
Proceedings of the CLTW 4 @ LREC2022 , pages 40–46
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

40

Iterated Dependencies in a Breton treebank and implications for a
Categorial Dependency Grammar

Annie Foret, Denis Béchet, Valérie Bellynck
IRISA& Univ. Rennes 1, Nantes University, Univ. Grenoble

Annie.Foret@irisa.fr, Denis.Bechet@univ-nantes.fr, Valerie.bellynck@imag.fr

Abstract
Categorial Dependency Grammars (CDG) are computational grammars for natural language processing, defining dependency
structures. They can be viewed as a formal system, where types are attached to words, combining the classical categorial
grammars’ elimination rules with valency pairing rules able to define discontinuous (non-projective) dependencies. Algorithms
have been proposed to infer grammars in this class from treebanks, with respect to Mel’čuk principles. We consider this
approach with experiments on Breton. We focus in particular on “repeatable dependencies” (iterated) and their patterns.
A dependency d is iterated in a dependency structure if some word in this structure governs several other words through
dependency d. We illustrate this approach with data in the universal dependencies format and dependency patterns written in
Grew (a graph rewriting tool dedicated to applications in natural Language Processing).

Keywords: Formal Grammar, Categorial Grammar, Treebank, Universal Dependencies, Breton, Repeatable Dependen-
cies, Grammatical Inference, Graph Rewriting

1. Introduction
This paper discusses how a formal grammar in the class
of categorial dependency grammars can be applied to
under-resourced languages.
Previous works have proposed the categorial depen-
dency framework for natural language modelling and
processing, with nice formal and pratical properties:
polynomial parsing complexity and algorithms to infer
such grammars from dependency treebanks.
We conducted experiments in that direction on Breton.
Using Grew with both CDG grammars and a treebank
provides quickly specific views of the linguistic data:
in our case views related to the interpretations of the
Mel’čuk repeatable dependency principle. This helps
to validate this repeatable principle for a language such
as Breton and annotation guidelines.
Several dependency treebanks are developed for Celtic
languages (Lynn and Foster, 2016; Batchelor, 2019;
Heinecke and Tyers, 2019). In this work we consider
the UD Breton-KEB corpus 1 (Tyers and Ravishankar,
2018). We wrote programs with reproducible exper-
iments on Breton annotated sentences following the
Universal Dependencies scheme 2.
We focus in particular on iterated dependencies. A
dependency d is iterated in a dependency structure
if some word in this structure governs several other
words through dependency d. The iterated depen-
dencies are due to the basic principles of dependency
syntax, on optional repeatable dependencies (Mel’čuk,
1988): All modifiers of a noun n share n as their gov-
ernor and, similarly, all modifiers of a verb v share
v as their governor. At the same time, the iterated

1V1.0 available at https://
universaldependencies.org/treebanks/
br_keb/index.html

2https://universaldependencies.org/

dependencies have been a challenge for grammatical
inference (Béchet and Foret, 2021): the class of k-
valued CDG (at most k types per word) is not learnable
(in the sense of Gold’s (Gold, 1967) “identification in
the limit”), while the class of k-valued “iteration-free”
CDG is learnable.
The paper is organized as follows. Section 2 introduces
Categorial Dependency Grammars (CDG). Section 3
provides an inference algorithm for CDG when we in-
terprete the notion of iterated dependencies as consec-
utive outgoing edges separately on the left and on the
right of a governor. We also discuss different possible
interpretations of the notion of iterated dependencies,
handled in extended CDG. Section 4 reports on exper-
iments on a Breton corpus. Section 5 concludes. We
provide code on CDG and UD available at the cdg-ud
page3.

2. Categorial Dependency Grammars
A CDG (Dekhtyar et al., 2015) is a formal grammar
that defines a language of surface dependency struc-
tures. A surface dependency structure is a list of words
linked together by dependencies. Each dependency has
a name, a starting point called the governor and an end-
ing point called the subordinate.
Figure 1 shows a surface dependency structure for the
string “This deal brought more problems than prof-
its.”. The structure contains eight words (or punctua-
tion symbols) and seven dependencies. The arrow be-
tween brought and problems defines a dependency of
name a−obj where brought is the governor and prob-
lems is the subordinate (this dependency indicates that
problems is the object of brought). The root of the
structure is the word brought (this word isn’t the sub-
ordinate of any dependency). The CDG dependency

3 https://gitlab.inria.fr/foret/cdg-ud

https://universaldependencies.org/treebanks/br_keb/index.html
https://universaldependencies.org/treebanks/br_keb/index.html
https://universaldependencies.org/treebanks/br_keb/index.html
https://universaldependencies.org/
https://gitlab.inria.fr/foret/cdg-ud

41

Figure 1: A Dependency Structure.

