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Abstract
The exploding amount of user-generated content has spurred NLP research to deal with documents from various digital
media formats (tweets, chats, emails, etc.). Using these texts as language resources implies complying with legal data privacy
regulations. To protect the personal data of individuals and preclude their identification, we employ pseudonymization.
More precisely, we identify those text spans that carry information revealing an individual’s identity (e.g., names of persons,
locations, phone numbers, or dates) and subsequently substitute them with synthetically generated surrogates. Based on CODE
ALLTAG, a German-language email corpus, we address two tasks. The first task is to evaluate various architectures for the
automatic recognition of privacy-sensitive entities in raw data. The second task examines the applicability of pseudonymized
data as training data for such systems since models learned on original data cannot be published for reasons of privacy
protection. As outputs of both tasks, we, first, generate a new pseudonymized version of CODE ALLTAG compliant with
the legal requirements of the General Data Protection Regulation (GDPR). Second, we make accessible a tagger for recog-
nizing privacy-sensitive information in German emails and similar text genres, which is trained on already pseudonymized data.

Keywords: pseudonymization, data privacy, email corpus, German language resources, named entity recognition

1. Introduction

With the rapidly increasing adoption of social media
platforms, we observe an upsurge of digitally trans-
mitted private communication and exploding volumes
of so-called user-generated content (UGC). Respond-
ing to this fundamental move in communication habits
world-wide, digital (social) media communication has
become a major focus of research in NLP.
From a user perspective though, intentionally sharing
personal opinions, stances and attitudes via social me-
dia also leaves footprints behind that can be used for
demographic profiling, further social grouping activi-
ties based on the analysis of properties users (uninten-
tionally) disclose in their digital discourse (Kosinski
et al., 2013; Volkova et al., 2015). Despite the evi-
dent relevance of privacy protection for digital media
data, including the threat of re-identification of indi-
vidual authors, this topic has long been neglected by
mainstream NLP research. While it has always been of
utmost importance for medical NLP (Meystre, 2015),
it has received almost no attention in non-medical NLP
domains for a long time (except for two early works by
Rock (2001) and Medlock (2006)). In response to data
privacy legislation (see, for example, two recent analy-
ses of rules targeting privacy protection in data for the
US (Mulligan et al., 2019) and the EU (Hoofnagle et
al., 2019)), many more NLP studies nowadays address
the protection of individual data privacy (Li et al., 2018;
Coavoux et al., 2018; Elazar and Goldberg, 2018; Mos-
allanezhad et al., 2019; Friedrich et al., 2019; Feng et
al., 2020; Huang et al., 2020); for a recent survey, see
Lison et al. (2021).

In general, two steps are required to eliminate privacy-
sensitive information from raw text data:
First, the text spans containing privacy-sensitive data,
such as names, phone numbers, IDs, etc., have to be
detected. We treat this task as a named entity recogni-
tion (NER) problem, but the types of privacy-sensitive
entities differ from those commonly focused on (e.g.,
PER(son), LOC(action), ORG(anization)). Therefore,
we call this step pi (privacy-sensitive information)
recognition and likewise denote the relevant entity cat-
egories as pi entities.
Second, the recognized pi entities have to be
substituted—either by some artificial, meaningless
code (e.g., ‘xxx’), the named entity type of the respec-
tive string (e.g., [PHONE]), or a randomly generated
alternative instance from the same privacy type (e.g.,
the female person name ‘Irene’ is mapped to ‘Maria’).
The latter approach is called surrogate generation and
due to its constructive nature preserves crucial discrim-
inative information, linguistic fluency and contextual
clues. Challenges for various entity types arising from
this transformation step are discussed by Stubbs et al.
(2015b).
The term pseudonymization subsumes recogniz-
ing entities bearing privacy-sensitive information (pi
recognition) and their replacement by realistic substi-
tutes (surrogate generation). Figure 1 illustrates the ba-
sic workflow for email pseudonymization.1

1There is much confusion about proper terminology use
in this field (cf. Garfinkel (2015)), primarily due to mixing
up linguistic string manipulation issues (the NLP perspective)
with the legal topic of re-identifying individual persons (e.g.,
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Figure 1: Pseudonymization workflow from an origi-
nal email via the recognition of privacy-sensitive infor-
mation (pi) to its pseudonymized form containing syn-
thetic substitutes for different pi entity types (German
original (left), English translation (right))

This paper focuses primarily on the pi recognition step,
but it also considers pseudonymized data where pi en-
tities have been substituted with surrogates. Based
on the German-language email corpus CODE ALLTAG
(Krieg-Holz et al., 2016) (described in Section 3), we
address two tasks. The first task evaluates different
deep learning architectures for pi recognition in orig-
inal text data (Section 4) as a prerequisite to gener-
ate pseudonymized data for the second task; this step
gives rise to a new version of CODE ALLTAG with im-
proved pseudonymization. Since the public release of
models trained on non-modified raw data carries the
risk of leaking privacy-sensitive information,2 the sec-
ond task tries to avoid such issues by using already
pseudonymized data to train pi recognition models
(Section 5) for the purpose of developing a tagger for
identifying pi entities that can be made publicly avail-
able.

based on persistent mapping tables). We propose a distinction
definitionally relevant for NLP: We consider de-identification
a hypernym for constructive pseudonymization and destruc-
tive anonymization (the latter replacing entity mentions with
artificial codes or entity type labels, which removes discrim-
inative information).

