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Abstract
With the advent of the General Data Protection Regulation (GDPR) and increasing privacy concerns, the sharing of speech
data is faced with significant challenges. Protecting the sensitive content of speech is the same important as the voiceprint.
This paper proposes an effective speech content protection method by constructing a frame-by-frame adversarial speech
generation system. We revisited the adversarial examples generating method in the recent machine learning field and selected
the phonetic state sequence of sensitive speech for the adversarial examples generation. We build an adversarial speech
collection. Moreover, based on the speech collection, we proposed a neural network-based frame-by-frame mapping method
to recover the speech content by converting from the adversarial speech to the human speech. Experiment shows our proposed
method can encode and recover any sensitive audio, and our method is easy to be conducted with publicly available resources
of speech recognition technology.
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1. Introduction

With the advance of voice-based human-computer in-
teraction and the development of intelligent devices,
such as the Amazon Echo and Apple’s Homepod,
speech data have become a new dimension of big data.
The collection and sharing of real-world speech data
enable innovative services and products, such as Ap-
ple’s Siri and Google Assistant, and foster studies on
intelligent algorithms. However, privacy and security
concerns may hinder the collection and sharing of real-
world speech data. Therefore, with the advent of the
General Data Protection Regulation (GDPR) and in-
creasing privacy concerns, the sharing of speech data
is faced with significant challenges (Nautsch and et al.,
2019).
Currently, researchers focus on how to protect the
speaker’s identifiable information, which is represented
as voiceprint (as analogous to fingerprints), contained
in the speech. An attacker may commit spoofing at-
tacks (Wu and et al., 2015) to the voice authentica-
tion systems or reputation attacks, such as fake Obama
speech (Suwajanakorn and et al., 2017). Several meth-
ods (Justin and et al., 2015; Qian and et al., 2018; Sri-
vastava and et al., 2019; Fang and et al., 2019) for
anonymizing speakers’ identities have been proposed
to address these problems.
However, protecting the sensitive content of speech
is the same important as the voiceprint. The sen-
sitive speech content may be found within particu-
lar keywords or keyphrases such as named entities
(places, dates, locations, organizations, etc.), financial
and medical details, dirty words, or the entire speech.

Determining what would be considered sensitive infor-
mation ultimately depends on the use-cases. Speech
content privacy refers to the ability to conceal or mask
sensitive content information within the speech sig-
nal. Currently, there are only limited signal processing-
based methods proposed to solve this problem (Masato
and Yoshihiro, 2011; Kondo and Sakurai, 2014; Phun-
ruangsakao et al., 2020).
Recent studies in machine learning have discovered
that the deep neural network (DNN) models are vulner-
able to adversarial examples, which are inputs slightly
perturbed in a way that intends to mislead the DNN
models into making misclassifications (Szegedy et al.,
2013). When the target model parameters are fixed, ad-
versarial examples can be crafted by adding perturba-
tion on the input signal following the gradient descent
on the given model. Some studies (Carlini and Wagner,
2018; Yuan et al., 2018; Yakura and Sakuma, 2019;
Schönherr et al., 2019; Qin et al., 2019) showed that
adversarial audio sequences could fool the DNN mod-
els to output any targeted text transcript (e.g., a com-
mand) intended by the attacker. However, these studies
on the adversarial examples of DNN models focus on
hiding a voice command into unnoticeable audio, and
the generated sound is not a human voice. In contrast
to these existing works, our purpose is to protect the
sensitive content in the speech.
Our key idea for implementing this protecting purpose
is replacing the corresponding sensitive speech content
into the adversarial speech by a speech content protec-
tion method and recovering the speech content from
converting the adversarial audio to the human voice
by a speech content recovery method. In this paper,
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we propose a novel speech content protection method
with existing automatic speech recognition (ASR) sys-
tems. We revisited the adversarial examples generating
method in the recent machine learning field and used
the phonetic state sequence of human voices for the
adversarial examples generation. Moreover, we pro-
pose a neural network-based frame-by-frame mapping
method to recover the speech content by converting
from the adversarial audio to the human voice. The
experiments are done upon the time-delay neural net-
work (TDNN)-based ASR system with the state-of-the-
art waveform feature. We make it possible to encode
and recover any sensitive audio.
The rest of this paper is organized as follows. Section
2 briefly reviews the related work. Section 3 describes
our proposed method. Section 4 presents the details of
the implementation and experimental evaluations. The
conclusions and future works are given in Section 5.