Ll [C]P [C\β]Q ` [β]PQ (\ elimination)
Il [C]P [C∗\β]Q ` [C∗\β]PQ (\ repetition)
Ωl [C∗\β]P ` [β]P (\ option)
Dl αP1(↙V)P (↖V)P2 ` αP1PP2 P without ↙V ↖V

Table 1: The CDG Type Calculus (Left Rules)

structures are not necessarily dependency trees because
certain dependencies called discontinuous dependen-
cies are usually introduced together with an auxiliary
dependency called an anchor 4. In the example, there is
a discontinuous dependency comp−conj but its anchor
dependency is not shown here.
A CDG is defined mainly by a lexicon that associates
types to words and punctuation symbols. The fol-
lowing lexicon shows a lexicon for the previous de-
pendency structure (the anchor sub-types for the dis-
continuous dependency comp−conj are presented as
#↘ comp−conj in the types of problems and than):

this 7→ [det]
deal 7→ [det\pred]
brought 7→ [pred\S/@fs/a−obj]
problems 7→ [compar\a−obj/#↘ comp−conj]
profits 7→ [conj−th]
more 7→ [compar]↗comp−conj

than 7→ [#↘ comp−conj/conj−th]↘comp−conj

. 7→ [@fs]

in this CDG, S is for sentences, @fs is for the full stop.
CDG languages are defined by a dependency types cal-
culus showed on Table 1 which constructs Dependency
Structures. Figure 2 shows a proof tree for a simple
sentence and typing (en, br). Figure 3 shows a sub-
proof where labels are abreviated (en, br).
In comparison with CCG or Lambek grammars,
CDG are written using flat types without type-raising
mechanism. From a practical point of view,
CDGLab (Béchet et al., 2014) implements a parser for
CDG. The lab can also help to define a CDG together
with corpora for a specific language. For instance, a
large scale grammar and a corpus for French have been
developed with this tool (Béchet and Lacroix, 2015).

4Formally a token could have several heads, but practi-
cally, token have one head or one main head and auxiliary
heads (for anchors)

3. CDG Learning and Subclasses
The notion of K-star has been introduced to define
learnable subclasses of CDG grammars allowing iter-
ated dependencies. This constraint differs from the k-
valued bound and does not impose a bound on the num-
ber of types associated to a word. A K-star constraint
(for a number K) reflects an indiscernability principle
between K repetitions of a same dependency d and
its iterated form d∗. Different K-star criterions have
been proposed, that enable grammatical inference in
the presence of iterated dependencies; the first one “K-
star revealing” is a complex non-constructive criterion,
the two later proposals “Simple K-star” (Béchet and
Foret, 2016b) and “Global Simple K-star” (Béchet and
Foret, 2021) (the global variant does not impose the
repetitions to be consecutive in a type) are both syntac-
tic and easy to check on a given grammar. The infer-
ence of CDG with these properties is possible from a
corpus using the algorithm in Figure 5 (where the set
of atomic types depends from the corpus labels). The
algorithm can be used to complete an existing CDG as
well.

3.1. An Inference Algorithm from a
Treebank

The algorithm we proposed in Béchet et al. (2010) first
computes a “pre-type” for each word from a depen-
dency structure, called a vicinity, following the outgo-
ing dependencies in sentence order, but without marked
iteration. This type is then generalized before expand-
ing the grammar. This kind of algorithm is termed
TGE-like for “Type-Generalize-Expand” (Béchet and
Foret, 2021). The algorithm is shown in Figure 5.

3.2. Vicinity of a word on a dependency
structure

Vicinity. The TGE method involves a first set of types
without iteration, called vicinity, that can be directly
obtained from a dependency structure. The vicinity
V (w,D) of a word w in a (labelled) dependency struc-

42

the
an
[det]

deal
emglev

[det\pred]
Il

[pred]

brought
degasas

[pred\S/a−obj]

problems
kudennoù
[a−obj]

Ir
[pred\S]

Il
[S]

Figure 2: A Proof Tree.

more
muioc’h a

[comp]↗comp−conj

problems
gudennoù

[comp\a−obj/#↘ comp−conj]
Il

[a−obj/#↘ comp−conj]↗comp−conj

than
eget a

[#↘ comp−conj /conj−th]↘comp−conj

profits
c’hounid
[conj−th]