2Carlini et al. (2021), e.g., demonstrate for GPT-2
(trained on huge fragments of the public Internet) (Radford
et al., 2019) that an adversary can perform a training data
extraction attack to recover individual training examples and
thus harvest privacy-sensitive data by querying the language
model.

Summarizing, our contributions are as follows:

• an evaluation of different deep learning architec-
tures for recognizing privacy-sensitive entities in
German emails,

• an examination of the applicability of
pseudonymized data for pi recognition in
German emails,

• a tagger for recognizing privacy-sensitive infor-
mation in German emails and similar text genres,

• a new version of the German-language
email corpus CODE ALLTAG with improved
pseudonymization compliant with the legal
requirements of the General Data Protection
Regulation (GDPR; Hintze (2018)).3

2. Related Work
Due to strict legal requirements a plethora of work
on pseudonymization with its two steps, pi recogni-
tion and surrogate generation, has been carried out in
clinical NLP (for a recent survey, cf. Yogarajan et al.
(2020)). Only very recently this topic has gained the
interest of the general NLP community as well.

2.1. Recognition of Privacy-Sensitive
Information

Progress in recognizing privacy-sensitive information
can mainly be attributed to various English-language-
based shared tasks in clinical NLP, which focus on 18
different entity types bearing privacy-sensitive infor-
mation, so-called Protected Health Information (PHI)
(Uzuner et al., 2007; Stubbs et al., 2015a; Stubbs
et al., 2017). Besides hybrid approaches combin-
ing rules, dictionaries and classical machine learning
algorithms (Norgeot et al., 2020), Recurrent Neural
Networks (RNN), especially bidirectional Long Short-
Term Memory Networks (Bi-LSTM), and Conditional
Random Fields (CRF) are widely used for pi recogni-
tion as evidenced by the works of Dernoncourt et al.
(2017), Liu et al. (2017) or Lange et al. (2020), among
others (for surveys, see Leevy et al. (2020) and Yoga-
rajan et al. (2020)). Recently, also transformer-based
architectures found their way into this field. Johnson
et al. (2020) fine-tune BERT (Devlin et al., 2019) for
pi recognition on English medical records and Garcı́a-
Pablos et al. (2020) for Spanish clinical notes.
Work outside the clinical domain is rarer despite the un-
deniable relevance of privacy protection in non-medical
genres. Several studies describe efforts to hide personal
information in short text messages (SMS). Treurniet
et al. (2012) (for Dutch) and Chen and Kan (2013)
(for English and Mandarin) automatically recognize a
handful of different pi entity types in text messages
but do not describe the methods for the automatic
recognition of these entities in detail (Chen and Kan

3Our pseudonymization efforts must be reassessed regu-
larly to account for technological developments that might
allow re-identification of individuals (Kamocki et al., 2018).
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(2013) only mention the use of regular expressions).
Panckhurst (2013) proposes (for French) a semi-
automatic anonymization process, with automatic pre-
annotation of privacy-sensitive items by a dictionary-
based anonymization tool (SEEK&HIDE; Accorsi et al.
(2012)) and subsequent manual validation and correc-
tion by humans. Within this project, Patel et al. (2013)
compare the unsupervised SEEK&HIDE system with
a supervised learning approach using decision trees to
combine the outcome of both approaches.
Adams et al. (2019) detect pi entities in human-
computer chat data with a CRF classifier, while Jensen
et al. (2021) automatically recognize five categories of
pi mentions in job postings. The latter work also com-
pares Bi-LSTMs and transformer models for this task.
Targeting emails, Minkov et al. (2005) identify per-
sonal names using a CRF classifier as well. Eder et al.
(2020) use Bi-LSTMs with a CRF on top to recognize a
set of 15 different privacy-sensitive named entity types,
which they specially designed for pseudonymization.
While we adopted their pi categories, the current work,
to the best of our knowledge, is the first to use trans-
formers for identifying pi entities in emails.

2.2. Surrogate Generation
The second step of the pseudonymization workflow,
surrogate generation, has been examined by Carrell
et al. (2013) with the ‘Hiding In Plain Sight’ ap-
proach: By replacing detected privacy-sensitive chunks
with realistic synthetic surrogates the few identifiers
‘leaked’ are difficult to distinguish from the synthetic
surrogates. In order to evaluate this claim, Carrell et
al. (2019) investigate how a malicious attacker per-
forming a parrot attack could expose leaked pi enti-
ties and find experimental evidence that such an at-
tack can attenuate but not eliminate the protective ef-
fect of pseudonymization. This increased protection
effect of surrogate generation is a major advantage for
pseudonymization over anonymization.
For English medical texts, SCRUB (Sweeney, 1996)
was one of the first surrogate generation systems fol-
lowed by work from Uzuner et al. (2007), Yeniterzi et
al. (2010), Deléger et al. (2014), Stubbs et al. (2015b),
Stubbs and Uzuner (2015) and Chen et al. (2019). Sim-
ilar procedures based on rules and dictionaries were
used for Danish (Pantazos et al., 2011), Swedish (Al-
falahi et al., 2012) and Spanish (Lima Lopez et al.,
2020) clinical datasets, as well as for a learner corpus of
Swedish (Megyesi et al., 2018; Volodina et al., 2020).
For German, Eder et al. (2019) propose a compara-
ble surrogate generation system developed for emails
followed by an adaptation to German medical texts
(Lohr et al., 2021). While Eder et al. (2019) also
evaluate the quality of the pseudonymized data by
comparing pi recognition performances on original
and pseudonymized text, they do not release a model
trained on such pseudonymized data to automatically
identify pi entities, though.

