
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 7344–7351
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

7344

Handwritten Character Generation using Y-Autoencoder for Character
Recognition Model Training

Tomoki Kitagawa1, Chee Siang Leow1,2, Hiromitsu Nishizaki1
1Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi

4-3-11 Takeda, Kofu, Yamanashi 400-8511, JAPAN
2Artibrains LLC, 3-8-6 Joto, Kofu, Yamanashi 400-0861, JAPAN

kitagawatomoki@alps-lab.org, siang@artibrains.com, hnishi@yamanashi.ac.jp

Abstract
It is well-known that the deep learning-based optical character recognition (OCR) system needs a large amount of data to train
a high-performance character recognizer. However, it is costly to collect a large amount of realistic handwritten characters.
This paper introduces a Y-Autoencoder (Y-AE)-based handwritten character generator to generate multiple Japanese Hiragana
characters with a single image to increase the amount of data for training a handwritten character recognizer. The adaptive
instance normalization (AdaIN) layer allows the generator to be trained and generate handwritten character images without
paired-character image labels. The experiment showed that the Y-AE could generate Japanese character images then used to
train the handwritten character recognizer, producing an F1-score improved from 0.8664 to 0.9281. We further analyzed the
usefulness of the Y-AE-based generator with shape images and out-of-character (OOC) images, which have different character
image styles in model training. The result showed that the generator could generate a handwritten image with a similar style to
that of the input character.

Keywords: handwritten characters generation, optical character recognition (OCR), Y-Autoencoder

1. Introduction

The re-emergence of deep learning since the third
winter of artificial intelligence has led to significant
achievements in various fields. Specifically, it has
led to the mainstreaming of deep learning-based sys-
tems that use large amounts of data to train a model.
Supervised-learning deep learning models have been
particularly successful among the various deep learn-
ing methods. Various studies have extensively in-
vestigated semi-supervised and unsupervised learn-
ing; however, most commercialized systems still com-
monly use supervised learning.
In the fields of text image recognition among the vari-
ous research fields, machine-printed optical character
recognition (OCR) (Li et al., 2019; Min et al., 2020),
and connectionist temporal classification (CTC)-based
(Graves et al., 2006) end-to-end handwritten text
recognition (HTR) (Graves and Schmidhuber, 2008;
Ly et al., 2017; Ingle et al., 2019) require a large
amount of data to train, which makes the text rec-
ognizer more generalized and high-performance.
Therefore, data augmentation, such as CutMix
(Yun et al., 2019), mixup (Zhang et al., 2018), and
Randaugment (Cubuk et al., 2020), and mosaic aug-
mentation (Hao and Zhili, 2020), which is based on
image processing, is generally used to learn more
general models by increasing the amount of data.
However, adequate data augmentation methods still
have to be designed by humans. Therefore, sev-
eral methods of increasing the amount of data for
supervised learning-based deep learning models re-
quire a large amount of data, including online-based
character generation using recurrent neural networks

(RNNs) and offline-based adversarial adaptive gen-
eration networks (GANs), which generate images.
Among them, DeepWriting (Aksan et al., 2018) is one
of the methods that generate online-based online char-
acters, while ScrabbleGAN (Fogel et al., 2020) gener-
ates handwriting-like text images from actual text im-
ages.
However, most of these methods have been studied
mainly for the English (alphabets), which has a small
number of character types, while there is little re-
search on handwritten character generation in Chinese
and Japanese, which have more character types than
English. In English, words composed of alphabetic
strings rather than character units are the smallest con-
stituent units of meaning. However, in Japanese and
Chinese, a single character has a significant meaning,
so it is important to identify and recognize the char-
acter units. Hence, there is a high demand for highly
accurate character recognizers; however, they require a
large number of character images for training.
Especially in languages like Chinese and Japanese,
some characters are used frequently, and some are not,
which can often lead to data imbalanced. This means
that there is little data on rare characters. However, in
terms of increasing this rare character data, the related
costs of data preparation are too high, as it involves
having humans write and label each character. There-
fore, a method to increase the number of images per
character is essential for recognizing character images
in these languages.
Therefore, in this paper, we propose a method for
generating various handwritten characters using a Y-
Autoencoder (Y-AE) model in order to build a dataset
for training a handwritten character recognizer auto-

