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Abstract
Cross-language forced alignment is a solution for linguists who create speech corpora for very low-resource languages.
However, cross-language is an additional challenge making a complex task, forced alignment, even more difficult. We study
how linguists can impart domain expertise to the tasks to increase the performance of automatic forced aligners while keeping
the time effort still lower than with manual forced alignment. First, we show that speech recognizers have a clear bias
in starting the word later than a human annotator, which results in micro-pauses in the results that do not exist in manual
alignments, and study which is the best way to automatically remove these silences. Second, we ask the linguists to simplify
the task by splitting long interview audios into shorter lengths by providing some manually aligned segments and evaluating
the results of this process. Finally, we study how correlated source language performance is to target language performance,
since often it is an easier task to find a better source model than to adapt to the target language.
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1. Introduction
When collecting new speech corpora, a valuable type of
metadata to add is timestamps for the words in the au-
dio. These are useful for other researchers for checking
the context of the spoken word and for speech recogni-
tion and synthesis research. This matching of text to
speech is called forced alignment, and it is necessary
for many linguists’ work. Both word and utterance-
level alignments have various uses and clear benefits
when compared to transcriptions that have no times-
tamp information available. Creating word-level align-
ments from utterance-level annotations can also be con-
sidered a special context of forced alignment.
Currently, many tools have automated the alignment
process with speech recognizers. However, this auto-
matic forced alignment is limited to languages with ca-
pable speech recognizers. While there are ready-made
recipes to train a speech recognizer when given data,
one should not underestimate the domain expertise re-
quired to accomplish this, especially if an error occurs
and needs fixing. Another significant issue is the data.
A large corpus can have a recognizer trained on it, and
afterward, it can align the data. Nevertheless, there are
languages and domains with insufficient data to train
a recognizer. Especially in case of seriously under-
documented languages there are no possibilities to have
larger amounts of training data of any type. Here,
cross-language forced alignment can help researchers
quickly create good alignments with significantly less
effort than manual aligning. However, cross-language
recognition adds complexity to an already challenging
task, so we examine what researchers might do to make
this task easier.
Automatic forced alignment is not a new concept.
Many of the first automatic speech recognition (ASR)
systems have been used for generating alignments since
it is a natural part of speech recognition workflow;

speech recognition frameworks generate forced align-
ments of the audio and then use these as training ex-
amples for the machine learning method underneath.
Forced aligners only need the first part of the process
since they assume the model already exists. FAVE
(Rosenfelder et al., 2011) and Munich AUtomatic Seg-
mentation system (MAUS) (Kisler et al., 2017) work
like this.
In contrast, Montreal Forced Aligner (MFA)
(McAuliffe et al., 2017) allows the researcher to
train a new recognizer for a new language or adapt
an existing one for a new corpus. However, this does
require data, recommendations being at least one hour
in the optimal case (Johnson et al., 2018). In addition,
if the researcher is working with a language with no
speech recognizer, there usually is no pronunciation
lexicon either. This is an issue since most aligners
work with the conventional speech recognition frame-
work of using a lexicon to combine the orthography
with the acoustic models performing the aligning. A
recent approach gaining popularity is using end-to-end
framework to both recognize (Chan et al., 2015)
and align speech (Li et al., 2022) without the use of
lexicons. The other benefit of this approach is the
ability to jointly train the whole model, which has
shown great promise with very large datasets.
Cross-language forced alignment (CLFA) solves these
issues because it uses a well-resourced source language
to do the alignments without the researcher having to
train a new acoustic model with insufficient data. How-
ever, this requires a model for a language that is related
to the target language. The process is still challenging,
so it would benefit from all advantages it can get.
In this paper, we examine how different types of lin-
guistic knowledge affect cross-language forced align-
ment. We demonstrate the concepts first with a larger
high quality Finnish corpus, and then with a real use
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case and try to apply them to a current Komi documen-
tation project. We focus on word-level alignment, as
it is sufficient resolution for the corpus documentation
task we are trying to improve, and much easier to pro-
duce for evaluation purposes than phone-level align-
ment.

