
(

Proceedings of the Workshop on Processing Language Variation: Digital Armenian (DigitAm 2022) @LREC2022, pages 8–12
Marseille, 20 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

8

Dialects Identification of Armenian Language

Karen Avetisyan
Russian-Armenian University

Yerevan, Armenia

avetisyan.karen@student.rau.am

Abstract
The Armenian language has many dialects that differ from each other syntactically, morphologically, and phonetically. In this
work, we implement and evaluate models that determine the dialect of a given passage of text. The proposed models are
evaluated for the three major variations of the Armenian language: Eastern, Western, and Classical. Previously, there were no
instruments of dialect identification in the Armenian language. The paper presents three approaches: a statistical which relies
on a stop words dictionary, a modified statistical one with a dictionary of most frequently encountered words, and the third one
that is based on Facebook’s fastText language identification neural network model. Two types of neural network models were
trained, one with the usage of pre-trained word embeddings and the other without. Approaches were tested on sentence-level
and document-level data. The results show that the neural network-based method works sufficiently better than the statistical
ones, achieving almost 98% accuracy at the sentence level and nearly 100% at the document level.

Keywords: Dialect identification, Western Armenian, Eastern Armenian, Classical Armenian

1. Introduction

The Armenian language has many actively used
dialects. They differ from each other syntactically,
morphologically, and phonetically. Considering the
variation in the existing literature and the current usage
of various variants of the language, dialect
identification in texts is a relevant and open problem
for Armenian dialects. Thus, this paper tries to solve
that problem for three major variations of the
Armenian language: Eastern, Western, and Classical.
Dialect identification is similar to language
identification, but has several important differences
that make the task more challenging. Contrary to
different languages, dialects share the same script and
have highly overlapping vocabularies. Despite the
subtle differences between the tasks, to solve the
dialect identification task in this work we study the
performance of established lexicon- and artificial
neural network-based language identification
approaches.
Lexicon-based methods use a list of stop words for
each language to detect their texts. A similar approach
was shown in Truică et al. (2015), where the stop words
and diacritics formed the lexicon. The Armenian
language has no diacritics and stop words can be very
similar among dialects, therefore this method may not
always be suitable for the chosen task. For that reason,
it was modified to use the list of the most frequent
words of each of the considered dialects.
The artificial neural network-based approach learns
numerical representations of words and uses them as
input features for classification. One of the most
popular implementations of this method relies on
Facebook’s fastText library1 for text classification and
representation (Joulin et al., 2016) as it has shown high
results on language identification tasks. Here, the
model was trained both with the usage of the pre-
trained fastText word embeddings and without it. To
train the model, data from Western2 and Eastern3

1 https://fasttext.cc/blog/2017/10/02/blog-post.html
2 https://hyw.wikipedia.org/

Armenian Wikipedia was collected, as well as the data
from Digilib4 for Classical Armenian.
All three methods were tested on sentence-level and
document-level testing datasets that were also
collected from Wikipedia-s and Digilib texts. In
addition to this, the dependency of text segment size to
dialect identification accuracy is shown.

2. Methods

To solve the task of Armenian dialect identification,
three methods were used.
(i) Stop Words: As a baseline solution for the problem,
a stop-word-based algorithm was selected. Let 𝑊𝑑 be
the stop words vocabulary of the dialect 𝑑(𝑑 ∈
{𝑊𝑒𝑠𝑡𝑒𝑟𝑛, 𝐸𝑎𝑠𝑡𝑒𝑟𝑛, 𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙}). 𝑊𝑒 is the set of
words contained in the text 𝐸. For each text 𝐸, the
dialect is predicted according to this statement:

𝑙𝑎𝑏𝑒𝑙(𝐸) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑑 (|𝑊𝑑 ∩ 𝑊𝑒|)

If there are two or three maximal values, the label is
chosen randomly according to the values.
(ii) Lexicon-Based: The first method was modified by
making the 𝑊𝑑 not only stop words vocabulary. Here,
2 different 𝑊𝑑 vocabularies were tested. The process
of both 𝑊𝑑 dictionary-formation is described in
Chapter 3.
(iii) Neural Network-Based: For the other method,
Facebook’s fastText language identification model was
utilized. Here, the words are being presented as a set of
n-grams. Each n-gram has its representation vector that
is also trainable. These representations are then being
averaged and given to a linear classifier. In the end,
softmax is used as an activation function.
The model was trained to predict 3 dialects: Eastern
Armenian, Western Armenian, and Classical
Armenian.