7345

matically. Although there are many papers on the gen-
eration of handwritten character images and handwrit-
ten style conversion, few studies on languages have as
many character types as Japanese. In some cases, pairs
of characters are required. Our proposed conditional
handwritten character generator based on Y-AE is
unique in that the training data of the handwritten char-
acter recognizer can be used as the training data for the
generator. Besides, inspired by (Karras et al., 2019)
and (Patacchiola et al., 2019), we use a Y-AE training
strategy and use an embedding layer to learn the repre-
sentation of each character and inject the features us-
ing adaptive instance normalization (AdaIN) computa-
tion into the upsampling features. Our proposed archi-
tecture can train the generative model without paired
character images but also learn the writing style of a
handwritten image based on encoded features to gen-
erate the specific character image.
Since we would like to achieve a variety of character
handwriting for training a character recognizer, our re-
search approach is different in property from the ex-
isting research on style transformation models. More-
over, we can realize more diverse characters by apply-
ing the characters generated by the Y-AE model to ex-
isting style transformation models. However, in this
study, we show that the generated characters have a
positive effect on the training of the character recog-
nizer.
In this paper, we attempt to generate one-to-many im-
ages, which can be used to train and improve the
performance of the handwritten character recognizer.
The experiment results showed that the proposed Y-
AE handwritten character generator could be used to
increase the amount of training data for training a
better character recognizer. Furthermore, the exper-
iment showed that the handwritten character recog-
nizer achieved an 0.0617 point improvement in F1-
score compared to the recognizer trained without any
generated images.
The contributions of this paper are summarized as the
following:

1. We show that injecting the character embedding
features into the AdaIN allows the Y-AE model to
control the content compared to a simple vector.

2. We test whether the handwritten images gener-
ated by the Y-AE-based generator can be used
to train the handwritten character recognizer with
improved recognition accuracy.

3. We show that the Y-AE model can generate a spe-
cific handwritten character image by using differ-
ent out-of-character (OOC) images with different
character styles.

2. Related Works
Before the deep learning era, the autoencoder
(Rumelhart et al., 1986) had been introduced, which

encoder

3x3 Conv
512,s:2

VGG16
Backbone

Sigm
oid

Softm
ax

𝑖

𝑒

Flatten

Input
(128, 128 ,3)

Instance N
orm

ReLU

3x3 Conv
512,s:2

3x3 Conv
512,s:2

𝑖

𝑒

Encoder

Decoder
#𝑦

Encoder

𝑦

Decoder

Encoder
Right branch

Left Branch

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛
𝐿𝑜𝑠𝑠(𝐶𝐸)

𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
𝐿𝑜𝑠𝑠 (𝑀𝑆𝐸)

𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡
𝐿𝑜𝑠𝑠 (𝐶𝐸)

𝑖!

𝑒!

𝑖"

𝑒"

𝐼𝑚𝑝𝑙𝑖𝑐𝑖𝑡 𝐿𝑜𝑠𝑠
(𝐿2 − 𝑁𝑜𝑟𝑚)

>𝑥#

>𝑥$

activation

Conv2DTranspose
k x k , f

Instance Norm

ConvT Block

strides: s

ReLU

Fully Connected
(h x w x dim)