Ir
[#↘ comp−conj]↘comp−conj

Ir
[a−obj]↗comp−conj↘comp−conj

Dr

[a−obj]

Figure 3: A Simplified Subproof Tree.

ture D, is the type
V (w,D) = [l1\ . . . \lk\h/rm/ . . . /r1]P ,

such that D has:
- the incoming projective dependency or anchor h (or
the axiom S for sentences),
- the left projective dependencies or anchors lk, . . . , l1
(in this order),
- the right projective dependencies or anchors
r1, . . . , rm (in this order),
- the discontinuous dependencies d1, . . . , dn with their
respective polarities P to handle their start, their end
and their orientation.5

3.3. TGE(K) Algorithm and Example.
Our learning algorithm is provided on Figure 5. From
the dependency structure D (fragment) of Figure 4 for
a sentence in French6, we get these two vicinity types:
V (partition,D) = [det\a−obj/modif/attr/attr/modif],
V (de,D) = [attr/prepos−g]

If the “2-star repetition principle” applies to the attr
dependency, in the sense that if attr occurs consecu-
tively two times then it can occur consecutively any
number of times, the previous vicinity of partition
would be generalized by this CDG type:
partition 7→ [det\a−obj/modif/attr∗/modif]

3.4. Repetition Patterns
Grammar classes and TGE algorithm. The same
TGEK algorithm can be run to learn the class of
simple K-star grammars. It can be adjusted to learn
global K-star grammars by adding a final step replac-
ing each type t of the output of TGEK by its global
simple K-star generalization gs(K)(t) obtained as fol-
lows (Béchet and Foret, 2021):

5P is a sequence of elements of the form:↖ d (start left)
↘ d (end right),↙ d (end left),↗ d (start right).

6“On y trouve aussi une partition récente à récupérer de
l’ONPL signée par lui.” , meaning “There is also a recent
score to recover from the ONPL signed by him.”

- for each d on the left, where d \ occurs at least K
times or if d∗ \ is present, then replace each d \ with
its starred version d∗ \
- for each d on the right, proceed similarly.
Variants and extended types. More flexible interpre-
tations than the strict reading of repeatable optional de-
pendencies as “consecutive repetitions” have been pro-
posed.
- “Dispersed iteration” (Pogodalla and Prost, 2011),
{d∗1, . . . , d∗p} represents the case where the subordi-
nates through a repeatable dependency may occur in
any position on the left (respectively, on the right) of
the governor.
- “Choice iteration” (Pogodalla and Prost, 2011),
(d1| . . . |dk)∗ represents the case where the subordi-
nates through one of several repeatable dependencies
may occur in one and the same argument position. Us-
ing a similar approach in the dispersed case, an algo-
rithm TGEK

disp has been shown to learn K-star dis-
persed revealing grammars. A similar learning algo-
rithm TGEK

ch is provided for “choice iteration”.
- CDGs with “sequence iteration” have later been pro-
posed in Béchet and Foret (2016a) as a generaliza-
tion of d∗: repeating / d2 / d1 / d2 / d1 , etc. as
/ (d1•d2)∗. An extended CDG-calculus and a TGE-
like algorithm for sequences of length 2 is provided
in Béchet and Foret (2016a)7. This extension seems
relevant for treebanks.

4. Experiments
Experiments are reported in Béchet and Foret (2016a)
to process vicinities from a French treebank and view
patterns in a concept analysis tool8. In this paper, we

7Sequence iteration does not introduce new string lan-
guages

8Camelis available at http://www.irisa.fr/
LIS/ferre/camelis

https://www.fr.brezhoneg.bzh/TERME/emglev/36-termofis.htm
https://displeger.bzh/en/verb/degas
http://www.arkaevraz.net/dicobzh/index.php?ifr=&b_lang=1&b_kw=kudenn&b_port=1&b_srch=1&b_mut=1&b_abr=0
http://www.arkaevraz.net/dicobzh/index.php?ifr=&b_lang=1&b_kw=kudenn&b_port=1&b_srch=1&b_mut=1&b_abr=0
http://www.arkaevraz.net/dicobzh/index.php?ifr=&b_lang=1&b_kw=gounid&b_port=1&b_srch=1&b_mut=1&b_abr=0
http://www.irisa.fr/LIS/ferre/camelis
http://www.irisa.fr/LIS/ferre/camelis

43

Figure 4: Part of a Dependency Structure.