2. Related Research
Forced aligners are based on popular speech recogni-
tion frameworks, such as HTK (Young et al., 2002)
for FAVE and Prosodylab-aligner (Gorman et al.,
2011). Some of the first research on CLFA is us-
ing these frameworks for Yoloxóchitl Mixtec, an Oto-
Manguean language (DiCanio et al., 2013). Currently,
the most popular forced alignment toolkit is the MFA
(McAuliffe et al., 2017). Based on Kaldi (Povey et al.,
2011), it uses its popular speech recognition pipeline
from input features to model choice using Gaussian
mixture models (GMM) to model the phonemes of the
speech. It provides useful features such as data valida-
tion, speaker adaptive training (SAT), and fine-tuning
on new data. Tang and Bennett (2019) use it to align
cross-language speech by pooling the source and target
data together before training the model. Another tool
based on Kaldi is Gentle1, and in comparison to MFA,
it uses deep neural networks (DNN) instead of GMMs
to model phonemes. Munich AUtomatic Segmenta-
tion system (MAUS) (Kisler et al., 2017) is another
tool capable of forced alignment. Its framework is
based on statistical expert systems and it has been used
in forced alignment and cross-language forced align-
ment. Strunk et al. (2014) use a language-independent
version of MAUS to align many under-resourced lan-
guages with good results. Jones et al. (2019) use
MAUS to align English based Kriol, comparing Italian
source language to the language-independent MAUS.
Surprisingly they found that Italian performed better
than the independent model, showing promise for large
related language source models. Promising results have
also been achieved by applying Connectionist tem-
poral classification (CTC) algorithm to align speech
(Kürzinger et al., 2020).

3. Experiments
We will evaluate the effects of two methods for utiliz-
ing expert knowledge to improve the accuracy of auto-
matic alignments. First, we eliminate artificial micro-
pauses of different durations from end-alignments.
Second, we simplify the data before alignment by seg-
menting it. The performance metric we use is the
percentage of aligner-created word-boundaries 10ms,
25ms, 50ms, and 100ms length from the correct gold
label boundary. A better model will have a higher per-
centage in lower millisecond ranges. Our code and
models are publicly available.2

1https://github.com/lowerquality/gentle
2https://github.com/aalto-speech/finnish-forced-

alignment

Lang Dataset Length Tokens
fin Finnish 1h7m27s 6464

kpv

Recording 1 (R1) 2m45s 179
Recording 2 (R2) 4m11s 259
Recording 3 (R3) 4m45s 446
Recording 4 (R4) 4m32s 344

Table 1: The length of the speech data and number
of tokens, each adding two datapoints (start and end
boundary). Datasets in Komi (kpv) represent record-
ings from 1950 representing four subvarieties of Ižma
dialect.

3.1. Datasets
Komi materials used in this experiment have been
archived into the Institute for the Languages of Fin-
land (Kotus). They were initially recorded in the 1950s
and transcribed in the 1960s (Itkonen, 1958; Stipa,
1962). The whole collection represents different Komi
dialects, and in this sample, four localities of the Ižma
dialect were included. The recordings are available for
research purposes in the Tape Archive of the Finnish
Language maintained by Kotus, and the whole collec-
tion will be published when ready in the Language
Bank of Finland. The manual word-level alignment
was created primarily to test different forced alignment
systems, and the annotations also include more exten-
sive utterance-level segmentation. In practice, the in-
tended goal is to align transcriptions and audio record-
ings at a coarser level, which would make them com-
parable to different contemporary language documen-
tation corpora. Since the Komi dataset is so small, we
also experiment with a Finnish dataset (Vainio, 2001;
Raitio et al., 2008) of read-speech from one speaker
created for speech synthesis purposes. Details of the
data can be seen in Table 1.

3.2. Models
We take the Finnish Kaldi ASR model created in (Man-
sikkaniemi et al., 2017) and used in (Leinonen et al.,
2021) as a baseline (Base). In addition, we experi-
ment with two other Kaldi-based Finnish ASR mod-
els: Donate Speech (DS) model from a Finnish crowd-
sourcing project called Lahjoita Puhetta that collected
over 3600 hours of speech (Moisio et al., 2022), and
Conversational (Conv) model from (Moisio, 2021). For
the former, a 100h manually transcribed subset of the
whole data was used for training. The sizes of the
acoustic models are 36.5, 16.6 and 16.5 million pa-
rameters for Base, DS and Conv. While the baseline
is considerable larger, the latter two have more mod-
ern speech recognition architecture utilizing Kaldi’s
most recent updates and trained with a larger variety
of speech data.
However, all of them are fundamentally DNN-based
acoustic models trained with the lattice-free maxi-
mum mutual information (LF-MMI) criterion. They
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all also use the same acoustic features, 39 dimension
Mel-frequency cepstral coefficients (MFCCs) and Cep-
stral mean and variance normalization (CMVN). For
speaker adaption they employ Kaldi’s i-vectors. Since
these are conventional automatic speech recognition
models, they need pronunciation dictionaries. We cre-
ate them by assuming a direct grapheme-to-phoneme
(G2P) mapping. For Finnish this is straightforward as
the writing system has a clear phoneme-to-grapheme
correspondence. For Komi this direct G2P assumption
is also sensible so we use domain expertise to match a
Komi letter to the closest Finnish phonetic equivalent.
In cases where a single phoneme would be insufficient,
we combine multiple Finnish phonemes to represent a
single Komi phoneme.
We also experiment with a Wav2Vec2 (W2V2) model
(Baevski et al., 2020) from the Lahjoita Puhetta project.
The pre-trained model is based on VoxPopuli corpus
(Wang et al., 2021), fine-tuned with the same sub-
set as the DS model. We modify the code in (Hira,
2021), which is using the CTC segmentation method
presented in (Kürzinger et al., 2020) to create the align-
ments. Wav2Vec2 maps the speech directly to text so
no pronunciation dictionary is needed.