FC 1,2,3 Block

Reshape
(h, w, dim)

content
feature

content
feature

content
feature

AdaIN

AdaIN

AdaIN

Em
bedding

512

FC1
Block

2 x 2 x 512

FC2
Block

4 x 4 x 512

FC3
Block

8 x 8 x 384

ConvT
Block

3x3, f:384, s:2, ReLU

ConvT
Block

3x3, f:512, s:2, ReLU

ConvT
Block

3x3, f:512, s:2, ReLU

ConvT
Block

3x3, f:384, s:2, ReLU

ConvT
Block

3x3, f:256, s:2, ReLU

ConvT
Block

3x3, f:128, s:2, ReLU

ConvT
Block

3x3, f:64, s:2, ReLU

ConvT
Block

3x3, f:3, s:1, sigm
oid

output
(128,128,3)

decoder

Figure 1: Overall architecture of the proposed image
generator model

showed that latent presentation is useful for pre-
training the neural network. Since deep learn-
ing became the focus of attention, studies on au-
toencoders have become popular again. This led
(Kingma and Welling, 2014) let to propose a varia-
tional autoencoder (VAE), showing that the autoen-
coder can be used to learn the latent variables to be
centered isotropic multivariate Gaussians, which can
be useful for data generation.
Moreover, (Goodfellow et al., 2014) proposed adver-
sarial generative networks (GAN), from which numer-
ous types of GANs have now been proposed. For
example, (Zhu et al., 2017) proposed CycleGAN to
transfer a style to another with an unpaired image.
(Bo Chang et al., 2018) introduced a handwritten Chi-
nese characters generation using CycleGAN, which
transferred the style of a machine-printed font image
to a handwritten-characters image using the paired and
unpaired character images. Although their approach
could generate a very realistic pencil style image, it
could only convert a single font image to only a single
type of handwritten character image, and it was also
limited to generating single patterns due to its using the
same font style. With the idea of the GAN and VAE,
(Kong and Xu, 2017) proposed cCGAN and cCVAE,
which could be used to generate handwritten Chinese
characters. However, they claimed that the quality of
the generated image was not stable. Additionally, they

7346

faced numerical issues in computing the Kullback ‒
Leibler (KL) divergence loss.
At the same time, neural style transfer was introduced
by (Gatys et al., 2016), who used excited the use of
a neural network to render images from one domain
style to another and introduced the style loss and con-
tent loss. Their results concluded that the style and
content in the convolutional neural network (CNN)
were separable. (Ulyanov et al., 2016) proposed the
TextureNetwork for improving the complex textures
style transfer, and (Ulyanov et al., 2017) found that the
TextureNetwork could be improved by changing the
batch normalization (BN) (Ioffe and Szegedy, 2015) to
instance normalization (IN) by computing the mean
and variance across the spatial dimensions indepen-
dently for each channel and each sample. This led
(Huang and Belongie, 2017) to introduce a novel nor-
malization, adaptive instance normalization, which is
a normalization method that aligns the mean and vari-
ance of the content features with specific style features
that try to tackle the problem of computation speed
cost and the restrictions to a pre-defined set of styles.
(Karras et al., 2019) proposed a style-based generator
architecture for generative adversarial networks, which
significantly improved the style transfer performance
and re-designed the control over the image synthesis
process.
As mentioned above, there are many studies on in-
creasing image variations by using VAE or by style
transformation. Our approach differs from the existing
studies in that we propose a method to generate images
for data augmentation based on the Y-AE model, using
the training set for character recognition as is.

3. Y-AE-Based Handwritten Character
Image Generator

3.1. Model architecture
The overall architecture of our Hiragana character im-
age generator model is shown in Fig. 1. The proposed
model is based on the Y-AE (Patacchiola et al., 2019)
architecture, which consists of an encoder and a
conditional decoder. The encoder uses a VGG16
(Simonyan and Zisserman, 2015) backbone feature ex-
tractor to encode RGB images with a (128, 128, 3)
shape and output the style representation i and a char-
acter label e of an input image. The decoder takes both
the style representation i and a character label e as in-
put to decode an output handwritten character image.
The character label e is converted to a 512-dimensional
embedding vector by an embedding layer. The em-
bedding vector is input to three different fully con-
nected (FC) layers to extract the content feature shown
in Equation (1):

content feature(s) = FC(Emb(s)) (1)

where FC is a fully connected layer, Emb is the em-
bedding layer, and s is the character label ỹ or label

y. The output dimension of the FC layer should be
matched to the shape of the intermediate upsampling
features, and the output vector of the FC is reshaped to
the exact shape of the upsampling features.
To inject the content features from the FC layers, we
use the AdaIN shown in Equation (4) by injecting the
content information, as shown in Equation (2) and (3),

x = content feature(s) (2)

y = ConvT (i) (3)

