
(

Proceedings of the Workshop on Processing Language Variation: Digital Armenian (DigitAm 2022) @LREC2022, pages 8–12
Marseille, 20 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

8

Dialects Identification of Armenian Language 
 

Karen Avetisyan 
Russian-Armenian University 

Yerevan, Armenia 

avetisyan.karen@student.rau.am 

Abstract 
The Armenian language has many dialects that differ from each other syntactically, morphologically, and phonetically. In this 
work, we implement and evaluate models that determine the dialect of a given passage of text. The proposed models are 
evaluated for the three major variations of the Armenian language: Eastern, Western, and Classical. Previously, there were no 
instruments of dialect identification in the Armenian language. The paper presents three approaches: a statistical which relies 
on a stop words dictionary, a modified statistical one with a dictionary of most frequently encountered words, and the third one 
that is based on Facebook’s fastText language identification neural network model. Two types of neural network models were 
trained, one with the usage of pre-trained word embeddings and the other without. Approaches were tested on sentence-level 
and document-level data. The results show that the neural network-based method works sufficiently better than the statistical 
ones, achieving almost 98% accuracy at the sentence level and nearly 100% at the document level.  
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1. Introduction 

The Armenian language has many actively used 
dialects. They differ from each other syntactically, 
morphologically, and phonetically. Considering the 
variation in the existing literature and the current usage 
of various variants of the language, dialect 
identification in texts is a relevant and open problem 
for Armenian dialects. Thus, this paper tries to solve 
that problem for three major variations of the 
Armenian language: Eastern, Western, and Classical. 
Dialect identification is similar to language 
identification, but has several important differences 
that make the task more challenging. Contrary to 
different languages, dialects share the same script and 
have highly overlapping vocabularies. Despite the 
subtle differences between the tasks, to solve the 
dialect identification task in this work we study the 
performance of established lexicon- and artificial 
neural network-based language identification 
approaches.  
Lexicon-based methods use a list of stop words for 
each language to detect their texts. A similar approach 
was shown in Truică et al. (2015), where the stop words 
and diacritics formed the lexicon. The Armenian 
language has no diacritics and stop words can be very 
similar among dialects, therefore this method may not 
always be suitable for the chosen task. For that reason, 
it was modified  to use the list of the most frequent 
words of each of the considered dialects. 
The artificial neural network-based approach learns 
numerical representations of words and uses them as 
input features for classification. One of the most 
popular implementations of this method relies on 
Facebook’s fastText library1 for text classification and 
representation (Joulin et al., 2016) as it has shown high 
results on language identification tasks. Here, the 
model was trained both with the usage of the pre-
trained fastText word embeddings and without it. To 
train the model, data from Western2 and Eastern3 

 
1 https://fasttext.cc/blog/2017/10/02/blog-post.html 
2 https://hyw.wikipedia.org/ 

Armenian Wikipedia was collected, as well as the data 
from Digilib4 for Classical Armenian. 
All three methods were tested on sentence-level and 
document-level testing datasets that were also 
collected from Wikipedia-s and Digilib texts. In 
addition to this, the dependency of text segment size to 
dialect identification accuracy is shown. 

2. Methods 

To solve the task of Armenian dialect identification, 
three methods were used.  
(i) Stop Words: As a baseline solution for the problem, 
a stop-word-based algorithm was selected. Let 𝑊𝑑 be 
the stop words vocabulary of the dialect 𝑑(𝑑 ∈
{𝑊𝑒𝑠𝑡𝑒𝑟𝑛, 𝐸𝑎𝑠𝑡𝑒𝑟𝑛, 𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙}). 𝑊𝑒 is the set of 
words contained in the text  𝐸. For each text 𝐸, the 
dialect is predicted according to this statement: 
 

𝑙𝑎𝑏𝑒𝑙(𝐸) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑑  (|𝑊𝑑 ∩ 𝑊𝑒|) 
 

If there are two or three maximal values, the label is 
chosen randomly according to the values. 
(ii) Lexicon-Based: The first method was modified by 
making the 𝑊𝑑 not only stop words vocabulary. Here, 
2 different 𝑊𝑑 vocabularies were tested. The process 
of both  𝑊𝑑 dictionary-formation is described in 
Chapter 3. 
(iii) Neural Network-Based: For the other method, 
Facebook’s fastText language identification model was 
utilized. Here, the words are being presented as a set of  
n-grams. Each n-gram has its representation vector that 
is also trainable. These representations are then being 
averaged and given to a linear classifier. In the end, 
softmax is used as an activation function.  
The model was trained to predict 3 dialects: Eastern 
Armenian, Western Armenian, and Classical 
Armenian. 