Rather than utilizing rules and dictionaries, Friedrich
et al. (2019) replace pi mentions in medical English
texts with close neighbors in embedding space (i.e.,
words with similar word embeddings). However, they
point out the risk of inferring the original informa-
tion through overlapping neighbor spaces. Therefore,
they propose transforming text non-reversibly into a
non-interpretable vector space representation instead of
hiding privacy-sensitive entities in the raw text data.
This adversarially learned representation of medical
text then allows privacy-preserving sharing of training
data for systems recognizing pi entities. Thus, they
avoid the surrogate generation step completely. This
strategy bears similarities to another privacy-enhancing
approach based on federated learning (Yang et al.,
2019). In federated learning, models are trained lo-
cally and only gradients are shared (see, e.g., Basu et al.
(2021; Hathurusinghe et al. (2021; Jana and Biemann
(2021)). However, Hitaj et al. (2017) show that even
this distributed privacy protection scheme is vulnerable
to attacks. Since we aim at sharing the entire dataset
alongside a tagger for pi entities, these approaches do
not match our requirements in any case.

3. Data
Our work is based on CODE ALLTAG (Krieg-
Holz et al., 2016), a text corpus composed of two
non-overlapping collections of emails. The larger por-
tion, CODE ALLTAGXL, was extracted from various
archived USENET newsgroups and consists of 1.5 mil-
lion German-language emails that merely underwent
rudimentary data cleansing. This huge data set is com-
plemented by a much smaller set of 1,390 German-
language emails, CODE ALLTAGS , collected on the ba-
sis of voluntary email donation and consent for publi-
cation, if properly de-identified.
Privacy-sensitive text spans in the complete document
set of CODE ALLTAGS as well as in 1,000 randomly
picked emails from CODE ALLTAGXL were manu-
ally annotated with privacy-sensitive information en-
tity types (Eder et al., 2019; Eder et al., 2020).
These pi entity types were specially designed for the
pseudonymization of emails and, thus, differ from
those commonly used in the news-centric NER com-
munity, with its focus on persons (PER), locations
(LOC) and organizations (ORG). The latter named en-
tity types are insufficient in light of data privacy con-
siderations and pseudonymization, which require finer
and better-targeted type granularities. We list the pi
entity types for email pseudonymization in Table 1 (for
more details, cf. Eder et al. (2019)).

3.1. Original Data
For the following experiments addressing the pi recog-
nition on original data (task 1) and testing data
for the pi recognition using pseudonymized data
(task 2), we employed emails in their original, i.e.,
unpseudonymized, form. We used the entire CODE
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pi Entity Type Abbreviation
family names FAMILY
female given names FEMALE
male given names MALE
organizations ORG
user names USER
city names CITY
zip codes ZIP
street names STREET
street numbers STREETNO
dates DATE
passwords PASS
unique formal identifiers UFID
email addresses EMAIL
phone numbers PHONE
URLs URL

Table 1: Privacy-sensitive information (pi) entity types
relevant for emails and similar text genres

ALLTAGS corpus, which includes 8,866 pi entities,
for the pi model selection (see Section 4.2) since it
contains a higher variety of pi categories and more
personal information, in general. Additionally, we
utilized 1,000 randomly chosen emails from CODE
ALLTAGXL, with 3,226 pi entities altogether, to eval-
uate the resulting classifier on the much noisier CODE
ALLTAGXL corpus (Section 4.3). Table 2 gives a quan-
titative breakdown of both corpora in their original
shape.

Original CODE ALLTAG
S XL1k

emails 1,390 1,000
tokens 152,309 94,646
pi entities 8,866 3,226
pi tokens 13,120 3,944
pi annotation manual manual
structure well-curated noisy
origin personally donated public archive

Table 2: Properties and privacy-sensitive information
of the original versions of CODE ALLTAGS (denoted as
S) and the 1,000 email sample from CODE ALLTAGXL

(denoted as XL1k)

3.2. Pseudonymized Data
For the experiments with pseudonymized data dis-
cussed in Section 5, we used two different corpus slices
from CODE ALLTAGXL. First, we replaced the manu-
ally annotated 1k emails from CODE ALLTAGXL

4 with
automatically produced type-preserving substitutes us-
ing the surrogate generation system from Eder et al.

4The pseudonymized version of XL1k underwent some
further normalization steps for this phase in order to provide
a cleaner model.

(2019).5 This system maintains temporal orderings and
coreferences between pi entities on the global docu-
ment level.6 While we kept this document-level con-
sistency for the final pseudonymized corpus, for XL1k,
which serves as training data for pi taggers, we em-
ployed the system at the local sentence level only.
Thus, we replaced the same pi entities originating from
different sentences of the same document (e.g., mul-
tiple mentions of ‘Irene’) with different surrogates to
further prevent re-identification.
Since this set of pseudonymized sentences originating
from the 1k emails picked from CODE ALLTAGXL

contains a lower amount of pi entities (about one
third only compared to CODE ALLTAGS), we fur-
ther enlarged the training data of the pseudonymized
XL1k with another 2,000 randomly picked emails from
CODE ALLTAGXL that were automatically tagged for
pi entities. This way, we tried to compensate for the
lower density of pi entities and higher noise in that cor-
pus. We obtained those pi entities by applying the best
pi recognition model determined in Section 4. Then,
we again replaced the pi entities the model found with
surrogates as described above. This corpus version is
called XL2k. It contains over 10k automatically rec-
ognized and pseudonymized pi entities. Table 3 offers
some descriptive statistics for both corpus variants.7