AdaIN(x, y) = σ(y)(
x− µ(x)

σ(x)
) + µ(y) (4)

where ConvT is a transposed convolutional layer, and
i is the style representation encoded from the input im-
age. The kernel size used in the CNN and upsampling
is 3 × 3, strides 2 × 2 and apply IN with ReLU ac-
tivation except the i output of encoder and decoder x̂
apply the sigmoid activation function, and the encoder
output label ỹ uses the softmax function.

3.2. Loss functions
The losses used in this paper were adapted from the
original Y-AE (Patacchiola et al., 2019), in which they
consist of four separate components. Firstly, it cal-
culates the classification loss, followed by the cross
entropy (CE) between the output e with label y us-
ing Equation (5) and the reconstruction loss, the mean
squared error (MSE), with Equation (6),

Lcls = CE(e, y) (5)

Lreconst = |x̂L − x|2 (6)

where e is the output of the encoder, y is the label of the
character image, x̂L is the left branch decoded image,
and x is the input image. Secondly, we calculate the
implicit loss, the L2-norm with the following Equation
(7):

Lim = ∥ir − il + ϵ∥2 (7)

where the ir and il are the left branch and right branch
style outputs, and ϵ is 1.0e − 15. Thirdly, the explicit
loss, the CE as shown in following Equation (8):

Lex = CE(er, ỹ) (8)

where the er is the output e of the right branch, and ỹ
is the random character label. Finally, the total loss is
shown in Equation (9), which is used to backpropagate
the gradient to the Y-AE model.

Ltotal = Lreconst + Lcls + Lim + Lex (9)

4. Handwritten Character Recognizer
It is known that the evaluation of a deep learning-
based generative model is very difficult, and the
evaluation metrics are active in the research field
(Lucic et al., 2018; Guan and Loew, 2019). In this pa-
per, we focused on evaluating the generated images on

7347

Table 1: Datasets and statistics for training of the gen-
erator and the recognizer models

(a) Dataset for the Y-AE generator. The training image
set for Y-AE and the seed image set used for image
generation are the same.

Dataset Num. of images
Training ETL7 32,200
Image generation ETL7 32,200

(b) Datasets for training and evaluation of the recogni-
tion model

Dataset Num. of images
Training ETL7 32,200
Validation ETL8G 8,510
Testing ETL9G 9,200

whether they can be used to improve the accuracy of
the handwritten character recognition. To evaluate the
generated character images, we use the simple CNN-
based character recognizer shown in Fig. 2 to eval-
uate the improvements in recognition accuracy. The
CNN-based model takes a gray-scaled image with a
(128, 128, 1) shape. An input image is normalized in
the range of 0 to 1 to make a prediction.

5. Experiments

5.1. ETL Character Database
In this paper, we aim to improve the accuracy of
the handwritten character recognition by using the Y-
AE model to generate different writing styles of the
same character and using the generated images to train
a handwritten character recognition. To experiment
with the generation capabilities of the proposed Y-AE
model, we experimented with the 46 Seion characters
image types to evaluate the generated character image.
We used the ETL character database (Electrotechnical
Laboratory, et. al., 2011), which consists of nine sub-
sets containing millions of Japanese handwritten char-
acters. Table 1, shows the subsets used for training.
ETL7 was used for training the Y-AE and generating
the handwritten character images. The character im-
ages were converted to RGB due the VGG16 backbone
and denoised by using the OpenCV’s fastNlMeansDe-

kxk Conv f,s

ReLU

ConvBlock

3x3 Conv
64,s:1

Input
(128, 128, 1)