3.3. Removing Silence

Figure 1: Difference in occurrences of small silences
in automatic (upper) and manual (lower) alignments.

Figure 1 shows that automatic forced aligners leave
short silences between words, while human-produced
annotations for continuous speech, as in this example,
have word boundaries with no silences. Current speech
aligners’ original purpose is to produce training mate-
rial for speech recognition training. This material is
optimized to contain all necessary information to dif-
ferentiate between the tokens used, not to be optimal
for corpus documentation in linguistic settings. This
optimization can create micro-pauses as a side effect.
However, to be a valuable tool for linguists, the results
should serve their needs.
Therefore we experiment on the optimal way to re-
move the silences, testing where to split the silence be-
fore merging it to the surrounding words, extending the
word boundary markings to cover the silence. We try
three different values for a duration below which we
consider a silence to be a splittable micro-pause. For
convenience we use the same values as for the cutoffs
used for errors, excluding 10ms, as that is our model’s
minimum resolution and therefore splitting it would be
ineffective. We also compare three types of splitting: a
start split merges the silence to the next word, middle

divides it evenly between the words, and end split ex-
tends the word boundary of the first word to contain the
silence.

3.4. Segmenting Audio
Another possible solution to make the alignment task
simpler is to use segmented audio. Longer segments
are challenging since errors from the beginning can
propagate. Here we compare aligning the four Komi
audios in full to shorter sentence-long segments of the
same audio.

4. Results

Model <10 <25 <50 <100
Base 0.21 0.55 0.84 0.98
DS 0.22 0.62 0.94 1.00

Conv 0.29 0.67 0.93 1.00
W2V2 0.12 0.29 0.59 0.91

Table 2: Accuracies of different Finnish models with
the Finnish data. Percentages describe the amount of
alignment deviations below the 10, 25, 50 and 100 mil-
lisecond cutoff values.

As we can see from Table 2, there was room for im-
provement in Finnish forced alignment. While the DS
model is marginally better than Base in shorter than
10ms errors, it has 7 percentage points more of its devi-
ations below the 25ms cutoff, and over 94% of its errors
are below 50ms. Depending on the purpose of the auto-
matic alignments, it might not need any manual correc-
tion. The Conv model is even better, with almost a third
of the mistakes being less than 10ms, the resolution of
Kaldi’s alignments. It is also 5 percentage points better
than the DS in 25ms range, however slightly worse in
50ms. This even though the data of the DS model, one
person speaking uninterrupted, might be a closer match
to the domain of the test data. The Wav2vec2 approach
performs the poorest, being basically one error range
behind the other models.
Table 3 shows the results of the silence tests. When
comparing results to those shown in Table 2 we see that
every conventional model gains minor improvements
from the start split, with other types either not chang-
ing the results or worsening them. The most signifi-
cant gains are achieved for the DS model, with 2-3%
in absolute terms and 9-5% relative. As mentioned ear-
lier, these improvements are related to that the speech
recognition models start the words later than human an-
notators. While splitting does not change the order of
the models in terms of performance, it is a simple al-
gorithm with a consistent improvement with start split
and 50ms or less micro-pause duration.
With the Wav2Vec2 algorithm, we see even larger gains
with splitting silences, with absolute increases of 3-14
percentage points and 24-31% relative. Here the best
improvements are again with the start split; however,
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Model
Type

Duration
<10 <25 <50 <100

25ms 50ms 100ms 25ms 50ms 100ms 25ms 50ms 100ms 25ms 50ms 100ms

Base
start 0.22 0.22 0.22 0.56 0.56 0.56 0.86 0.86 0.86 0.98 0.98 0.98

middle 0.21 0.21 0.21 0.55 0.54 0.54 0.84 0.84 0.84 0.98 0.98 0.98
end 0.20 0.20 0.20 0.53 0.53 0.53 0.83 0.82 0.82 0.98 0.98 0.97

DS
start 0.24 0.24 0.24 0.64 0.65 0.65 0.95 0.95 0.95 1.00 1.00 0.99

middle 0.23 0.22 0.22 0.62 0.62 0.61 0.95 0.95 0.94 1.00 1.00 1.00
end 0.21 0.21 0.20 0.59 0.58 0.58 0.94 0.93 0.92 1.00 1.00 0.99

Conv
start 0.30 0.30 0.30 0.68 0.68 0.68 0.93 0.94 0.93 1.00 1.00 0.99

middle 0.29 0.29 0.29 0.67 0.67 0.67 0.93 0.93 0.93 1.00 1.00 0.99
end 0.28 0.28 0.28 0.67 0.66 0.66 0.93 0.93 0.92 1.00 1.00 0.99