Pseudonymized CODE ALLTAG
XL1k XL2k

emails 1,000 2,000
tokens 94,485 196,607
pi entities 3,226 10,896
pi tokens 3,780 13,203
pi annotation manual automatic

Table 3: Properties and privacy-sensitive informa-
tion of the pseudonymized XL1k and the automatically
tagged 2k emails from CODE ALLTAGXL (XL2k)

We did not take a pseudonymized version of CODE
ALLTAGS into account for two reasons. First, the
donors of the emails of CODE ALLTAGS agreed
to a publication only after reliable and complete
pseudonymization. By releasing a pi recognition
model trained on these emails, we would lose the ad-
vantage of the pseudonymization approach that any po-
tentially missed privacy-sensitive information is hard to
distinguish from synthetic surrogates. Second, CODE

5Available under https://github.com/ee-2/
SurrogateGeneration. In order to prevent any po-
tential leakage, we substituted the provided lexicons of
surrogate candidates with slightly different ones.

6The surrogate generation system replaces the same pi en-
tities with the same surrogates, i.e., it substitutes all mentions
of ‘Irene’ with ‘Maria’ throughout the document. For more
details see Eder et al. (2019).

7Note that the token sizes of the original and the
pseudonymized version of XL1k differ because entities do not
get substituted by the same amount of tokens in every case.

https://github.com/ee-2/SurrogateGeneration
https://github.com/ee-2/SurrogateGeneration
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ALLTAGS also contains emails not written by the
donors as part of email threads. Since consent was only
gathered from the individual donor and not from other
people involved in the donated email conversations, we
will not distribute these emails at all.

4. Task 1: Recognition of
Privacy-Sensitive Entities Using

Original Data
The first task deals with the recognition of privacy-
sensitive entities in our original data that are not
pseudonymized. We start by comparing different archi-
tectures for identifying pi entities based on the original
version of the well-curated CODE ALLTAGS corpus.
Next, we evaluate the selected model architecture on
the noisier CODE ALLTAGXL (represented by XL1k).
We use the outcomes of this examination to automat-
ically tag pi entities in the entire CODE ALLTAGXL

and, thus, produce a pseudonymized version of it. Like-
wise, we generate training data for task 2, namely the
2k mails of XL2k. We summarize task 1 in Figure 2.

Figure 2: Task 1 trains and evaluates pi recognition
models on original data; the final model (together
with a surrogate generation step) is used to produce
pseudonymized data

4.1. Setup
We used FLAIR (Akbik et al., 2019), a state-of-the-art
NLP and text embedding library, as a framework for
our sequence tagging experiments. For sentence seg-
mentation and tokenization, we employed SOMAJO
(Proisl and Uhrig, 2016) because it is specially de-
signed for German web and social media texts. All
evaluations are based on pi entities represented by the
BIO annotation scheme (‘B’ preceding a token’s tag
stands for the Beginning of an entity, ‘I’ (Inside) for
its continuation, and ‘O’ (Outside) for tokens that do
not belong to any pi entity). We used the weighted
average of precision, recall and F1 score as evaluation
measures.
Model Architecture. We compared the commonly
used bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997), with a CRF on top (Huang et al., 2015),
with fine-tuning transformers, each of them with a lin-
ear classifier as last layer to predict tags.8 For hyper-

8A CRF on top of the transformer embeddings yielded
slightly worse results.

parameter settings, we followed the recommendations
and defaults for NER within the FLAIR architecture as
described by Schweter and Akbik (2020).

Embeddings. We used the German language model
GELECTRA-LARGE based on the ELECTRA architec-
ture as transformer model, which yields the best re-
sults for several German NER and document clas-
sification tasks (Chan et al., 2020).9 Similar to
Schweter and Akbik (2020) for NER, we also exper-
imented with concatenating non-contextual word em-
beddings to the transformer-based embeddings pro-
duced for each word. For that, we used FASTTEXT
word embeddings (Grave et al., 2018) based on COM-
MON CRAWL and, to handle out-of-vocabulary lexical-
izations, BPEMB10 subword embeddings (Heinzerling
and Strube, 2018) based on Byte Pair Encoding (BPE)
(Sennrich et al., 2016).

Document Context. We tested the inclusion of the
document context for sequence tagging as proposed by
Schweter and Akbik (2020). For each sentence, they
pass the sentence itself as well as 64 subtokens from
the left and the right context to the transformer. Conse-
quently, embeddings of the tokens of the sentence are
then calculated taking this surrounding context into ac-
count. Their approach is called FLERT.

Learning from NER Tasks. Recognizing privacy-
sensitive entities in emails shares many similarities
with the standard NER task. The ORG category is
congruent, whereas PER and LOC constitute coarser-
grained supercategories requiring finer-grained pi en-
tity types for our task (e.g., PER(son) subsumes FE-
MALE, MALE, FAMILY and USER from Table 1).
Therefore, we further examined whether our use case
might profit from employing models already fine-tuned
on NER tasks by further fine-tuning them on our task.
For better comparability of the results, we only used the
basic setting for the transformer architecture and did
not take the document context or any non-contextual
word embeddings into account. We switched to multi-
lingual XLM-ROBERTA-LARGE transformers (Con-
neau et al., 2020) for this experiment because sev-
eral such models are already fine-tuned on NER tasks
and are publicly available. We compared a pure (i.e.,
not fine-tuned for a specific task) XLM-ROBERTA-
LARGE transformer (denoted as XLM-R in the fol-
lowing) with two fine-tuned versions of these embed-
dings. The first version (XLM-R GERMAN)11 is fine-
tuned on the German CONLL data (Tjong Kim Sang
and De Meulder, 2003) for the recognition of PER,
ORG, LOC and MISC. The second model (XLM-R

9We also experimented with GBERT-BASE, GBERT-
LARGE and GELECTRA-BASE (all from Chan et al. (2020))
but found them to perform worse.

