools functionality as soon as it becomes
available. However, an extensive UX study on how
newer LAMA versions improve the workflows is still
required, after which we will be able to support our re-
sults with quantitative data.

5. Bibliographical References
Arkhipov, A. V. and Däbritz, C. L. (2018). Ham-

burg corpora for indigenous northern eurasian lan-
guages. Tomsk Journal of Linguistics and Anthro-
pology, 21(3):9–18.

Ferger, A. and Jettka, D. (2021a). Fun with VCS -
more with less: A Tool for Facilitating the Use of
Git in Linguistic Research Data Management. Zen-
odo, September.

Ferger, A. and Jettka, D. (2021b). LAMA - your
friendly and easy git script.

Ferger, A., Hedeland, H., Jettka, D., and Pirinen, T.
(2020). Corpus services.

Hedeland, H. and Ferger, A. (2020). Towards con-
tinuous quality control for spoken language cor-
pora. Quality Control for Spoken Language Cor-
pora., 15(1).

ISO. (2016). Language resource management —
transcription of spoken language. Standard, Inter-
national Organization for Standardization, Geneva,
CH, August.

Schmidt, T. and K., W. (2014). Exmaralda. In Ul-
rike Gut Jacques Durand et al., editors, Handbook
on Corpus Phonology, pages 402–419. Oxford Uni-
versity Press.

Sloetjes, H. and Wittenburg, P. (2008). Annotation
by category-elan and iso dcr. In 6th international

Conference on Language Resources and Evalua-
tion (LREC 2008). Max Planck Institute for Psy-
cholinguistics, The Language Archive, Nijmegen,
The Netherlands.

6. Language Resource References
Brykina, Maria and Orlova, Svetlana and Wagner-

Nagy, Beáta. (2021). INEL Selkup Corpus (Version
2.0).

Däbritz, Chris Lasse and Gusev, Valentin. (2021).
INEL Evenki Corpus (Version 1.0).

Däbritz, Chris Lasse and Kudryakova, Nina and Sta-
pert, Eugénie. (2019). INEL Dolgan Corpus (Ver-
sion 1.0).

Gusev, Valentin and Klooster, Tiina and Wagner-Nagy,
Beáta. (2019). INEL Kamas Corpus (Version 1.0).


	Introduction
	Preliminary work
	Version control systems
	LAMA - Linguistic Automation Management Assistant
	Quality Checks

	 Putting workflows to a new level 
	The challenge of usability: providing a GUI
	The challenge of output: logging
	The challenge of quality control: Corpus Services implementation

	 Conclusion and future work 
	Bibliographical References
	Language Resource References