2. Related Work
2.1. Automatic Speech Recognition (ASR)
Automatic speech recognition (ASR) is a technique to
convert voice to text transcriptions and is one of the
core techniques for man-to-machine and machine-to-
machine communications. In recent years, ASR tech-
niques have been extensively used in information re-
trieval and speech-to-text services, such as speech as-
sistant of Apple Siri, home management service of
Amazon Alexa/Echo, intelligent search and service as-
sistant of Google Home, the personal assistant of Mi-
crosoft Cortana. In those applications, ASR serves as
an efficient and smart interface, and the performance of
ASR is essential to the applicability of those services.
In a nutshell, ASR maps a spoken audio sequence to
a word sequence. Mel-frequency Cepstrum Coefficient
(MFCC) (Muda et al., 2010) is the most widely used
feature for ASR because of its ability to extrapolate
important features, similar to the human ear. The fea-
ture vector is then sent to the model for either train-
ing or inferencing and gets the recognized text. Un-
der the statistical framework, the problem is formulated
as maximizing the posterior probability of a word se-
quence when observing an audio sequence. The tradi-
tional models are hybrid models such as the Gaussian-
mixture model in combination with hidden Markov
model (GMM-HMM) (Rabiner, 1988) or deep neu-
ral network with hidden Markov model (DNN-HMM)
(Dahl et al., 2012). These hybrid models all consist of
two independently optimized components: the acoustic
and language models.
Modern ASR models follow an end-to-end frame-
work that integrates the two components (e.g., acous-
tic model and language model) into a single trainable
network (Graves et al., 2006; Graves and Jaitly, 2014;
Watanabe et al., 2018; Chan et al., 2016; Vaswani et al.,
2017). The output words or characters can be treated
as labels in these models. However, it relies on the
bidirectional long short term memory (BLSTM) recur-

rent neural network or attention structure which trans-
verses a whole utterance from both directions to esti-
mate frame-wise outputs. It leads to severe time la-
tency and makes the model impractical for adversarial
example generation. Another problem with these mod-
els is that they can’t define where to insert adversarial
examples.
For these reasons, we use Time-delay neural network
(TDNN) (Waibel et al., 1989; Peddinti et al., 2015)
and frame-level tied-triphone-state labels to train the
acoustic model with cross-entropy instead. TDNN is
quite popular in the industry because it has no recurrent
structure and can accelerate the feed-forward and back-
propagation. When training the adversarial examples,
we need this feature of TDNN. Moreover, we can use
frame-level labels to supervise the adversarial example
training according to speech content.

2.2. Adversarial Examples to ASR systems
Adversarial examples, the most important technology
in this paper, have been extensively studied in the im-
age domain for DNN image classifiers. When the tar-
get model parameters are known (e.g., in a white-box
setting), adversarial examples can be crafted by one or
more steps of perturbation on the input image following
the adversarial gradient towards maximizing the classi-
fication error of the target model. Adversarial traffic
signs with adversarial stickers (Eykholt et al., 2017),
and adversarial eye-glass frames (Sharif et al., 2016)
have been shown to mislead a DNN traffic sign classi-
fier and facial recognition models, respectively.
Early studies on crafting audio adversarial examples
against ASR systems used either a genetic algorithm
(Alzantot et al., 2017) or the optimization of a proba-
bilistic loss function (Cisse et al., 2017). These early
attempts are untargeted attacks that mislead the model
to translate the adversarial audio into incorrect tran-
scripts. The DolphinAttack (Zhang et al., 2017) is a
targeted attack that can fool the model into recogniz-
ing an inaudible adversarial ultrasound signal to gen-
erate a specific transcript that is in the attacker’s in-
terest. Voice commands can also be disguised as a
form of noise that sounds meaningless to humans (Car-
lini et al., 2016; Abdullah et al., 2019). Carlini et al.
(Carlini and Wagner, 2018) extended the untargeted at-
tacks into targeted attacks against an end-to-end Deep-
Speech model (Graves and Jaitly, 2014), by directly
perturbing the audio waveform in a white-box setting
(Mozilla’s implementation). The adversarial audio se-
quences can fool the DNN model into outputting any
targeted text transcript intended by the attacker. Alter-
natively, CommanderSong (Yuan et al., 2018) attack in-
jects a voice command into a song to mount a targeted
attack. Yakura et al. (Yakura and Sakuma, 2019) sim-
ulated the transformation of a physical-world record-
ing to construct robust physical audio attacks of two
or three words. Two recent studies (Schönherr et al.,
2019; Qin et al., 2019) have proposed methods to craft
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Figure 1: Framework of the proposed method.