ReLU

D
oprout0.5

M
axpooling

2x2,s:2

M
axpooling

2x2, s:2

3x3 Conv
64, s:1

D
oprout0.5

ReLU

3x3 ConvBlock
128,s:1

3x3 ConvBlock
128,s:1

M
axpooling

2x2, s:2

3x3 ConvBlock
256, s:1

3x3 ConvBlock
256, s:1

3x3 ConvBlock
256, s:1

M
axpooling

2x2, s:2

3x3 ConvBlock
512, s:1

3x3 ConvBlock
512, s:1

3x3 ConvBlock
512, s:1

Flatten

M
axpooling

2x2,s:2

3x3 ConvBlock
512, s:1

3x3 ConvBlock
512, s:1

3x3 ConvBlock
512, s:1

FC 1024

FC n

Softm
ax

Figure 2: The architecture of a CNN-based simple
character recognizer model

Table 2: Character recognition performances (F1-
score)

Training dataset F1-score
ETL7 Seion only 0.8664
Generated image only 0.9192
ETL7 Seion + generated images 0.9281

Figure 3: Y-AE Generated Japanese Hiragana Images

noisingColored1 method. After denoising the image,
the images were randomly processed by one of the fol-
lowing transformations.

1. Normalized to range between 0 and 1.

2. Binarization by thresholding the image with the
average of pixels, and normalizing to range be-
tween 0 and 1.

3. Multiplying the binarized image via thresholding,
denoising the image to smooth the text contours,
and normalizing to range between 0 and 1.

For the handwritten character recognition, we used
ETL7 for the training data, ETL8G for the validation
data, and ETL9G for the testing data. The character
images are converted to grayscale and thresholded.

5.2. Hyper-parameters
5.2.1. Y-AE training parameters
The encoder weights are initialized using Xavier’s
method (Glorot and Bengio, 2010), and the decoder
weights are initialized with a random normal initial-
izer with a mean of 0 and standard deviation of 0.01
and then bias initialized with constant −5. To prevent
overfitting, we use the L2 regularizer with 10e−4. The
CNN layer is computed with padding to maintain the
size of the latent features. An Adam optimizer with an
initial learning rate of 10e− 4, β1 = 0.9, β2 = 0.999,
ϵ = 10e−7 was used to train the Y-AE. The batch size
was 8, and the number of epochs was 200.

1https://docs.opencv.org

7348

Generated images w/o AdaIN Generated images w/ AdaIN
Input
image

Figure 4: Compare generated images

Figure 5: t-Distributed Stochastic Neighbor
Embedding(t-SNE) visualization. The top shows
the visualization of the characters images and the
bottom shows the distributions for each writer.

5.2.2. CNN-based recognizer training parameters
The CNN-based recognizer was trained with an Adam
optimizer with an initial learning rate of 10e − 3. We
trained the CNN-based recognizer at a fixed 40k itera-
tions due to the different amounts of data. To evaluate
the CNN-based recognizer performance, we trained it
from scratch with and without the Y-AE generated im-
age.

5.3. Results
The Y-AE generated Japanese Seion Hiragana charac-
ter images are shown in Fig. 3. In Fig. 3, we visualized
generated 46 sorts of Seion Hiragana images from the
20 character images of あ, い, う, え, お, か, き, く,
け, andこ. We generated 46 sorts of Hiragana images
from each input image. From Fig. 3, we show that the
generated image is readable with respect to the Hira-
gana character. Nevertheless, the generated Hiragana
character image differs from the same generated char-
acter images. We used all the 700 images from each
of the 46 types of Hiragana characters each to gen-
erate 46 Seion Hiragana, leading to 700 × 46 × 46,

Figure 6: The PCA visualization of embedding fea-
tures in the decoder of the Y-AE

i.e., a total of 1,481,200 images. To evaluate whether
the synthetic data was usable to train a recognizer, we
trained a simple CNN-based recognizer with the ETL7
of 700 × 46 Seion Hiragana, totaling 32, 200 training
images, and the ETL9G of 200×46 Seion Hiragana, to-
taling at 9, 200 images, as baseline test data to compare
the recognizer that used the generated images training
the CNN-based recognizer.
The generated 1,481,200 images used to train the rec-
ognizer were preprocessed with the Otsu binarization
threshold method (Otsu, 1979). The test images were
used to evaluate both models. The baseline model was
trained with only the 32,200 images from ETL7, and
the proposed model was trained with both the original
images of ETL7 and the generated images based on
ETL7. In Table 2, the CNN-based recognizer trained
with the images generated by the Y-AE improved the
F1-score 0.0617 points from 0.8664 to 0.9281. This
showed that the CNN-based recognizer could classify
Seion Hiragana character images more precisely.