Algorithm TGE(K) (type-generalize-expand):
Input: σ, a training sequence of length N .
Output: CDG TGE(K)(σ).

let GH = (WH ,CH , S, λH)
where WH := ∅; CH := {S}; λH := ∅;

(loop) for i = 1 to N //loop on σ
let D such that σ[i] = σ[i− 1] ·D;

// the i-th dependency structure of σ
let (X,E) = D;
(loop) for every w ∈ X

// the order of this loop is not important
WH := WH ∪ {w};
let tw = V (w,D)

// the vicinity of w in D
(loop) while tw = [α\l\d\ · · · \d\r\β]P

with at least K consecutive occurrences of d,
l 6= d (or α\l\ not present)
and r 6= d (or r\ not present)

tw := [α\l\d∗\r\β]P

(loop) while tw = [α/l/d/ · · · /d/r/β]P

with at least K consecutive occurrences of d,
l 6= d (or /l not present)
and r 6= d (or /r/β not present)

tw := [α/l/d∗/r/β]P

λH(w) := λH(w) ∪ {tw};
// lexicon expansion

end end
return GH

Figure 5: Algorithm TGE(K)

use Grew9 (Guillaume, 2021) to search10 for patterns
corresponding to the CDG vicinities and their possible
generalizations; in other words, these express patterns

9https://grew.fr
10We wrote other patterns related to CDG, we also wrote

Grew rules that extend such patterns, to transform the corpus
with http://transform.grew.fr/, with several out-
comes compatible with the UD format: for marking repeat-
able dependencies on relevant edges, for adding the projec-
tive vicinities as node features, for the inference algorithm ;
these files can be directly tested on the Grew site and can be
provided on demand, see also the cdg-ud site3.

on the successive dependencies outgoing from a given
word.

4.1. Edge patterns on a corpus
We wrote patterns, in the Grew syntax, to select graphs
(sentences) containing dependency name repetitions,
depending on these parameters: a number K of rep-
etitions, a repetition mode (anywhere/flex or consecu-
tive/cons), a side (left, right, or both). We give some
of them below, then an occurrence table on Breton data
(we provide more patterns at the cdg-ud page3):

• 2 repetitions, anywhere, left or right (2rep flex l/r)

p a t t e r n { e : GOV −> DEP1 ;
f : GOV −> DEP2 ;
e . l a b e l = f . l a b e l ;
DEP1 << DEP2 }

• 3 repetitions, anywhere, left or right (3rep flex l/r)

p a t t e r n { e : GOV −> DEP1 ;
f : GOV −> DEP2 ; g : GOV −> DEP3 ;
e . l a b e l = f . l a b e l ;
e . l a b e l = g . l a b e l ;
DEP1 << DEP2 ; DEP2 << DEP3}

• 2 repetitions, consecutive, right (2rep cons r)

p a t t e r n { e : GOV −> DEP1 ;
f : GOV −> DEP2 ;
e . l a b e l = f . l a b e l ;
DEP1 << DEP2 ; GOV << DEP1 }
w i t h o u t { g : GOV −> DEP12 ;
DEP1 << DEP12 ; DEP12 << DEP2 }

• 2 repetitions, consecutive, left (2rep cons l)

p a t t e r n { e : GOV −> DEP1 ;
f : GOV −> DEP2 ;
e . l a b e l = f . l a b e l ;
DEP1 << DEP2 ; DEP2 << GOV }
w i t h o u t { g : GOV −> DEP12 ;
DEP1 << DEP12 ; DEP12 << DEP2 }

https://grew.fr
http://transform.grew.fr/

44

UD
e.label 2rep flex l/r 3rep flex l/r 2rep cons r 2rep cons l 3resp cons r

2
re

pe
tit

io
ns

an
yw

he
re

le
ft

or
ri

gh
t

3
re

pe
tit

io
ns

an
yw

he
re

le
ft

or
ri

gh
t

2
co

ns
ec

ut
iv

e
re

pe
tit

io
ns

ri
gh

t

2
co

ns
ec

ut
iv

e
re

pe
tit

io
ns

le
ft

3
co

ns
ec

ut
iv

e
re

pe
tit

io
ns

ri
gh

t

aux 268 35 107 105 1
advmod 133 22 5 8

obl 119 16 53 2 7
punct 83 3 3 1
conj 75 59 42 18
dep 16 11

nmod:gen 16 1 14 1
det 13 13

nmod 12 1 8 1
amod 10 1 7 1

flat:name 4 4
case 3 2

parataxis 3 2 1
nsubj 2
fixed 2 2
acl 2 2

advcl 2
list 1 1

SUD
e.label
mod 214 27 59 8 5
udep 88 8 64 2 8
punct 78 2 2 1
unk 16 12

mod@gen 16 1 14 1
det 13 13

parataxis 3 2 1
subj 2
list 1 1

Table 2: Occurrences of edge labels w.r.t. repetition
patterns on Breton data, in UD and SUD formats