imperceptible audio adversarial examples according to
the psychoacoustic characteristics of the human audi-
tory system.

3. Proposed Approach
The motivation of our work is protecting the sensitive
speech content. Our key idea for implementing this
purpose is replacing the corresponding sensitive speech
content into the adversarial speech by a speech con-
tent protection method, and recovering the speech con-
tent from converting the adversarial audio to the human
voice by a speech content recovery method. In this pa-
per.
The proposed method is described in Figure 1. To en-
code and recover the speech with sensitive contents, the
proposed method has three steps “encoding speech”,
“constructing database”, and “recovering speech”.
For encoding speech, we use the adversarial exam-
ples generating method. We generate the state se-
quence from human voices (generate frame label as
shown in Figure 1.(a)) and iteratively train the adver-
sarial examples supervised with state label for every
frame (generate adversarial speech as shown in Fig-
ure 1.(b)). We use a TDNN-based acoustic model for
ASR and denote it as f(·) (as represented by a TDNN),
which maps audio input to a transcription. Given an
audio input x (random noise) and an existing TDNN-
based acoustic model f(·), we propose constructing a

waveform x̂ that will make the ASR system output tar-
get transcription ŷ.
We generate adversarial speech for every sentence
in public speech dataset, such as Librispeech data
(constructing database as shown in Figure 1 (c)). So
that we can train a DNN model to convert the adversar-
ial speech to natural speech.
For recovering speech, we first get the boundary of the
sensitive speech (get the boundary as shown in Figure
1.(e)), and then use a frame-by-frame frequency map-
ping step (recover encoded speech as shown in Figure
1.(d)) to convert the encoded speech to human voice.
The steps are detailed in the following subsections.

3.1. Frame Label Generation
We obtain the word-level forced-alignment with time
stamps (Young et al., 2009) on the text and speech us-
ing a pretrained TDNN acoustic model. So that, we can
estimate the boundary of the sensitive contents. Then,
we generate the natural state sequence according to hu-
man voices as shown in Figure 1.(a). We use a frame-
level (tied-triphone-)state sequence as the target label
ŷ=[s1, s2, s3, ...sm] (m is the frame number of the sen-
tence) as shown in Figure 2. The duration of each frame
is 10 msec. The st (1 ≤ t ≤ m) is the (tied-triphone-
)state id.
We obtain the state-level forced-alignment (Young et
al., 2009) on the text and speech using a pretrained
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TDNN acoustic model as shown in Figure 1 (a). We
also obtain the lengths of the sensitive content and use
random noise with a length equal to that as the seed
audio x.

3.2. Adversarial Speech Generation
We iteratively train the adversarial examples super-
vised with a state/frame label for every frame as shown
in Figure 1.(b). In contrast to conventional model train-
ing, the parameters are kept unchanged, and only input
waveform x is updated in our method. We first com-
pute the actual network output yi,

yi = f(xi). (1)

The difference between the actual network output yi

and label ŷ is measured with a loss function l(yi, ŷ).
Here, i is the current iteration step. We use cross-
entropy as the loss function.

l(yi, ŷ) = −
∑

yi log ŷ. (2)

The gradient of the loss is calculated and back-
propagated to the input audio xi of the DNN.