3 https://hy.wikipedia.org/ 
4 https://digilib.aua.am/en 
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3. Data 

To collect the training data for Eastern (hye) and 
Western (hyw) Armenian, respective Wikipedia 
dumps56 were used. Whereas, the texts from Digilib 
were utilized to get the data for Classical Armenian.  
The stop word dictionary for Western and Classical 
Armenian was collected manually utilizing the list of 
most frequent words that was in turn collected from the 
above-described resources. Eastern Armenian stop 
words were taken from here7. 
For the lexicon-based method, three dictionaries (one 
for each dialect) were formed. The formation was 
processed, in two different ways, using the 
corresponding data for each of the dialects separately. 
Removing the words that contain non-Armenian letters 
as well as punctuation symbols, the word frequency 
was counted. Assuming that 𝑽𝑨,𝒌 stands for the set of 
top k most frequent words in dialect 𝐴, the final 
dictionary for the dialect 𝐴, in two different ways a) 
and b), will look as follows: 

a) 𝐷𝐴 = 𝑉𝐴,𝑘 \ (𝑉𝐵,𝑘 ∩ 𝑉𝐶,𝑘 ), 

b) 𝐷𝐴 = 𝑉𝐴,𝑘 \ (𝑉𝐵,𝑘 ∪ 𝑉𝐶,𝑘 ), 

 
where 𝑽𝑩,𝒌 and 𝑽𝑪,𝒌 are the sets of top k frequent words 
in dialects 𝐵 and 𝐶, respectively.  
As for the data to train the fastText language 
identification model, sentences were randomly 
extracted from the considered datasets. It was decided 
not to filter the extracted sentences according to their 
length, taking into account the fact that fastText trains 
its own models using sentences with different lengths. 
For each of the dialects, the training set contains an 
equal number of sentences. 
To test the methods, two types of test data were created. 
The first one is a set of sentences randomly extracted 
from the Wikipedia dumps and Digilib. For each 
dialect, this set contains 500 sentences. The average 
length of the sentences is equal to nearly 18 words or ≈ 
130 characters.  
The second test set consists of whole texts, a hundred 
documents for each dialect, randomly extracted from 
the same sources. The average length of the document 
is equal to ≈ 600 words or ≈ 4150 characters. For 
Classical Armenian, only the first 50 sentences of each 
document were extracted to balance the average length 
of documents for each of the dialects.  

4. Experiments 

In this chapter, the process of hyperparameter tuning, 
the results on tuned hyperparameters, and some other 
additional statistics are shown. 
The best results that each of the described methods 
achieve, and their corresponding time consumption, 
are shown in Table 1 and Table 2 separately for 
sentence and document level test sets. 
According to the results shown in Table 1 and Table 2, 
the neural network-based method achieves sufficiently 
better results than the ones based on vocabulary. 

 
5 https://dumps.wikimedia.org/hywwiki/ 
6 https://dumps.wikimedia.org/hywiki/ 

Further, in subchapters 4.1 and 4.2 more detailed 
results for all the conducted experiments are described. 
 

Methods Accuracy  Time 

Stop-Words  0.51 0.02s 

Lexicon-Based 0.67 1.71s 

Neural-Network  0.98 0.14s 

Table 1: The best results and time consumption of 
each method on the sentence-level test set. 

(Processing time of 1500 sentence examples) 
 

Methods Accuracy  Time 

Stop-Words  0.55 0.04s 

Lexicon-Based 0.67 0.16s 

Neural Network 1.00 0.76s 

Table 2: The best results and time consumption of 
each method on the document-level test set. 

(Processing time of 300 document examples) 

4.1 Lexicon-based method 

For the lexicon-based method, we tuned 𝑘, the number 
of the most frequent words used to create the final 
dictionaries. For each value of 𝑘, and for both 
variations of dictionary-creation, the accuracy score 
was calculated. The results of these experiments for 
sentence-level and document-level test sets are shown 
in Figure 1 and Figure 2. 
 

 

Figure 1: The comparison of a) and b) dictionary 
versions in terms of accuracy score shown on the 

sentence-level test set depending on the number of 
most frequent words taken. 

 
According to the results (Figure 1 and Figure 2), it is 
noticeable that the b) version of dictionary-creation 
overall works better on both of the test sets. 

4.2 Neural network-based method 

For this method, we trained the fastText model on 3 
different size datasets. These datasets consisted of 
1000, 2000, and 5000 sentences per each label. 

7 https://github.com/stopwords-iso/stopwords-hy 
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Figure 2: The comparison of a) and b) dictionary 
versions in terms of accuracy score shown on the 

document-level test set depending on the number of 
most frequent words taken. 