10We took the 100-dimensional BPEMB with vocabulary
size 100,000.

11https://huggingface.co/
xlm-roberta-large-finetuned-conll03-german

https://huggingface.co/xlm-roberta-large-finetuned-conll03-german
https://huggingface.co/xlm-roberta-large-finetuned-conll03-german


746

Model (Concatenated) Embeddings Document Prec Rec F1Architecture Context
LSTM+CRF BPEMB + Character (Eder et al. (2020)) 85.00 79.11 81.44
LSTM+CRF GELECTRA-LARGE 86.66 86.01 86.22
LSTM+CRF GELECTRA-LARGE + FASTTEXT + BPEMB 87.26 86.60 86.79
LSTM+CRF GELECTRA-LARGE D 81.21 87.10 87.01
LSTM+CRF GELECTRA-LARGE + FASTTEXT + BPEMB D 87.45 86.79 86.95
Transformer GELECTRA-LARGE 87.14 87.64 87.31
Transformer GELECTRA-LARGE + FASTTEXT + BPEMB 86.80 88.44 87.56
Transformer GELECTRA-LARGE D 87.73 87.58 87.52
Transformer GELECTRA-LARGE + FASTTEXT + BPEMB D 88.10 88.27 88.09

Table 4: Evaluation of different setups for pi recognition on CODE ALLTAGS (10-fold cross-validation)

HRL)12 is not only trained on German CONLL but
also on NER training data (with the categories PER,
ORG and LOC) from another nine high-resource lan-
guages, which may be beneficial for our task.

4.2. Performance on CODE ALLTAGS

Table 4 shows the results of the different taggers for
a 10-fold cross-validation on CODE ALLTAGS . All
configurations clearly outperform the best model from
Eder et al. (2020) who used BPEMB combined with
character embeddings within the LSTM+CRF archi-
tecture.13 In general, the LSTM+CRF-based mod-
els yielded worse results than the transformer mod-
els. The transformer version with GELECTRA-LARGE,
FASTTEXT and BPEMB embeddings which takes doc-
ument context into account produced the best results.
It exceeds the model from Eder et al. (2020) sig-
nificantly with p < 0.005. (We used the two-sided
Wilcoxon signed-rank test on F1 for calculating sig-
nificance.) It also achieved significantly better re-
sults than a LSTM+CRF based on GELECTRA-LARGE
with p < 0.005, and a LSTM+CRF with GELECTRA-
LARGE in combination with non-contextual embed-
dings with p < 0.05. In comparison, the results for
LSTM+CRF models incorporating the context of sen-
tences are not significantly lower. Contrasting the best
model with the other transformer-based architectures,
we found no significant differences. Obviously, taking
the document context into account, as well as concate-
nating non-contextual word embeddings, i.e., FAST-
TEXT and BPEMB embeddings, does not improve the
performance of transformer models significantly for
our task.
Our error analysis revealed that ORGs are among the
hardest categories to recognize for the models. There-

12https://huggingface.co/Davlan/
xlm-roberta-large-ner-hrl

13Note that we split the cross-validation folds based on
emails, while Eder et al. (2020) split on lines, which explains
the differences to their reported results. Thus, we avoided
having pi entities that appear multiple times in one document
in training and testing data, resulting in lower performance
scores.

fore, it seems reasonable to take advantage of embed-
dings already fine-tuned on NER data. Although these
data are limited to news articles, they contain more
ORG entities from which the models could learn.
Table 5 depicts the outcomes of experiments with em-
beddings fine-tuned on NER data. It shows that em-
ploying the XLM-R GERMAN model fine-tuned on
German data or XLM-R HRL embeddings fine-tuned
on 10 different languages did not yield significant per-
formance differences. The pure XLM-R model, which
reached similar results as the GELECTRA-LARGE
model, returned even slightly, but not significantly, bet-
ter results. Likewise, results for the ORG category did
not improve. Therefore, we may conclude that against
our assumption identifying privacy-sensitive entities on
our data does not profit from models that have already
been fine-tuned on NER tasks.

Embeddings Prec Rec F1

XLM-R GERMAN* 86.83 87.04 86.85
XLM-R HRL* 87.13 87.22 87.11
XLM-R 87.21 87.43 87.25
GELECTRA-LARGE 87.14 87.64 87.31

Table 5: Results for fine-tuning models already
fine-tuned on NER tasks (marked with ‘*’) and pure
models for pi recognition on CODE ALLTAGS (10-fold
cross-validation)