6. Analysis and Discussion
6.1. Effectiveness of AdaIN
First, we investigate the need to apply AdaIN to the
Y-AE model. To analyze the need for AdaIN, we com-
pared the generated images of the Y-AE model with
and without AdaIN. The generated images are shown
in Fig. 4. Fig. 4 shows that the Y-AE model with
AdaIN changed the generated image relative to the in-
put image, whereas the YAE model without AdaIN did
not change relative to the input image. In other words,
it is clear that the introduction of AdaIN generates an
image that takes into account the style information of
the input image.

6.2. Accuracy for each character class
Table 2 showed the averages of the F1 scores for all the
character classes. By checking the F1 scores for each
class, F1 scores did not improve for all the classes (re-
sults for each class are omitted). When trained with
only the generated images, the F1 scores decreased for

7349

(a) (b)

(d)(c)

Figure 7: PCA visualization. (a) Embedding features from Fig. 6. (b), (c), (d) are the latent features of the FC1,
FC2, and FC3 layers on the same scales, respectively

11 strokes OOC characterSmall size OOC character

30°
Rotation

10°
Shape images

Figure 8: Generated images in resized, different rotation, OOC character, shape images

5 of the 46 classes, and when trained with the gener-
ated images and ETL, the F1 scores decreased for 8
of the 46 classes. These results indicate that not all
classes of images are well generated. Further improve-
ment of the generation model and selection of gener-
ated images are needed in this matter.

6.3. Analysis of Latent Features
We further analyze the proposed Y-AE model by ana-
lyzing the encoder and decoder latent variables. To an-
alyze the encoder latent variables, we randomly picked
920 images, including 46 sorts of Hiragana characters
written by 20 writers, from ETL7, to extract the en-

coder latent variables (shown in Fig. 5). To analyze
the 920 neighbors of the latent variables, we visual-
ized with t-SNE method. The parameters of the t-SNE
method are shown as follows.

• Perplexity: 30
• Iterations: 1,000
• Number of components in embedded space: 2

The top of Fig. 5 shows that the encoder can learn the
character image style representation, which is similar
to the same character images. While it can differenti-
ate the characters, the bottom of Fig. 5 shows that the

7350

encoder latent variables are independent of the writer’s
handwriting style.
For the decoder, we visualized the embedding feature
extract from the embedding layer and the latent fea-
tures from the FC layers using principal component
analysis (PCA). From Fig. 6, we can see that the em-
bedding features output from the embedding layer in
the decoder are capable of learning the differences be-
tween the characters. For example, the characters め,
ぬ,ね,わ orさ,ち, andき have a very closed distance
between each character, which shows the embedding
layer can learn to differentiate between the character’s
embedding vector. We further analyzed the FC1, FC2,
and FC3 layers latent variables injected with AdaIN by
ranging the PCA components on the same scale. The
same-scaled PCA visualization principal components
1 and 2 are shown in Fig. 7. From Fig. 7, we can see
the distribution of the latent features scattered in the
higher layers. This allows the Y-AE model to slowly
distinguish between the characters in the latter layers,
which then allows the decoder to generate the targeted
character image.
め character can be similar toぬ,ね,わ, when it goes
through the FC layers, Fig. 7 (b), (c), (d) show the
latent features slowly distinguish the differences be-
tween the similar words.