3 https://hy.wikipedia.org/
4 https://digilib.aua.am/en

9

3. Data

To collect the training data for Eastern (hye) and
Western (hyw) Armenian, respective Wikipedia
dumps56 were used. Whereas, the texts from Digilib
were utilized to get the data for Classical Armenian.
The stop word dictionary for Western and Classical
Armenian was collected manually utilizing the list of
most frequent words that was in turn collected from the
above-described resources. Eastern Armenian stop
words were taken from here7.
For the lexicon-based method, three dictionaries (one
for each dialect) were formed. The formation was
processed, in two different ways, using the
corresponding data for each of the dialects separately.
Removing the words that contain non-Armenian letters
as well as punctuation symbols, the word frequency
was counted. Assuming that 𝑽𝑨,𝒌 stands for the set of
top k most frequent words in dialect 𝐴, the final
dictionary for the dialect 𝐴, in two different ways a)
and b), will look as follows:

a) 𝐷𝐴 = 𝑉𝐴,𝑘 \ (𝑉𝐵,𝑘 ∩ 𝑉𝐶,𝑘),

b) 𝐷𝐴 = 𝑉𝐴,𝑘 \ (𝑉𝐵,𝑘 ∪ 𝑉𝐶,𝑘),

where 𝑽𝑩,𝒌 and 𝑽𝑪,𝒌 are the sets of top k frequent words
in dialects 𝐵 and 𝐶, respectively.
As for the data to train the fastText language
identification model, sentences were randomly
extracted from the considered datasets. It was decided
not to filter the extracted sentences according to their
length, taking into account the fact that fastText trains
its own models using sentences with different lengths.
For each of the dialects, the training set contains an
equal number of sentences.
To test the methods, two types of test data were created.
The first one is a set of sentences randomly extracted
from the Wikipedia dumps and Digilib. For each
dialect, this set contains 500 sentences. The average
length of the sentences is equal to nearly 18 words or ≈
130 characters.
The second test set consists of whole texts, a hundred
documents for each dialect, randomly extracted from
the same sources. The average length of the document
is equal to ≈ 600 words or ≈ 4150 characters. For
Classical Armenian, only the first 50 sentences of each
document were extracted to balance the average length
of documents for each of the dialects.

4. Experiments

In this chapter, the process of hyperparameter tuning,
the results on tuned hyperparameters, and some other
additional statistics are shown.
The best results that each of the described methods
achieve, and their corresponding time consumption,
are shown in Table 1 and Table 2 separately for
sentence and document level test sets.
According to the results shown in Table 1 and Table 2,
the neural network-based method achieves sufficiently
better results than the ones based on vocabulary.

5 https://dumps.wikimedia.org/hywwiki/
6 https://dumps.wikimedia.org/hywiki/

Further, in subchapters 4.1 and 4.2 more detailed
results for all the conducted experiments are described.

Methods Accuracy Time

Stop-Words 0.51 0.02s

Lexicon-Based 0.67 1.71s

Neural-Network 0.98 0.14s

Table 1: The best results and time consumption of
each method on the sentence-level test set.

(Processing time of 1500 sentence examples)

Methods Accuracy Time

Stop-Words 0.55 0.04s

Lexicon-Based 0.67 0.16s

Neural Network 1.00 0.76s

Table 2: The best results and time consumption of
each method on the document-level test set.

(Processing time of 300 document examples)

4.1 Lexicon-based method

For the lexicon-based method, we tuned 𝑘, the number
of the most frequent words used to create the final
dictionaries. For each value of 𝑘, and for both
variations of dictionary-creation, the accuracy score
was calculated. The results of these experiments for
sentence-level and document-level test sets are shown
in Figure 1 and Figure 2.