∇xi =
∂l(yi, ŷ)

∂xi
. (3)

The input audio x is updated according to the gradient
and learning rate α.

xi+1 = xi − α · ∇xi. (4)

We repeat these steps until a fixed number of iterations
n (≥ 100).

3.3. Dataset Construction and Speech
Recovery

We train an recurrent neural network (RNN)-based
model to convert the encoded speech into correspond-
ing human speech by frame-by-frame frequency map-
ping as shown in Figure 1.(c) and (e). The adversar-
ial speech xn (n ≥ 100) obtained in the last step dif-
fers from the human-voice waveform. We generate and
collect the adversarial speech for every sentence of the
given natural speech dataset. Then, based on the col-
lected adversarial speech and the corresponding natu-
ral speech, we train an RNN-based conversion model to
map the generated adversarial speech xn and their orig-
inal human voice x̂. The mean absolute error (MAE) is
used as a loss function for training regression models.
MAE is the sum of absolute differences between the
target and predicted variables. We used it to measure
the average magnitude of errors in a set of predictions
during the training process. The detailed settings are
described in Subsection 4.3.

4. Experiments
4.1. Implementation of ASR System
As we mentioned in Subsection 2.1, previous methods
(Qin et al., 2019) and (Carlini and Wagner, 2018) use

the connectionist temporal classification (CTC) frame-
work (Graves et al., 2006), which is an effective end-
to-end framework (Graves and Jaitly, 2014) for speech
recognition. However, it relies on the bidirectional
long short term memory (BiLSTM) recurrent neural
network, which leads to serious time latency. Another
problem of the CTC model is that it cannot determine
precise time stamps at which the waveform should be
generated.

We use a TDNN-based acoustic model with frame-
level tied-triphone-state labels and train the model with
cross-entropy instead. The TDNN has no recurrent
structure, which accelerates the feed-forward and back-
propagation processes for adversarial training. More-
over, we can use frame-level labels to supervise the
adversarial example training by indicating the precise
time stamps at which the waveform should be gener-
ated.

We trained the acoustic model using 100 hours of
Librispeech data (train-clean-100) (Panayotov et al.,
2015). We first trained a GMM-HMM model to de-
rive the state alignment as the training labels. Then, we
trained a TDNN with p-norm nonlinearity (p=2) and
four layers, each comprising 2,048 hidden nodes fol-
lowing (Peddinti et al., 2015). The output layer had
about 3,456 nodes that corresponded to the states of the
GMM-HMM model. Instead of using MFCC features,
we used 256-dimension raw waveform features (16,000
kHz, 16 bits, mono-channel). All these features were
mean normalized (CMN) per speaker. We added a set
of layers to perform the log-spectrum feature extraction
as shown in Figure 2. All these processes were imple-
mented using the Kaldi toolkit (Povey et al., 2011).

Figure 2: Network of the acoustic model in the ASR
system.

The word error rates (WER%) of our TDNN model are
around 14.8% (Clean-Dev) to 14.2% (Clean-Test) us-
ing the existing trigram word language model (tgsmall)
and 200K word vocabulary from the Librispeech open-
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source resources1.

4.2. Dataset Construction
We generate adversarial speech for every sentence in
100 hours of Librispeech data (train-clean-100), and
select the adversarial speech with the original human
voices in total 500 sentence pairs (2 hours for two gen-
der individually) to train the model.2

4.3. Implementation of Recovery Model
We train 3-layer RNNs for frame-level mapping from
the generated adversarial speech to the human speech
of selected data. All the clean speech and generated ad-
versarial speech were down-sampled to 16kHz. The
frame length was 32 msec (512 samples), and the
frameshift was 16 msec (256 samples). We extracted
the 129-dimension log-power spectral feature for train-
ing. We also spliced the frames with a context window
of seven frames (three left, one center, three right). The
mean absolute error (MAE) is used as a loss function
for training. The other settings are the default settings3.
We train gender-dependent models for males and fe-
males individually.