6.4. Analysis of different input images
To test the synthetic capabilities of the Y-AE model,
we tested the different images from training, as shown
in Figs. 8. Figs. 8 are resized to smaller OOC char-
acters, rotations, OOC character images and shape im-
ages. In Figs. 8, the proposed Y-AE can track and
differentiate the sizes or rotations to generate with the
respective properties of the image. Additionally, we
can see that the Y-AE is even able to generate even
the input from the OOC. Furthermore, we tested with
a shape image, as which shown in the first and sec-
ond images from the right of Figs. 8. Surprisingly, it
showed that the Y-AE is able to generate character im-
ages with the shapes in lines only. From these results,
we can see the effectiveness and robustness of the em-
bedding features being injected with the AdaIN. The
generator is able to generate the same character but in
a different writing style. Hence, the generator can be
used to generate Japanese Hiragana character images,
which can then be used to improve the recognizer as
shown in Section 5.3.

7. Conclusion and Future Work
We proposed a Y-Autoencoder-based handwritten
character image generator to generate more images for
training data, which can then be used to train and im-
prove the recognizer. The embedding layer and the
AdaIN computation allowed us to train a robust hand-
written character generator. The generator does not
need paired images for training and generates differ-
ent character images with different input images. From

the results in Section 5, we showed that the proposed
Y-AE could generate an increased number of handwrit-
ten character images, which can then be used to train
and improve the recognizer.
Currently, the generator is being restricted that needs at
least one image to generate images. In the future, we
will try to control the latent variables without a single
image to generate more character image styles. Fur-
thermore, we will aim to generate more types of char-
acter image types, such as Kanji (Chinese character),
with the hope that the Y-AE model can generate sev-
eral character images at once.

8. Bibliographical References
Aksan, E., Pece, F., and Hilliges, O. (2018). Deep-

writing: Making digital ink editable via deep gen-
erative modeling. In Proceedings of the Confer-
ence on Human Factors in Computing Systems (CHI
2018).

Bo Chang, Q. Z., Pan, S., and Meng, L. (2018). Gen-
erating handwritten chinese characters using cycle-
gan. In Proceedings IEEE 2018 Winter Conference
on Applications of Computer Vision.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V.
(2020). Randaugment: Practical automated data
augmentation with a reduced search space. In Pro-
ceedings of 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops
(CVPRW), pages 3008–3017.

Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S., and
Litman, R. (2020). Scrabblegan: Semi-supervised
varying length handwritten text generation. In Pro-
ceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
4323–4332.

Gatys, L. A., Ecker, A. S., and Bethge, M. (2016).
Image style transfer using convolutional neural net-
works. In Proceedings of 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 2414–2423.

Glorot, X. and Bengio, Y. (2010). Understanding
the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the 13 inter-
national conference on artificial intelligence and
statistics. JMLR Workshop and Conference Pro-
ceedings, pages 249–256.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. In Pro-
ceedings of the 27th International Conference on
Neural Information Processing Systems, volume 2,
pages 2672–2680.

Graves, A. and Schmidhuber, J. (2008). Offline hand-
writing recognition with multidimensional recurrent
neural networks. In D. Koller, et al., editors, Pro-
ceedings of the 21st International Conference on
Neural Information Processing Systems, pages 545–
552.

7351

Graves, A., Fernández, S., Gomez, F., and Schmid-
huber, J. (2006). Connectionist temporal classifi-
cation: Labelling unsegmented sequence data with
recurrent neural networks. In Proceedings of the
23rd International Conference on Machine Learn-
ing, pages 369–376.

Guan, S. and Loew, M. (2019). Evaluation of gener-
ative adversarial network performance based on di-
rect analysis of generated images. In Proceedings
of 2019 IEEE Applied Imagery Pattern Recognition
Workshop (AIPR), pages 1–5.

Hao, W. and Zhili, S. (2020). Improved mosaic:
Algorithms for more complex images. Journal of
Physics: Conference Series, 1684:012094, nov.

Huang, X. and Belongie, S. (2017). Arbitrary style
transfer in real-time with adaptive instance nor-
malization. In Proceedings of 2017 IEEE Inter-
national Conference on Computer Vision (ICCV),
pages 1510–1519.