W2V2
start 0.12 0.14 0.15 0.30 0.38 0.38 0.60 0.72 0.73 0.91 0.93 0.93

middle 0.11 0.11 0.11 0.29 0.28 0.29 0.59 0.60 0.62 0.91 0.92 0.92
end 0.11 0.09 0.08 0.28 0.20 0.19 0.58 0.47 0.45 0.91 0.89 0.88

Table 3: Different Finnish models with resulting alignments post-processed with different silence removal meth-
ods using the Finnish dataset. Type describes the split used, Duration tells below what length is considered a
micro-pause.

the optimal micro-pause duration is longer than in con-
ventional models, being the maximum distance mea-
sured in errors, 100ms.
When we combine the previous results with those of
segmenting the Komi audio, we can see mixed results
from Table 4. If the model recognizes the full audio at
all, it gets better results than with the segmented pieces,
but the segments allow every audio to be aligned: only
failed cases are with complete audios. The splitting
of silences less than 50ms helps only marginally. It
may be the case that when the results are poor, a longer
micro-pause duration needs to be considered, as with
the Wav2Vec2 model. Interestingly, the superior model
for Finnish performs worse here overall. The only
cases where it surpasses the baseline are for the seg-
mented Recordings 1 and 4, in both below 100ms er-
rors. The baseline model seems more robust against
cross-language speech recognition, something that can-
not be tested on Finnish data. Unfortunately, this does
not allow easy comparison of models before choosing
the right one for a CLFA task.

5. Conclusion
In this paper, we evaluated expert knowledge on cross-
language forced alignment in the form of segmenting
audio and splitting inaccurate micro-pauses in resulting
alignments.
We began experimenting with the splitting of silences
due to feedback from linguists. We found that silence
splitting performed well on language-specific align-
ment on excellent audio quality but less on cross-
language tasks with poorer audio quality. Instead of
finding a global parameter for this, it might be best to
find ways to describe the results and allow users to set
these values themselves while trying to generate met-
rics to warn of unsafe values.
As for segmenting audio, low-quality recordings can be
aligned with segmented audio, resulting in poorer qual-
ity alignments, while the full length has a chance of

failing. Segmentation helps in the case of challenging
recordings, but the correct places to cut audio are not
obvious. However, the speed of automatic forced align-
ment allows an iterative process to experiment with
both methods to achieve the best results possible.

Data & <10 <25 <50 <100
Model - sil - sil - sil - sil

B
as

e

R1# 0.16 0.16 0.29 0.30 0.49 0.49 0.62 0.62
R1 0.27 0.27 0.37 0.37 0.51 0.51 0.62 0.62

R2# 0.17 0.17 0.28 0.28 0.41 0.41 0.53 0.53
R2 0.34 0.34 0.43 0.43 0.50 0.50 0.62 0.62

R3# 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.03
R3 - - - - - - -

R4# 0.19 0.19 0.32 0.32 0.45 0.46 0.61 0.61
R4 - - - - - - - -

C
on

v

R1# 0.13 0.13 0.28 0.28 0.46 0.46 0.70 0.70
R1 - - - - - - - -

R2# 0.14 0.14 0.29 0.30 0.46 0.46 0.62 0.62
R2 - - - - - - - -

R3# 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.02
R3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R4# 0.11 0.11 0.29 0.29 0.48 0.49 0.70 0.70
R4 - - - - - - - -

Table 4: Results with full Komi audios compared to
segmented audios (#). Without splitting (-), or 50ms
(sil). Dash (-) in results represents failed alignment run.
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Virkkunen, A., Grósz, T., Lindén, K., and Kurimo,
M. (2022). Lahjoita puhetta – a large-scale corpus
of spoken finnish with some benchmarks.

Moisio, A. (2021). Speech recognition for conver-
sational finnish. Master’s thesis, Aalto University
School of Electrical Engineering, Espoo.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L.,
Glembek, O., Goel, N., Hannemann, M., Motlicek,
P., Qian, Y., Schwarz, P., et al. (2011). The kaldi
speech recognition toolkit. In IEEE 2011 workshop
on automatic speech recognition and understanding,
number CONF. IEEE Signal Processing Society.

Raitio, T., Suni, A., Pulakka, H., Vainio, M., and Alku,
P. (2008). Hmm-based finnish text-to-speech sys-
tem utilizing glottal inverse filtering. In Ninth An-
nual Conference of the International Speech Com-
munication Association.

Rosenfelder, I., Fruehwald, J., Evanini, K., and Yuan,
J. (2011). Fave (forced alignment and vowel extrac-
tion) program suite. http://fave. ling. upenn. edu.
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