4.3. Performance on CODE ALLTAGXL

We also evaluated the best model (the fine-tuned
transformer with GELECTRA-LARGE, FASTTEXT and
BPEMB embeddings that includes document context)
on CODE ALLTAGXL since we wanted to publish the
pseudonymized version of this dataset, as well as a pi
recognition model based on such data. Table 6 depicts
the results of this evaluation. When applying a model
trained on CODE ALLTAGS (denoted as S) to the 1k
emails from CODE ALLTAGXL (denoted as XL1k), per-
formance drops to an F1 score of 76.85. This comes
as no surprise since CODE ALLTAGXL is a lot nois-
ier than CODE ALLTAGS . The results for training and
testing on the 1,000 mails from CODE ALLTAGXL

https://huggingface.co/Davlan/xlm-roberta-large-ner-hrl
https://huggingface.co/Davlan/xlm-roberta-large-ner-hrl
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in a 10-fold cross-validation setup, which are even
worse, also show that pi recognition is more difficult
on this corpus segment. XL1k contains fewer entities
and some categories appear only rarely (e.g., email ad-
dresses, phone numbers, street names or ZIP codes),
which means they are more difficult to learn. There-
fore, we joined both corpora to benefit from the higher
amount and diversity of entities in CODE ALLTAGS .
We merged both corpora for training while testing only
on the third of CODE ALLTAGXL left out from train-
ing for a 3-fold cross-validation. Hence, the test set is
similar for all three evaluations on XL1k. This setting
reached an F1 score of 78.37 and thus indeed improved
performance.

Training Testing Prec Rec F1

S XL1k 77.11 77.15 76.85
XL1k XL1k 72.61 75.52 73.83
S & XL1k XL1k 76.73 80.17 78.37
S S 88.10 88.27 88.09

Table 6: Evaluation on 1k emails from CODE
ALLTAGXL (denoted as XL1k) of models trained on
CODE ALLTAGS (denoted as S) or XL1k as well as on a
merger of both (denoted as S & XL1k); training and test-
ing data were kept strictly disjoint while the test data
(XL1k) were comparable.14

We applied the model trained on CODE ALLTAGS

and XL1k for pi recognition on the entire CODE
ALLTAGXL corpus and substituted the recognized pi
entities with surrogates keeping coreferences between
entities across each email intact. Thereby, we can pro-
vide a new and better pseudonymized version of this
corpus compared to the previous version (Eder et al.,
2020).

5. Task 2: Recognition of
Privacy-Sensitive Entities Using

Pseudonymized Data
Since we want to share a pi recognition model for
emails and related genres, task 2 evaluates the applica-
bility of pseudonymized data as training data for recog-
nizing privacy-sensitive information. For that purpose,
we compared two different settings. First, we took a
smaller pseudonymized corpus based on manually an-
notated pi entities. For the second setting, we enlarged
such costly to generate data by pseudonymized texts
where pi entities had been automatically recognized.
We trained taggers on both types of pseudonymized

14For training and testing on XL1k as well as for training
and testing on S, we used 10-fold cross-validation. For S
merged with XL1k, we performed a 3-fold cross-validation
solely on the latter corpus. Thus, we tested on each third of
XL1k while we trained on the other 2

3
combined with S. For

training on S and testing on XL1k, we trained a model on S
three times, tested these models on XL1k and evaluated the
three runs.

data (described in Section 3.2) and evaluated them on
the original corpora introduced in Section 3.1. Figure
3 summarizes task 2.

Figure 3: Task 2 evaluates models that were trained on
pseudonymized data on original data

5.1. Setup
For this task and the final model, we did not include
the document context (the FLERT approach) for the
recognition pi entities. This is because shuffling sen-
tences and not taking any context surrounding these
sentences into account should prevent the leakage of
private information even more and, therefore, make
re-identification even harder. Instead, we only em-
ployed the GELECTRA-LARGE transformer with FAST-
TEXT and BPEMB embeddings, a setting with no sig-
nificant performance differences compared to utilizing
document context on our data (see Table 4). Similar to
task 1, we evaluated on pi entities represented by the
BIO annotation scheme and used the weighted average
of precision, recall and F1 score.

5.2. Performance
Table 7 shows the results for employing
pseudonymized corpora (the pseudonymized ver-
sions of XL1k and XL2k) as training data for pi
recognition models and applying them to raw text (the
original versions of CODE ALLTAGS and XL1k). Not
surprisingly, performance decreased for models trained
on these camouflaged data (see Yeniterzi et al. (2010),
Deléger et al. (2014), Friedrich et al. (2019), Eder et
al. (2019) and Berg et al. (2019) for similar findings,
in some studies to a lesser degree, though). Applying a
model trained on pseudonymized XL1k to the original
CODE ALLTAGS only reached an F1 score of 46.54.
Note that applying a model trained on XL1k to CODE
ALLTAGS reached lower results, in general (yielding
an F1 score of 57.77 trained on its original version).
When we merged the pseudonymized version of XL1k

with XL2k, performance increased considerably up to
65.07 F1, thus outperforming the original setting.
For testing on the original XL1k, which is noisier and
contains fewer entities than CODE ALLTAGS , we used
a 10-fold cross-validation procedure. This means that
we trained models on 9/10 of the pseudonymized
data and applied it to the remaining original and
unpseudonymized part for all 10 different folds.
Employing pseudonymized XL1k solely on its orig-
inal version yielded 56.64 F1. Combining both
pseudonymized corpora XL1k and XL2k, again, im-
proved results notably, reaching an F1 score of 61.12.
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Training Testing Prec Rec F1

Pseudonymized Data Original Data
XL1k S 65.15 43.39 46.54

XL1k & XL2k S 80.84 62.97 65.07
Original Data

XL1k S 71.19 59.63 57.77
Pseudonymized Data Original Data

XL1k XL1k 69.27 50.38 56.64
XL1k & XL2k XL1k 76.26 54.34 61.12

Original Data
XL1k XL1k 72.16 74.11 72.68

Table 7: Results for training on pseudonymized data of the smaller, manually annotated XL1k and XL2k with a
larger quantity of automatically recognized pi entities while testing on the original emails of S as well as of XL1k