Figure 1: The comparison of a) and b) dictionary
versions in terms of accuracy score shown on the

sentence-level test set depending on the number of
most frequent words taken.

According to the results (Figure 1 and Figure 2), it is
noticeable that the b) version of dictionary-creation
overall works better on both of the test sets.

4.2 Neural network-based method

For this method, we trained the fastText model on 3
different size datasets. These datasets consisted of
1000, 2000, and 5000 sentences per each label.

7 https://github.com/stopwords-iso/stopwords-hy

10

Figure 2: The comparison of a) and b) dictionary
versions in terms of accuracy score shown on the

document-level test set depending on the number of
most frequent words taken.

4.2.1 Hyperparameters

For more efficient usage of the method, we had to tune
some basic hyperparameters like minn and maxn,
which denote the minimal and maximal length of
character n-grams. Taking into account the fact that the
average length of the words used in the training set is
nearly 6 characters, the minimal and maximal lengths
of character n-grams were tuned within these limits.
In addition, the process of training was held with and
without pre-trained word vectors. While using the pre-

trained word vectors, the dim parameter, which stands
for the size of word vectors, was equal to 300. As pre-
trained word vectors, fastText’s default vectors for the
Armenian language were used. When the training
process was held without pre-trained vectors, the dim
parameter was set to 16 as it is suggested in the
fastTexts language identification tutorial8.
Hyperparameter tuning was performed on the
sentence-level test set. The results both with and
without the usage of pre-trained word vectors are
shown in Table 3 and Table 4. The presented results
are the average of 5 separate runs with different
random seeds.
As we can see from Table 3 and Table 4, the results are
much more stable with the usage of pre-trained vectors,
while the n-gram minimum and maximum sizes
change. The best results were also achieved with the
usage of pre-trained vectors with the training set size
of 5000 sentences per label.

4.2.2 Results

Based on the hyperparameter tuning results, the models
that achieved the best results were taken. For these
models, their confusion matrixes are presented in
Figure 3. As we can see from these matrixes, the
models are mainly confused in predicting Classical
Armenian sentences as Western Armenian ones, and
Western Armenian sentences as Eastern Armenian
ones.

Sentences

per label
1000 2000 5000

maxn

minn

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 93,3 95,7 96 96,1 96 95,9 94,1 96,2 96,9 97,1 97 97 95,2 96,7 96,7 96,9 97,2 97,1

2 95,3 95,4 95,7 95,7 95,8 96,3 97 97 97 97 96,3 96,5 97 97,1 97,3

3 95,5 95,5 95,5 95,5 96,7 96,9 96,9 96,9 97 97,5 97,6 97,5

4 95,2 94,9 94,7 96,9 96,9 96,9 96,9 97,2 97,3

5 94,4 94,2 96,7 96,7 96,7 96,9

6 94,1 96,6 96,6

Table 3: minn and maxn hyperparameters tuning, on sentence-level test set, for different size training data with
pre-trained word vectors (dim=300).

Sentences

per label
1000 2000 5000

maxn

minn

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 84,4 74,9 71,4 76,2 81,6 68,9 90,1 94,2 93,4 91,7 89,7 83,2 92,7 96 96,1 96,1 96 95,9

2 88,7 68,6 73,4 79,7 77,8 94,8 94,1 92,9 91,1 84,5 96,1 96,7 96,5 96,4 96,3

3 85,2 74 78,7 78,9 94,6 93,6 90,9 81,2 97 96,9 96,4 96,1

4 79,1 76,8 72,9 94,3 92,2 85,5 96,5 96,4 96

5 71,7 61,3 92,8 89 96,2 96,1

6 68,1 91,9 95,9

Table 4: minn and maxn hyperparameters tuning, on sentence-level test set, for different size training data
without pre-trained word vectors (dim=16).

8 https://fasttext.cc/blog/2017/10/02/blog-post.html

11

Figure 3: Confusion matrixes of models with best hyperparameters on the sentence-level test set.