4.4. Evaluation
Figure 3 is an empirical evaluation of our proposed en-
coding and recovery method. The areas in the boxes in
Figure 3 are the spectra related to our proposed method.
The result of the experiment shows that our proposed
method can encode human-speech spectral structure in
Figure 3 (top) to adversarial speech in Figure 3 (mid-
dle) with significant changes. It can recover the human-
voice spectral structure in Figure 3 (bottom).

Figure 3: Spectra of a natural human speech (top), the
encoded human speech (adversarial speech) (middle),
and the recovered human speech (bottom).

1http://www.openslr.org/11/
2The database and the listening samples will be released

on the project page of our lab during conference.
3https://github.com/yongxuUSTC/sednn

For more detailed evaluation, we compare the pro-
posed method with the voices recovered by End-to-
End speech synthesis toolkit (Watanabe et al., 2018)
on default settings4. The acoustic model is trained with
train-clean-100 based on Tacotron-2 (Wang and et. al,
2017), which is a sequence-to-sequence model with
an attention mechanism and X-vector-based speaker-
embeddings. The vocoder uses the Griffin-Lim algo-
rithm (Griffin and Lim, 1984) to speed up the work
process. We name it as Tacotron2+Griffin-Lim.
For objective evaluation, we compute the mean squared
errors (MSE) of the spectrograms between the origi-
nal human speech and the synthesized speech using the
natural state/frame label from forced-alignment (natu-
ral seq.).

Table 1: MSE of two different methods.
Proposed Tacotron2

(natural seq.) +Griffin-Lim
Male 0.18 0.75
Female 1.04 0.95

For subjective evaluation, we invite 11 listeners to eval-
uate the recovered voices. The mean opinion score
(MOS) is used to evaluate the generated voices. The
raters score the naturalness and intelligibility from 1 to
5. “1” means the poorest results to understand, and “5”
is the best result, with 0.5 points increments for every
level. We recovered human-voice waveforms using the
natural state/frame label (natural seq.).

Table 2: MOS of different methods (95% confidence
interval).

Proposed Tacotron2
(natural seq.) +Griffin-Lim

Male 3.00 ± 0.85 3.18 ± 0.87
Female 3.47 ± 0.81 4.09 ± 0.52

As shown in Table 1 and 2, the results are quite differ-
ent between male and female speeches. The imbalance
of female training data (less than 20% in total) resulted
in larger MSE and lower MOS values. The MOS re-
sults of the proposed method for males are comparative
to Tacotron2+Griffin-Lim.

4.5. Further Discussions
Experiments show that our proposed method can en-
code and recover any sensitive audio. The advantage
is it is very easy to construct with publicly available
resources of speech recognition technology.
We also noticed that training the recovery network is
most critical. The model training is sensitive to the ac-
curacy of the adversarial speech and data size. To gen-
erate suitable adversarial, we need an acoustic model
of the ASR system with high recognition accuracy. The

4https://github.com/espnet (2018 version)
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data should consist of a single person’s voice. In the fu-
ture, we will exploit additional massive single-speaker
datasets, such as LJSpeech5.
Our method is designed for low-latency scenarios. The
raw waveform crafting stage mostly determines the
speed. In our experiment, we only use a single CPU
on the workstation. The time required to run 100 iter-
ations for generating a 10-second-long raw waveform
is around 30 seconds. It can be shortened to no more
than 2 seconds by splitting the speech into 16 segments
to run in parallel. It can be further accelerated by using
GPU in batch-mode and a small number of iterations.

5. Conclusion and Future Plan
In this paper, we revisit the adversarial examples gener-
ating method in the recent machine learning field upon
a time-delay neural network (TDNN)-based speech
recognition system and used the phonetic state se-
quence of human speech for the adversarial speech gen-
eration. The adversarial speech can be used to pro-
tect the sensitive speech content in a frame-by-frame
manner precisely. Moreover, we also build adversarial-
human parallel speech corpus to train neural networks
and recover the protected speech content to human
speech. The experiment shows our proposed method
effectively encodes and recovers any sensitive audio
using publicly available speech recognition resources.
In the future, we will introduce state-of-the-art speech
synthesis technology to enhance the recovery model.
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