(10-fold cross-validation), in comparison to training and testing on original data

Still, this setting did not outperform the original one,
which achieved 72.68 F1.
We ascribe these inferior results of models trained on
pseudonymized data especially to the substitutions for
organizations, cities, URLs and email addresses. The
surrogate generation system commonly replaces orga-
nizations and city names with rather infrequent names,
while URLs and email addresses are substituted with
randomly generated characters. Therefore, recogniz-
ing organizations and, to a lesser degree, city names,
URLs and email addresses tends to be particularly dif-
ficult (e.g., email addresses rewritten as strings of ran-
dom characters in pseudonymized data are often con-
fused with female, male or family names on original
data probably due to their character similarity).
Yet, we may conclude that enlarging the
pseudonymized version of the smaller and manu-
ally annotated XL1k with XL2k, which contributes a
large number of automatically detected pi entities,
turns out to be beneficial for our task. However, these
results should be taken with caution since we evaluated
on the same dataset (yet not on the same sentences)
due to the lack of complementary data. We plan to
account for this shortcoming in future work.

6. Conclusion
In this study, we addressed the problem of protect-
ing privacy-sensitive information (pi) in emails with
pseudonymization as a two-step procedure. First, en-
tities carrying privacy-sensitive information are recog-
nized. Second, these text spans are substituted with au-
tomatically generated, naturally appearing surrogates.
We treated the recognition of privacy-sensitive entities
primarily as a NER problem using 15 distinct cate-
gories. We evaluated various deep learning architec-
tures for this task on the German-language email cor-
pus CODE ALLTAG. To the best of our knowledge, this
is the first study in which experiments with fine-tuning
transformers and learning from standard named entity
tasks are conducted to recognize privacy-sensitive enti-
ties in emails.

We found that fine-tuning transformers yields better re-
sults than employing LSTMs, whereas concatenating
non-contextual word embeddings to the transformer
embeddings and including the contextual surroundings
of a sentence does not lead to significantly better re-
sults. Also, fine-tuning transformers already fine-tuned
on NER tasks did not improve performance scores.
However, we showed that the best system outperforms
previous approaches. Hence, we can provide a new ver-
sion of CODE ALLTAG with improved pseudonymiza-
tion compared to the version previously available.

As releasing models trained on original, non-
pseudonymized data carries the risk of leaking privacy-
sensitive information, we further examined the applica-
bility of using pseudonymized data as training data for
pi recognition systems. Enlarging pseudonymized data
based on manually annotated pi entities with emails
where models trained on original data automatically
identified pi entities indeed improved performance.
When applying systems trained on pseudonymized data
to original texts, results are still inferior compared to
training on original data, though. Consequently, we
will focus on more realistic surrogate generation ap-
proaches in future work.

Employing 3,000 pseudonymized emails with about
290,000 tokens and over 14,000 manually as well
as automatically detected pi entities as training data,
we can provide a tagger for privacy-sensitive infor-
mation recognition in German-language emails. This
model may be beneficial not only for pi recognition
and pseudonymization of emails but also for similar
privacy-sensitive text genres where openly available
taggers for pi entities are rare (e.g., tweets or chats).
The pre-trained model may serve as a good starting
point to facilitate further de-identification efforts, e.g.,
as a pre-tagging device for speeding up subsequent
manual annotation.

Both the tagger for privacy-sensitive informa-
tion recognition and the pseudonymized ver-
sion of CODE ALLTAG are available under
https://github.com/codealltag/.

https://github.com/codealltag/
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Friedrich, M., Köhn, A., Wiedemann, G., and Bie-
mann, C. (2019). Adversarial learning of privacy-
preserving text representations for de-identification
of medical records. In ACL 2019 — Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5829–5839. Associa-
tion for Computational Linguistics (ACL).

Garcı́a-Pablos, A., Perez, N., and Cuadros, M. (2020).
Sensitive data detection and classification in Spanish
clinical text: experiments with BERT. In LREC 2020
— Proceedings of the 12th International Confer-
ence on Language Resources and Evaluation, pages
4486–4494. European Language Resources Associ-
ation (ELRA).

Garfinkel, S. L. (2015). De-identification of personal
information. Technical Report NISTIR 8053, Na-
tional Institute of Standards and Technology (NIST),
U.S. Department of Commerce, Gaithersburg/MD,
October.

Grave, E., Bojanowski, P., Gupta, P., Joulin, A., and
Mikolov, T. (2018). Learning word vectors for 157
languages. In LREC 2018 — Proceedings of the 11th
International Conference on Language Resources
and Evaluation, pages 3483–3487. European Lan-
guage Resources Association (ELRA).

Hathurusinghe, R., Nejadgholi, I., and Bolic, M.
(2021). A privacy-preserving approach to extraction
of personal information through automatic annota-
tion and federated learning. In PrivateNLP 2021
— Proceedings of the 3rd Workshop on Privacy in
Natural Language Processing @ NAACL-HLT 2021,
pages 36-45. Association for Computational Lin-
guistics (ACL).

Heinzerling, B. and Strube, M. (2018). BPEMB:
tokenization-free pre-trained subword embeddings
in 275 languages. In LREC 2018 — Proceedings
of the 11th International Conference on Language
Resources and Evaluation, pages 2989–2993. Euro-
pean Language Resources Association (ELRA).