These results in table 2 apply to two versions of the
Breton corpus, UD format (de Marneffe et al., 2021)
and SUD format (Gerdes et al., 2018)11, where we ask
for e.label in the above patterns.
We can also check the amount of discontinuous (non-
projective) dependencies in these formats, with:

g l o b a l { i s n o t p r o j e c t i v e }
p a t t e r n { e :GOV −> DEP }
w i t h o u t { f :X −> GOV}

We get few (19) in the UD format, and much more
(296) in the SUD format. The SUD format seems
relevant for further developments. This raises this
question: what is the best amount of non-projectivity
needed in Breton. CDG is a good formalism for dis-
continuity, this is not developed here.

4.2. Selected sentences and dependencies
We select here two sentences, to illustrate different rep-
etition status.

11SUD stands for “Surface Syntactic Universal Depen-
dencies”, the SUD scheme is a recent alternative to the
UD format, with possible automatic conversion main dif-
ferences are that SUD favors functional heads, and has an
more economical set of labels; a comparison summary can be
found at https://surfacesyntacticud.github.
io/conversions/

Figure 6: “Me a zo bet o kanañ” in UD format

Figure 7: “Me a zo bet o kanañ” in SUD format

In the first sentence “Me a zo bet o kanañ.”
(meaning “I have been singing.”, with
sent id=“grammar.vislcg.txt:103:1990”), in the
original UD format (Figure 6), 3 consecutive edges
on the left of the same governor have the same label
(aux); this does not happen in the SUD format
(Figure 7). This dependency (aux) may preferably be
kept non-repetitive on the left (in the consecutive or in
a flexible reading).
In another sentence “Gant ur c’hresk a 35% eus
ar veajourien dindan pemp bloaz, emañ Breizh
e penn rannvroioù Frañs evit an TER” (with
sent id=“oab.vislcg.txt:163:4313” , meaning “With a
35% increase in TER use in five years, Brittany ranks
first among the regions of France.”), 3 consecutive
edges on the right of a same governor have the same
label: nmod in UD as in Figure 8, udep in SUD as
in Figure 9. This dependency (nmod) is preferably
considered as repetitive on the right (in the consecutive
reading).

5. Conclusion and further work
In this study we tried to answer the question: how to
identify iterated dependencies on a Breton corpus and
translate them into iterated types, to design a Categorial
Dependency Grammar (CDG).

https://surfacesyntacticud.github.io/conversions/
https://surfacesyntacticud.github.io/conversions/

45

Figure 8: “Gant ur c’hresk a 35% eus ... ” in UD

Figure 9: “Gant ur c’hresk a 35% eus ... ” in SUD

One of the issues in grammatical design or in corpus
annotation is to determine the good level of general-
ization and of automation. Through explorations and
experiments, we also aim to provide some answers and
recommendations both formally and practically.
Here are some other questions we wish to address for
Breton:
- In the case of discontinuous dependencies in the cor-
pus, how to treat them (for CDGs, how can we manage
the introduction of polarized valencies and anchors); in
case of absence of discontinuous dependencies, is it a
weakness of the annotated corpus?
- How to use the information from a site such as Ar-
bres (Jouitteau, 2009 2022), an online site describing
the grammar of Breton?
- In documents, what are the levels and sources of am-
biguity and how to deal with them?
- What processing chain should we develop to go from
a text to a targeted semantics (case of the French-
Breton language pair)?

6. Acknowledgements
This study has benefited from funds from CNRS and
DGLFLF (LangNum-br-fr project) enabling a user
study and several student internships (K. Kechis, P.
Morvan, P. Martinet). We thank the reviewers for their
helpful comments and M. Jouitteau, E. Hupel for useful
discussions on Breton.

7. Bibliographical References
Batchelor, C. (2019). Universal dependencies for

Scottish Gaelic: syntax. In Proceedings of the

Celtic Language Technology Workshop, pages 7–15,
Dublin, Ireland, August.

