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Abstract
Domain mismatch is a critical issue when it comes to spoken language identification. To overcome the domain mismatch
problem, we have applied several architectures and deep learning strategies which have shown good results in cross-domain
speaker verification tasks to spoken language identification. Our systems were evaluated on the Oriental Language Recognition
(OLR) Challenge 2021 Task 1 dataset, which provides a set of cross-domain language identification trials. Among our
experimented systems, the best performance was achieved by using the mel frequency cepstral coefficient (MFCC) and pitch
features as input and training the ECAPA-TDNN system with a flow-based regularization technique, which resulted in a Cavg

of 0.0631 on the OLR 2021 progress set.
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1. Introduction
In recent years, various methods have been proposed
utilizing deep learning architectures for language iden-
tification and have shown state-of-the-art performance
when a large amount of in-domain training data is
available [Gonzalez-Dominguez et al.2014, Snyder et
al.2018a, N and Patil2021]. However, despite their
success in well-matched conditions, the deep learning-
based end-to-end identification systems are vulnerable
to the performance degradation caused by mismatched
conditions [Abdullah et al.2020].
In real life applications, numerous factors can con-
tribute to the mismatches in language identification.
Especially in a realistic scenario, the speech signals are
likely to be not only collected from different devices,
but from various environments [Ribas et al.2016]. Such
mismatch is known to distort the speech signal differ-
ently, thus the language identification system should be
robust against such adverse conditions in order to en-
sure reliable performance.
Recently, several attempts have been made to alle-
viate the domain-mismatch issue in the spoken lan-
guage identification system. For example, in [Rangan
et al.2020], the SpecAugment strategy [Park et al.2019]
was adopted to make the language identification system
robust against undesired spectral variability. In [Ab-
dullah et al.2020], the authors employed the gradient
reversal layer for training the network to be domain
invariant. In [Shen et al.2017], a conditional gener-
ative adversarial network-based classification scheme
was proposed to improve the generalization of the lan-
guage identification system. Although these works
have shown improvement in terms of performance, the
domain-mismatch problem is still not extensively stud-
ied in the field of spoken language identification com-
pared to other speech tasks (e.g., speaker verification,
speech recognition).
In order to tackle these real-life issues, the OLR (Orien-

tal Language Recognition) Challenge provides a stan-
dard benchmark for language identification systems on
various mismatched conditions [Wang et al.2021]. Es-
pecially in Task 1, which restricts the choice of dataset
used for training, the following problems should be
considered:

• No in-domain data is provided for training or val-
idating the language identification system.

• The primary performance metric is the Cavg ,
which considers the language-dependent false ac-
ceptance ratio and false rejection ratio. Therefore
typical identification metrics, such as accuracy,
will not reflect the systems Cavg performance.

More details about the OLR Challenge can be found in
the evaluation plan [Wang et al.2021].
To solve these problems, we experimented with several
architectures which have shown good results in other
speech processing tasks, such as speaker verification.
Moreover, we have adopted the flow-based embedding
regularization (Flow-ER) [Kang et al.2021] strategy for
disentangling the non-language information [Hansen
and Hasan2015]. Among our experimented systems,
the best performance was achieved via the mel fre-
quency cepstral coefficient (MFCC) and pitch input
ECAPA-TDNN system trained with the Flow-ER strat-
egy.

2. Deep learning-based end-to-end
language identification system

Classically, various attempts were done to use the
phonotactic patterns for language identification [Li et
al.2013]. The phonotactic approaches aim to distin-
guish the languages by comparing the frequency of oc-
curences of certain sound sequences with that of the
target languages. This is usually done by tokenizing
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Figure 1: The deep learninag-based end-to-end lan-
guage identification framework.

the speech signal using an automatic speech recogni-
tion system (ASR). However, due to the high compu-
tational load and the necessity of a transcribed dataset
for training the ASR model, the language identifica-
tion community has started to adopt methods used for
speaker verification, which does not require any tran-
scription [Dehak et al.2011, Castaldo et al.2007].
As the deep learning-based systems became the domi-
nant apporach in the speaker verification field [Snyder
et al.2018b,Snyder et al.2017,Desplanques et al.2020],
these frameworks were naturally applied by the lan-
guage identification community and have shown good
performance [Gonzalez-Dominguez et al.2014, Snyder
et al.2018a, N and Patil2021]. Especially when trained
on a large dataset, it is shown that the deep learning-
based system can outperform the conventional statisti-
cal method (e.g., i-vector) [Snyder et al.2018a].
As shown in Figure 1, the deep learning-based end-to-
end language identification systems are composed of
3 modules: frame-level network, pooling layer, and a
classifier. The frame-level network takes the acoustic
feature extracted from the input speech and outputs a
sequence of frame-level of representations. These deep
representations are then aggregated into an utterance-
level fixed-dimensional feature, which is also called an
embedding vector, in the pooling layer. This embed-
ding vector is then fed into a classifier network, which
outputs the language probability.

