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Abstract
Identification of fine-grained location mentions in crisis tweets is central in transforming situational awareness information
extracted from social media into actionable information. Most prior works have focused on identifying generic locations,
without considering their specific types. To facilitate progress on the fine-grained location identification task, we assemble two
English tweet crisis datasets and manually annotate them with specific location types. The first dataset contains tweets from
a mixed set of crisis events, while the second dataset contains tweets from the global COVID-19 pandemic. We investigate
the performance of state-of-the-art deep learning models for sequence tagging on these datasets, in both in-domain and
cross-domain settings.
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1. Introduction
We have witnessed a large number of crisis situations in
recent years, from natural disasters to man-made disas-
ters and also to deadly animal and human health crises,
culminating with the ongoing COVID-19 public health
crisis. Affected individuals often turn to social media
(e.g., Twitter or Facebook) to report useful informa-
tion, or ask for help (Sakaki et al., 2010; Vieweg et
al., 2010; King, 2018). Information contributed on so-
cial media by people on the ground can be invaluable
to emergency response organizations in terms of gain-
ing situational awareness, prioritizing resources to best
assist the affected population, addressing concerns, and
even saving lives (King, 2018).
Many recent studies have focused on identifying in-
formative tweets posted by individuals affected by a
crisis, and classifying those tweets according to situ-
ational awareness categories useful for crisis response
and management (Imran et al., 2015). However, for sit-
uational awareness information extracted from social
media to be actionable, knowing the corresponding ge-
ographic location is of key importance. For example,
location information enables responders to perform fast
assessment of the damage produced by a natural disas-
ter (Villegas et al., 2018), or to respond to requests for
help coming from affected individuals or institutions
(e.g., hospitals or schools). In the case of COVID-19
health crisis, location information can also be used to
identify trends by locations (e.g., stance of a commu-
nity towards various health recommendations) (Mutlu
et al., 2020; Miao et al., 2020), and subsequently em-
ploy that information to prevent dissemination of mis-
information and rumors, and resurgence of the novel
coronavirus.
Unfortunately, only a very small percentage of tweets
are geotagged (Mahmud et al., 2012). Furthermore,
even when geolocation information is available, that lo-
cation may not be the location mentioned in the tweet

text (Ikawa et al., 2013). According to Vieweg et al.
(2010), the location in the tweet text is usually the lo-
cation needed for monitoring and/or responding to an
emergency. Table 1 shows several examples of tweets
posted during recent hurricanes (first three tweets) and
during the COVID-19 crisis (last three tweets). As
can be seen, locations are mentioned at different levels
of granularity, from region and landmark to city, state
and country. Furthermore, the same location name, in
our COVID-19 examples - New York, can be associ-
ated with different location types, such as city (tweet
4) and state (tweet 6). Information about the tags of
the ambiguous entities can be used to disambiguate the
corresponding locations and link them to physical lo-
cations. Therefore, tools for identifying fine-grained
locations directly from the texts of crisis tweets are
greatly needed.

Location identification has been frequently addressed
as part of the broader named entity recognition (NER)
task (Goyal et al., 2018; Li et al., 2020). Some stud-
ies have focused specifically on the task of identify-
ing generic location mentions (without considering the
type of location) in tweet text (Hoang et al., 2017),
and even disaster tweet text (Kumar and Singh, 2019).
Other studies have focused on identifying fine-grained
points-of-interest (POI), useful for location-based ser-
vices (Li and Sun, 2014; Malmasi and Dras, 2015; Ji et
al., 2016; Xu et al., 2019).

To the best of our knowledge, there are no publicly
available, manually annotated datasets that can facil-
itate progress on the task of identifying fine-grained
locations (including, city, state, country, region, land-
mark) in crisis tweets, despite the benefits provided by
the use of social media data in monitoring and respond-
ing to a crisis. To address this need, we have assem-
bled two datasets for identifying fine-grained locations
in crisis tweets. The first dataset, called MIXED, con-
sists of tweets crawled during five crisis events, specif-
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No. Tweet text

1
Roads in Calhoun County are underwater, access to the Port Lavaca Causeway is flooded, the bridge is closed.

ooO o O B-ctcOO I-ctc oi oOoooooOoooooo OoOoOoi B-lan iI-lan ooo I-lano oOooOooooOoooOooOooO

2
Very extensive damage sustained throughout Wilmington NC o from Hurricane Florence

ooO ooo Oooooo Oooooo Oooooooo Ooooo B-ctc oo B-sta I o Ooooo Oooooo Oooooo

3
Big tree fell on power lines and blocking Brown Ave near Washington St in Orlando s Thornton Park

oO o Oo Oo Ooo Oooo Ooo Oooo Oooo B-oth I-oth o Oii OB-oth I-othO Oi B-sta iO B-lan I-lanooi

4
There are now more confirmed cases of coronavirus in New i York i City than there are in all of South Korea

oiOoo Oii Oooo O ooooO oooooO oiO ooooO oooiiO B-ctc I-ctc I-ctc ooOoooOo OoOoO iOi B-con I-con

5
South Asia is quickly marching towards being the new epicenter of covid 19
B-reg iI-reg O oo Oooooo Oooooo Ooooo Ooo Ooo Ooooo Oooo Oo Ooo O