Béchet, D. and Foret, A. (2016a). Categorial depen-
dency grammars with iterated sequences. In Log-
ical Aspects of Computational Linguistics, Nancy,
France, December 5-7, 2016, pages 34–51.

Béchet, D. and Foret, A. (2016b). Simple k-star cate-
gorial dependency grammars and their inference. In
Proceedings of the 13th International Conference on
Grammatical Inference, ICGI 2016, pages 3–14.

Béchet, D. and Foret, A. (2021). Incremental learning
of iterated dependencies. Machine Learning, March.

Béchet, D. and Lacroix, O. (2015). CDGFr, un cor-
pus en dépendances non-projectives pour le français.
In Actes de la 22e conférence sur le Traitement Au-
tomatique des Langues Naturelles, June 2015, Caen,
France, pages 522–528. Association pour le Traite-
ment Automatique des Langues. Short paper in
French.

Béchet, D., Dikovsky, A., and Foret, A. (2010). Two
models of learning iterated dependencies. In Markus
Egg, et al., editors, Proceedings of the 15th Inter-
national Conference on Formal Grammar (FG10),
Copenhagen, Denmark, August 7-8, 2010, pages 1–
16.

Béchet, D., Dikovsky, A., and Lacroix, O. (2014).
“CDG Lab”: an integrated environment for cate-
gorial dependency grammar and dependency tree-
bank development. In Kim Gerdes, et al., editors,
Computational Dependency Theory, volume 258 of
Frontiers in Artificial Intelligence and Applications,
pages 153–169. IOS Press.

de Marneffe, M.-C., Manning, C. D., Nivre, J., and Ze-
man, D. (2021). Universal Dependencies. Compu-
tational Linguistics, 47(2):255–308, 07.

Dekhtyar, M. I., Dikovsky, A., and Karlov, B. (2015).
Categorial dependency grammars. Theor. Comput.
Sci., 579:33–63.

Gerdes, K., Guillaume, B., Kahane, S., and Perrier, G.
(2018). SUD or surface-syntactic universal depen-
dencies: An annotation scheme near-isomorphic to
UD. In Marie-Catherine de Marneffe, et al., editors,
Proceedings of the Second Workshop on Universal
Dependencies, UDW@EMNLP 2018, Brussels, Bel-
gium, November 1, 2018, pages 66–74. Association
for Computational Linguistics.

Gold, E. M. (1967). Language identification in the
limit. Information and control, 10:447–474.

Guillaume, B. (2021). Graph Matching and Graph
Rewriting: GREW tools for corpus exploration,
maintenance and conversion. In EACL 2021 - 16th
conference of the European Chapter of the Associa-
tion for Computational Linguistics, Kiev/Online.

Heinecke, J. and Tyers, F. M. (2019). Development
of a Universal Dependencies treebank for Welsh.
In Proceedings of the Celtic Language Technology
Workshop, pages 21–31, Dublin, Ireland, August.
European Association for Machine Translation.

https://arbres.iker.cnrs.fr
https://arbres.iker.cnrs.fr

46

Jouitteau, M. (2009-2022). ARBRES, wikigram-
maire des dialectes du breton et centre de
ressources pour son étude linguistique formelle,
IKER, CNRS. http://arbres.iker.cnrs.
fr. Licence Creative Commons BY-NC-SA.

Lynn, T. and Foster, J. (2016). Universal dependen-
cies for irish. In Proceedings of the Celtic Language
Technology Workshop, Paris, France.

Mel’čuk, I. (1988). Dependency Syntax. SUNY Press,
Albany, NY.

Sylvain Pogodalla et al., editors. (2011). Logical
Aspects of Computational Linguistics, 6th Interna-
tional Conference, LACL 2011, Montpellier, France,
June 29 – July 1, 2011. Proceedings, volume 6736
of Lecture Notes in Computer Science (LNCS).
Springer.

Tyers, F. M. and Ravishankar, V. (2018). A proto-
type dependency treebank for breton. In Actes de la
25e conférence sur le Traitement Automatique des
Langues Naturelles (TALN).

http://arbres.iker.cnrs.fr
http://arbres.iker.cnrs.fr

	Introduction
	Categorial Dependency Grammars
	CDG Learning and Subclasses
	An Inference Algorithm from a Treebank
	Vicinity of a word on a dependency structure
	 TGE(K) Algorithm and Example.
	Repetition Patterns

	Experiments
	Edge patterns on a corpus
	Selected sentences and dependencies

	Conclusion and further work
	Acknowledgements
	Bibliographical References