3. System description
3.1. Backbone architecture
In our submissions, we adopted the following three ar-
chitectures:

• ResNetSE34 [Chung et al.2020]: The first archi-
tecture is the Fast ResNet, which follows the same
general structure as the original ResNet with 34
layers (ResNet-34) [He et al.2016] with squeeze-
and-excitation [Hu et al.2018], but only uses one-
quarter of the channels in each residual block to
reduce computational cost.

• Hybrid [Alam et al.2021]: a CNN-LSTM-TDNN
hybrid architecture with multi-level global-local
statistics pooling, which has demonstrated good
performance in various speaker verification tasks.
The general framework for the Hybrid architec-
ture is depicted in Figure 2.

• ECAPA-TDNN [Desplanques et al.2020]: an
architecture that achieved state-of-the-art per-

Figure 2: The general architecture of the hybrid em-
bedding system.

formance in text-independent speaker recogni-
tion. The ECAPA-TDNN uses squeeze-and-
excitation as in the SE-ResNet, but also employs
channel- and context-dependent statistics pooling
and multi-layer aggregation.

For these architectures, we used two types of acoustic
features:

• MFB: 40 dimensional mel-filterbank energy fea-
tures,

• MFCC+Pitch: concatenation of 40 dimensional
mel frequency cepstral coefficient (MFCC) and 3
dimensional pitch features.

Moreover, for the ResNetSE34 and ECAPA-TDNN
systems, attentive statistical pooling (ASP) [Okabe et
al.2018] layer was used to aggregate the frame-level
representations, which was followed by a linear layer
to obtain a 512-dimensional embedding vector.

3.2. Training objectives
3.2.1. Angular additive margin softmax

(AAMSoftmax) objective
For training the ECAPA-TDNN-based systems, we
used the angular additive margin softmax (AAMSoft-
max) objective [Deng et al.2021]. The AAMSoftmax
objective is formulated as follows:

LAAMSoftmax = − 1

N

N∑
i=1

log(
es(cos(θyi,i+m))

K1
),

(1)
where K1 = es(cos(θyi,i+m)) +

∑C
j=1,j ̸=i e

scosθj,i , N
is the batch size, C is the number of classes, yi corre-
sponds to label index, θj,i represents the angle between
the column vector of weight matrix Wj and the i-th
embedding ωi, where both Wj and ωi are normalized.
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Figure 3: The flow-based embedding regularization
(Flow-ER) framework.

The scale factor s is used to make sure the gradient is
not too small during the training and m is the angular
margin that encourages the similarity of correct classes
to be greater than that of incorrect classes.

3.2.2. Flow-ER training strategy
In order to tackle the cross-domain problem, we have
adopted the recently proposed flow-based embedding
regularization strategy (Flow-ER) [Kang et al.2021].
In the Flow-ER framework, the embedding network
is trained according to the information bottleneck
scheme, where the mutual information between the em-
bedding ω and the label y is maximized while the mu-
tual information between ω and the input representa-
tion X is minimized. To accomplish this, we optimize
the network with the following objective function:

LIB = −Lxent + βLredundancy, (2)

where β is a predefined coefficient, Lxent is the dis-
criminative loss (e.g., AAMSoftmax), and Lredundancy

is the mutual information upperbound computed using
the auxiliary MelFlow model as follows:

Lredundancy =Ep(X,ω)[log pX(X|ω)]
− Ep(X)p(ω)[log pX(X|ω)],

(3)

where log pX(X|ω) is the conditional log-likelihood
estimated using the MelFlow. The general Flow-ER
framework is depicted in Figure 3.
The embedding network and the MelFlow network are
trained in a competitive fashion, similar to the GAN
training strategy. The Flow-ER training is done in
a 2-stage process: embedding network update and
MelFlow update. In the embedding network update
phase, we freeze the MelFlow parameters and estimate
the conditional likelihoods to compute Lredundacny.
Then the embedding network and classification net-
work parameters are updated through LIB = −Lxent+
βLredundancy. In the MelFlow update phase, the em-
bedding network parameters are frozen and the embed-
dings are extracted. Given the training data and their
corresponding embeddings, the MelFlow is updated via
likelihood maximization. Further information on the
Flow-ER strategy can be found in [Kang et al.2021],
and the MelFlow architecture can be found in [Kim et
al.2020].

(a) System trained with no regularization.

(b) System trained with Flow-ER.

Figure 4: T-SNE plot of the language embeddings ex-
tracted from systems trained with and without Flow-
ER. Different colors indicate distinct languages.