Ingle, R., Fujii, Y., Deselaers, T., Baccash, J., and
Popat, A. (2019). A scalable handwritten text
recognition system. In Proceedings of the 2019 In-
ternational Conference on Document Analysis and
Recognition (ICDAR), pages 17–24.

Ioffe, S. and Szegedy, C. (2015). Batch normaliza-
tion: Accelerating deep network training by reduc-
ing internal covariate shift. In Proceedings of the
32nd International Conference on Machine Learn-
ing, volume 37 of Proceedings of Machine Learning
Research, pages 448–456.

Karras, T., Laine, S., and Aila, T. (2019). A style-
based generator architecture for generative adver-
sarial networks. In Proceedings of 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 4396–4405.

Kingma, D. P. and Welling, M. (2014). Auto-
Encoding Variational Bayes. In Proceedings of 2nd
International Conference on Learning Representa-
tions (ICLR), pages 1–14.

Kong, W. and Xu, B. (2017). Handwritten chinese
character generation via conditional neural genera-
tive models. In Proceedings of the 31st Conference
on Neural Information Processing Systems (NIPS).

Li, H., Wang, P., Shen, C., and Zhang, G. (2019).
Show, attend and read: A simple and strong baseline
for irregular text recognition. the AAAI Conference
on Artificial Intelligence, 33:8610–8617, 07.

Lucic, M., Kurach, K., Michalski, M., Gelly, S., and
Bousquet, O. (2018). Are gans created equal? a
large-scale study. In Proceedings of the 32nd In-
ternational Conference on Neural Information Pro-
cessing Systems, volume 31, pages 698–707.

Ly, N.-T., Nguyen, C.-T., Nguyen, K.-C., and Nak-
agawa, M. (2017). Deep convolutional recurrent
network for segmentation-free offline handwritten
japanese text recognition. In Proceedings of the
2017 International Conference on Document Analy-
sis and Recognition (ICDAR), pages 5–9.

Min, F., Zhu, S., and Wang, Y. (2020). Offline hand-
written chinese character recognition based on im-
proved googlenet. In Proceedings of the 2020 3rd
International Conference on Artificial Intelligence
and Pattern Recognition, pages 42–46.

Otsu, N. (1979). A Threshold Selection Method from
Gray-level Histograms. IEEE Transactions on Sys-
tems, Man and Cybernetics, 9(1):62–66.

Patacchiola, M., Fox-Roberts, P., and Rosten,
E. (2019). Y-autoencoders: disentangling la-
tent representations via sequential-encoding. CoRR,
abs/1907.10949.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.,
(1986). Learning Internal Representations by Er-
ror Propagation, pages 318–362. MIT Press, Cam-
bridge, MA, USA.

Simonyan, K. and Zisserman, A. (2015). Very deep
convolutional networks for large-scale image recog-
nition. In Proceedings of the 3rd International Con-
ference on Learning Representations (ICLR).

Ulyanov, D., Lebedev, V., Vedaldi, A., and Lempit-
sky, V. (2016). Texture networks: Feed-forward
synthesis of textures and stylized images. In Pro-
ceedings of the 33rd International Conference on In-
ternational Conference on Machine Learning, page
1349–1357.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2017).
Improved texture networks: Maximizing quality and
diversity in feed-forward stylization and texture syn-
thesis. In Proceedings of 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 4105–4113.

Yun, S., Han, D., Chun, S., Oh, S. J., Yoo, Y., and
Choe, J. (2019). Cutmix: Regularization strategy to
train strong classifiers with localizable features. In
Proceedings of 2019 IEEE/CVF International Con-
ference on Computer Vision (ICCV), pages 6022–
6031.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz,
D. (2018). mixup: Beyond empirical risk mini-
mization. In Proceedings of International Confer-
ence on Learning Representations (ICLR), pages 1–
13.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017).
Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of
2017 IEEE International Conference on Computer
Vision (ICCV), pages 2242–2251.

9. Language Resource References
Electrotechnical Laboratory, et. al. (2011). The ETL

Character Database. distributed via The National
Institute of Advanced Industrial Science and Tech-
nology. http://etlcdb.db.aist.go.jp