4.2.1 Hyperparameters 

For more efficient usage of the method, we had to tune 
some basic hyperparameters like minn and maxn, 
which denote the minimal and maximal length of 
character n-grams. Taking into account the fact that the 
average length of the words used in the training set is 
nearly 6 characters, the minimal and maximal lengths 
of character n-grams were tuned within these limits.  
In addition, the process of training was held with and 
without pre-trained word vectors. While using the pre-

trained word vectors, the dim parameter, which stands 
for the size of word vectors, was equal to 300. As pre-
trained word vectors, fastText’s default vectors for the 
Armenian language were used. When the training 
process was held without pre-trained vectors, the dim 
parameter was set to 16 as it is suggested in the 
fastTexts language identification tutorial8.  
Hyperparameter tuning was performed on the 
sentence-level test set. The results both with and 
without the usage of pre-trained word vectors are 
shown in Table 3 and Table 4. The presented results 
are the average of 5 separate runs with different 
random seeds. 
As we can see from Table 3 and Table 4, the results are 
much more stable with the usage of pre-trained vectors, 
while the n-gram minimum and maximum sizes 
change. The best results were also achieved with the 
usage of pre-trained vectors with the training set size 
of 5000 sentences per label. 

4.2.2 Results 

Based on the hyperparameter tuning results, the models 
that achieved the best results were taken. For these 
models, their confusion matrixes are presented in 
Figure 3. As we can see from these matrixes, the 
models are mainly confused in predicting Classical 
Armenian sentences as Western Armenian ones, and 
Western Armenian sentences as Eastern Armenian 
ones. 

 
Sentences 

per label 
1000 2000 5000 

maxn 

 
minn 

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 

1 93,3 95,7 96 96,1 96 95,9 94,1 96,2 96,9 97,1 97 97 95,2 96,7 96,7 96,9 97,2 97,1 

2  95,3 95,4 95,7 95,7 95,8  96,3 97 97 97 97  96,3 96,5 97 97,1 97,3 

3   95,5 95,5 95,5 95,5   96,7 96,9 96,9 96,9   97 97,5 97,6 97,5 

4    95,2 94,9 94,7    96,9 96,9 96,9    96,9 97,2 97,3 

5     94,4 94,2     96,7 96,7     96,7 96,9 

6      94,1      96,6      96,6 

Table 3: minn and maxn hyperparameters tuning, on sentence-level test set, for different size training data with 
pre-trained word vectors (dim=300). 

 
Sentences 

per label 
1000 2000 5000 

maxn 

 
minn 

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 

1 84,4 74,9 71,4 76,2 81,6 68,9 90,1 94,2 93,4 91,7 89,7 83,2 92,7 96 96,1 96,1 96 95,9 

2  88,7 68,6 73,4 79,7 77,8  94,8 94,1 92,9 91,1 84,5  96,1 96,7 96,5 96,4 96,3 

3   85,2 74 78,7 78,9   94,6 93,6 90,9 81,2   97 96,9 96,4 96,1 

4    79,1 76,8 72,9    94,3 92,2 85,5    96,5 96,4 96 

5     71,7 61,3     92,8 89     96,2 96,1 

6      68,1      91,9      95,9 

Table 4: minn and maxn hyperparameters tuning, on sentence-level test set, for different size training data 
without pre-trained word vectors (dim=16).

 
8 https://fasttext.cc/blog/2017/10/02/blog-post.html 
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Figure 3: Confusion matrixes of models with best hyperparameters on the sentence-level test set. 

 

Figure 4: A comparison of models that were trained 
with and without pre-trained vectors on the 

document-level test set, while changing the number 
of training examples. 

 

 

Figure 5: A comparison of models that were trained 
with and without pre-trained vectors on the sentence-
level test set, while changing the number of training 

examples. 
 
The best models for each number of train examples and 
according to the usage of pre-trained vectors were also 

tested on the sentence and document level test sets. 
These results are shown in Figure 4 and Figure 5. Here 
the presented results are also the average of 5 seeds.  
From Figure 4 and Figure 5 we can conclude that the 
models for which pre-trained vectors were used 
achieve the same results with a smaller amount of data 
used for their training. Also, we can see that the model 
that does not use pre-trained vectors and for the 
training of which 5000 sentences per label were used, 
achieves nearly the same results as the model that uses 
the vectors. 
Further, to minimize the time consumption on the 
document-level dialect identification task, additional 
experiments were held using only the first 𝑛 symbols 
of each test example. The value of 𝑛 was changed from 
10 to 200 symbols. Time consumption for an 
experiment, where 𝑛 was equal to 200 symbols, was 
decreased by nearly 20 times for each of the considered 
models. The achieved accuracy scores for these 
experiments are shown in Figure 6. The final scores 
were also calculated by averaging the results of 5 seeds. 

 

Figure 6: Accuracy score according to the change of a 
number of first symbols that are given to the neural 

network-based best model.  
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5. Conclusion 

In this work, we evaluated three different methods of 
Armenian dialect identification. The neural network-
based method performed best, achieving 98% accuracy 
at sentence level and 100% accuracy at document level. 
Utilizing pre-trained word vectors to train the neural 
network allowed us to achieve decent results for this 
task, using only a small number of training examples. 
This feature could be helpful for the identification 
process of less popular dialects. Additionally, it was 
shown that using only the first 200 characters of the 
document would be sufficient for accurate dialect 
identification, which in practice will help to 
significantly reduce the computation time when 
processing long documents.  
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