Figure 4: A comparison of models that were trained
with and without pre-trained vectors on the

document-level test set, while changing the number
of training examples.

Figure 5: A comparison of models that were trained
with and without pre-trained vectors on the sentence-
level test set, while changing the number of training

examples.

The best models for each number of train examples and
according to the usage of pre-trained vectors were also

tested on the sentence and document level test sets.
These results are shown in Figure 4 and Figure 5. Here
the presented results are also the average of 5 seeds.
From Figure 4 and Figure 5 we can conclude that the
models for which pre-trained vectors were used
achieve the same results with a smaller amount of data
used for their training. Also, we can see that the model
that does not use pre-trained vectors and for the
training of which 5000 sentences per label were used,
achieves nearly the same results as the model that uses
the vectors.
Further, to minimize the time consumption on the
document-level dialect identification task, additional
experiments were held using only the first 𝑛 symbols
of each test example. The value of 𝑛 was changed from
10 to 200 symbols. Time consumption for an
experiment, where 𝑛 was equal to 200 symbols, was
decreased by nearly 20 times for each of the considered
models. The achieved accuracy scores for these
experiments are shown in Figure 6. The final scores
were also calculated by averaging the results of 5 seeds.

Figure 6: Accuracy score according to the change of a
number of first symbols that are given to the neural

network-based best model.

12

5. Conclusion

In this work, we evaluated three different methods of
Armenian dialect identification. The neural network-
based method performed best, achieving 98% accuracy
at sentence level and 100% accuracy at document level.
Utilizing pre-trained word vectors to train the neural
network allowed us to achieve decent results for this
task, using only a small number of training examples.
This feature could be helpful for the identification
process of less popular dialects. Additionally, it was
shown that using only the first 200 characters of the
document would be sufficient for accurate dialect
identification, which in practice will help to
significantly reduce the computation time when
processing long documents.

6. Bibliographical References

Ali, A., Dehak, N., Cardinal, P., Khurana, S., Yella, S.,
Glass, J., Bell, P. and Renals, S. (2016). Automatic
Dialect Detection in Arabic Broadcast Speech.
Interspeech 2016.

Balaji, N.N.A. and Bharathi B. (2020). Semi-
supervised Fine-grained Approach for Arabic dialect
detection task. In Proceedings of the Fifth Arabic
Natural Language Processing Workshop, pages
257–261, Barcelona, Spain.

Belinkov, Y. & Glass, J. (2016). A Character-level
Convolutional Neural Network for Distinguishing
Similar Languages and Dialects.
VarDial@COLING.

Biadsy, F., Hirschberg, J. and Habash, N. (2009).
Spoken Arabic Dialect Identification Using
Phonotactic Modeling. Proceedings of EACL 2009
Workshop on Computational Approaches to Semitic
Languages.

Darwish, K., Sajjad, H., & Mubarak, H. (2014).
Verifiably effective arabic dialect identification. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing
(EMNLP), pages 1465-1468.

Franco-Penya, H.-H. and Sanchez, L.M. (2016).
Tuning Bayes Baseline for Dialect Detection. In
Proceedings of the Third Workshop on NLP for
Similar Languages, Varieties and Dialects
(VarDial3), pages 227–234, Osaka, Japan.

Joulin, A., Grave, E., Bojanowski, P. and Mikolov, T.
(2016). Bag of Tricks for Efficient Text
Classification. Proceedings of the 15th Conference
of the European Chapter of the Association for
Computational Linguistics: Volume 2, Short Papers.

Malmasi, S., Refaee, E. and Dras, M. (2015). Arabic
Dialect Identification Using a Parallel Multidialectal
Corpus. PACLING 2015.

Talafha, B., Ali, M., Za'ter, M. E., Seelawi, H.,
Tuffaha, I., Samir, M., Farhan W. & Al-Natsheh, H.
T. (2020). Multi-dialect arabic bert for country-level
dialect identification.

Truică, C.-O., Velcin, J. and Boicea, A. (2015).
Automatic Language Identification for Romance
Languages Using Stop Words and Diacritics. 17th

International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing.