4. Results
4.0.1. Effects of the Flow-ER on the language

embeddings
Figure 4 shows the T-SNE plot of the language embed-
dings extracted from systems trained with and without
the proposed Flow-ER. From the embeddings extracted
using the conventional method, it could be seen that
some clusters are far away from each other even if they
have the same class identity. Such variability may be
attributed to the nuisance attributes, such as gender or
speaker of the utterance. On the other hand, in the em-
beddings trained with the proposed Flow-ER, the clus-
ters with the same class identity are relatively much
closer to each other. From this observations, we could
assume that the proposed Flow-ER can help the embed-
dings to have better discriminability by disentangling
the nuisance attributes from them.

4.0.2. Language identification performance of
systems with different configurations

Table 1 shows the equal error rate (EER) and average
cost (Cavg) results of our submitted systems on the
OLR 2021 Task 1 progress set. System 0 is the x-vector
baseline result provided by the OLR Challenge orga-
nizers. As shown in the results, although the submitted
systems generally performed well in terms of Cavg, the
EER was very high in some systems (e.g., System 1, 2,
3). On the other hand, some systems with good EER
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Table 1: Performance of the submitted systems on the OLR 2021 Progress set.

# Architecture Objective Input Cavg EER [%]
0 Baseline 0.0826 9.038
1 Hybrid + LDA (20-dim.) + PLDA Softmax MFB 0.1364 47.220
2 Hybrid + LDA (30-dim.) + PLDA Softmax MFB 0.1360 47.290
3 Hybrid + LDA (20-dim.) + PLDA Softmax MFCC+pitch 0.1447 46.860
4 ResNetSE34 AAM MFB 0.0951 10.180
5 ECAPA-TDNN AAM MFCC+pitch 0.0671 8.0940
6 ECAPA-TDNN AAM + Flow-ER MFB 0.0639 7.4370
7 ECAPA-TDNN AAM + Flow-ER MFCC+pitch 0.0631 7.3340
8 ECAPA-TDNN + LDA (20-dim.) + PLDA AAM + Flow-ER MFCC+pitch 0.4981 8.9400

have shown very bad performance in terms of Cavg

(e.g., System 8). Such disparity between EER and Cavg

is attributed to the different score statistics they con-
sider. For example, while the EER considers the global
false accept ratio (FAR) and false reject ratio (FRR),
the Cavg computes the FAR and FRR conditioned on
each target language. Therefore, training the language
identification system similar to the speaker verification
system can yield high EER performance, but will not
guarantee good Cavg performance.
The ECAPA-TDNN-based systems (i.e., System 5, 6,
7) showed better performance than the Baseline, and
the best performance was achieved by System 7. From
these results, it could be seen that the Flow-ER strategy
can improve the language identification performance
in terms of both EER and Cavg . Especially System
7, which is trained with Flow-ER, outperformed the
system trained without any embedding regularization
(System 5) with a relative improvement of 5.96% in
terms of Cavg . This indicates that the Flow-ER strategy
can effectively minimize the non-language information
from the language identification system.
Moreover, we could observe that in the ECAPA-
TDNN-based systems, the MFCC+pitch acoustic fea-
ture (System 7) yielded better performance than the
MFB feature (System 6), achieving a relative improve-
ment of 1.25% in terms of Cavg . This may be at-
tributed to the fact that prosodic cues, such as pitch, du-
ration, or stress level differs greatly depending on the
language. Therefore providing pitch features as input
can give more discriminability to the language identifi-
cation system.

5. Conclusions
In this paper, we have experimented with several deep
learning-based models for language identification in
domain mismatched scenario. The experimented sys-
tems were evaluated on the OLR Challenge Task 1,
which consists of cross-domain trials, where the iden-
tification systems must be trained using a fixed train-
ing set. Moreover, this challenge does not provide any
in-domain dataset for training or validating the sys-
tems. In order to overcome these problems, we ex-
perimented with several architectures that have shown
good performance in the speaker verification task, such

as ResNetSE34, ECAPA-TDNN and Hybrid systems.
Moreover, in order to make the language identification
system robust to domain mismatch, we have adopted
the Flow-ER, which is a recently proposed regulariza-
tion technique. Among the experimented methods, the
best performance was achieved by the ECAPA-TDNN
system which takes MFCC and pitch features as input
and trained using AAMSoftmax and Flow-ER strategy.
The best performing system achieved 0.0631 Cavg and
7.334% EER on the OLR 2021 progress set. From the
results, we could notice a huge disparity between the
Cavg and the EER metrics, which is due to the differ-
ent statistics they consider.
In our future research, we plan to investigate new meth-
ods for training the system to jointly minimize the Cavg

and the EER metrics. Furthermore, we will experi-
ment with various fusion models to exploit the potential
complementarity between different identification sys-
tems.
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