Hintze, M. (2018). Viewing the GDPR through a de-
identification lens: a tool for compliance, clarifica-
tion, and consistency. International Data Privacy
Law, 8(1):86–101.

Hitaj, B., Ateniese, G., and Perez-Cruz, F. (2017).
Deep models under the GAN: information leak-
age from collaborative deep learning. In CCS ’17
— Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security,
pages 603–618. Association for Computing Machin-
ery (ACM).

Hochreiter, S. and Schmidhuber, H. J. (1997).
Long short-term memory. Neural Computation,
9(8):1735–1780.

Hoofnagle, C. J., van der Sloot, B., and Zuiderveen
Borgesius, F. (2019). The European Union General
Data Protection Regulation: what it is and what it
means. Information & Communications Technology
Law, 28(1):65–98.

Huang, Z., Xu, W., and Yu, K. (2015). Bidirectional
LSTM-CRF models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Huang, Y., Song, Z., Chen, D., Li, K., and Arora, S.
(2020). TEXTHIDE: tackling data privacy for lan-
guage understanding tasks. In Findings of the As-
sociation for Computational Linguistics — EMNLP
2020, pages 1368–1382. Association for Computa-
tional Linguistics (ACL).

Jana, A. and Biemann, C. (2021). An investigation
towards differentially private sequence tagging in a
federated framework. In PrivateNLP 2021 — Pro-
ceedings of the 3rd Workshop on Privacy in Natural
Language Processing @ NAACL-HLT 2021, pages
30–35. Association for Computational Linguistics
(ACL).

Jensen, K. N., Zhang, M., and Plank, B. (2021). Dei-
dentification of privacy-related entities in job post-
ings. In NoDaLiDa 2021 — Proceedings of the
23rd Nordic Conference on Computational Linguis-
tics, number 45 in NEALT Proceedings Series, pages
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ference Proceedings, pages 47–56.

Meystre, S. M. (2015). De-identification of unstruc-
tured clinical data for patient privacy protection. In
Aris Gkoulalas-Divanis et al., editors, Medical Data
Privacy Handbook, pages 697–716. Springer, Cham,
Switzerland.

Minkov, E., Wang, R. C., and Cohen, W. W. (2005).
Extracting personal names from email: applying
named entity recognition to informal text. In HLT-
EMNLP 2005 — Proceedings of the Human Lan-
guage Technology Conference & 2005 Conference
on Empirical Methods in Natural Language Process-
ing, pages 443–450. Association for Computational
Linguistics (ACL).

Mosallanezhad, A., Beigi, G., and Liu, H. (2019).
Deep reinforcement learning-based text anonymiza-
tion against private-attribute inference. In EMNLP-
IJCNLP 2019 — Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing & 9th International Joint Conference on
Natural Language Processing, pages 2360–2369.
Association for Computational Linguistics (ACL).

Mulligan, S. P., Freeman, W. C., and Linebaugh, C. D.
(2019). Data protection law: an overview. Techni-
cal Report CRS Report R45631, Congressional Re-
search Service.

Norgeot, B., Muenzen, K., Peterson, T. A., Fan, X.,
Glicksberg, B. S., Schenk, G., Rutenberg, E., Os-
kotsky, B., Sirota, M., Yazdany, J., Schmajuk, G.,
Ludwig, D., Goldstein, T., and Butte, A. J. (2020).
Protected health information filter (PHILTER): accu-
rately and securely de-identifying free-text clinical
notes. npj Digital Medicine, 3:#57.

Panckhurst, R. (2013). A large SMS corpus in
French: from design and collation to anonymisation,
transcoding and analysis. Procedia Social and Be-
havioral Sciences, 95:96–104.

Pantazos, K., Lauesen, S., and Lippert, S. (2011). De-
identifying an EHR database: anonymity, correct-
ness and readability of the medical record. In User
Centred Networked Health Care. MIE 2011 — Pro-
ceedings of the 23rd Conference of the European
Federation of Medical Informatics, number 169 in
Studies in Health Technology and Informatics, pages
862–866, Amsterdam etc. IOS Press.

Patel, N., Accorsi, P., Inkpen, D. Z., Lopez, C., and
Roche, M. (2013). Approaches of anonymisation
of an SMS corpus. In Computational Linguistics
and Intelligent Text Processing. CICLing 2013 —
Proceedings of the 14th International Conference



752

on Computational Linguistics and Intelligent Text
Processing. Part I, number 7816 in Lecture Notes
in Computer Science (LNCS), pages 77–88, Berlin,
Heidelberg. Springer.

Proisl, T. and Uhrig, P. (2016). SOMAJO: state-of-the-
art tokenization for German Web and social media
texts. In WAC-X — Proceedings of the 10th Web as
Corpus Workshop and the EmpiriST Shared Task @
ACL 2016, pages 57–62. Association for Computa-
tional Linguistics (ACL).

Radford, A., Wu, J., Child, R., Luan, D., Amodei,
D., and Sutskever, I. (2019). Language models are
unsupervised multitask learners. Technical report,
OpenAi.

Rock, F. (2001). Policy and practice in the anonymisa-
tion of linguistic data. International Journal of Cor-
pus Linguistics, 6(1):1–26.

Schweter, S. and Akbik, A. (2020). FLERT:
document-level features for named entity recogni-
tion. arXiv preprint arXiv:2011.06993.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neu-
ral machine translation of rare words with subword
units. In ACL 2016 — Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics, volume 1: Long Papers, pages
1715–1725. Association for Computational Linguis-
tics (ACL).
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