6
The difference in COVID 19 cases and deaths between New York and California continues to be astounding
oOoooo Oooo Oooi O oooO ooO oiO ooiO ooooiO oo B-sta I-sta oOii B-sta ooooOooo OiOioooO

Table 1: Examples of crisis tweets tagged with fine-grained location types. The subsequences representing location
mentions are highlighted with pink, and their corresponding tags (in BIO format) are highlighted with blue.

ically, Nepal Earthquake, Queensland Floods, Srilanka
Bombing, Hurricane Michael and Hurricane Florence.
The second dataset, called COVID, consists of a set of
coronavirus-related tweets crawled between February
27 and April 7, 2020. We used Amazon Mechanical
Turk (AMT)1 to annotate the datasets using six loca-
tion types (Country, State, Region, City, Landmark and
Others).
Given the success of deep learning approaches for NER
tasks (Li et al., 2020), we use different state-of-the-art
models to establish baseline results on the dataset. In
summary, the contributions of this work are as follows:

• We create two datasets of tweets from a mixed set
of crisis events and from COVID-19, respectively.
The tweets are manually annotated with fine-
grained location types, including city, state, coun-
try, region, landmark. We make this data pub-
licly available along with annotation tool and pre-
processing script.2 The final annotated datasets
are provided in the form of tweet-id and corre-
sponding location annotations in that tweet.

• We use state-of-the-art models including a contex-
tual encoder coupled with a tag decoder in a multi-
task learning setting, and a model based on con-
textualized word and entity representations, com-
bined with entity-aware self-attention to establish
baseline results for our datasets.

• We perform extensive experiments on the MIXED
and COVID datasets, respectively, in both in-
domain and cross-domain settings to understand
the usefulness of the data from the domain of in-
terest, as well as the transferability of the models
from one domain to another.

1https://www.mturk.com/
2https://github.com/sarthakksu/

finegrained-location-data

Given this introduction, we proceed with a discussion
of related work in the next section, followed by the
description of the datasets constructed, and then back-
ground and approaches, experimental setup, results and
error analysis, and finally, conclusions and an ethics
statement.

2. Related Work

We organize the related work based on several cate-
gories relevant to the research in this paper. Specifi-
cally, we first briefly discuss the location mention iden-
tification as a specific task in the area of NER. Sub-
sequently, we review works on fine-grained location
types, followed by approaches used for identifying lo-
cations, and finally, other existing and relevant location
datasets.

2.1. NER and location mention identification

NER is a well-researched problem in natural language
processing (NLP) (Goyal et al., 2018; Li et al., 2020).
Text-based location identification has been tradition-
ally addressed as part of the broader NER task, al-
though some works focus specifically on location iden-
tification (Lingad et al., 2013; Han et al., 2014; Ku-
mar and Singh, 2019; Magge et al., 2019). Most of
the works that identify locations simply tag location
mentions, as opposed to identifying fine-grained loca-
tion types (Li et al., 2020). For example, Lingad et al.
(2013) aim to identify mentions of locations (including
geographic locations and points of interest) in disaster
tweets, by using standard NER taggers (pre-trained or
retrained), and report best performance using retrained
Stanford NER (Finkel et al., 2005). Also in the context
of emergencies, Kumar and Singh (2019) use a con-
volutional neural network (CNN) approach to identify
location references in crisis tweets, regardless of their
specific types.

https://www.mturk.com/
https://github.com/sarthakksu/finegrained-location-data
https://github.com/sarthakksu/finegrained-location-data
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Dataset Event Keywords Size

MIXED

Nepal Earthquake and Queensland Floods
(Alam et al., 2018a)

N/A 167

Srilanka Bombing (ours)
Sri lanka attack, Sri lanka terror,
Sri Lanka horror, Sri Lanka easter

1171

Hurricane Michael and Hurricane Florence (ours)
hurricane michael, hurricanemichael,
hurricane florence, hurricaneflorence

2758

COVID COVID-19 (ours)
#coronavirus, corona virus,
#Coronavid19, #coronavirususa, #covid19,
#covid-19, #quarantinelife, #socialdistancing

5243

Table 2: Keywords used to collect tweets and the number of tweets from each event in the MIXED and COVID
datasets.

2.2. Fine-grained location types
Some recent works have considered fine-grained loca-
tion types, such as city, state, country (Inkpen et al.,
2015; Anand et al., 2017; Lal and others, 2019; Qazi et
al., 2020). While focused on COVID-19 tweets, Qazi
et al. (2020) use a gazetteer approach to infer the ge-
olocation of tweets, based on user and tweet informa-
tion. Closest to our goal of identifying fine-grained
locations in disaster tweet texts, Inkpen et al. (2015)
propose a CRF-based approach to identify countries,
states/provinces and cities using a Twitter dataset an-
notated according to guidelines provided in (Mani et
al., 2010). They make use of hand-crafted features, in-
cluding gazetteer features, to train a CRF model. As
opposed to (Inkpen et al., 2015), we use a larger set of
location types and approaches that preclude the need
for manually crafted features and gazetteers.
Other works on fine-grained location focus on identi-
fying point of interests locations, such as restaurants,
hotels, parks, etc. and linking them to pre-defined lo-
cation profiles (Li and Sun, 2014; Ji et al., 2016; Xu et
al., 2019). Li and Sun (2014) build a point-of-interest
(POI) inventory (which can be seen as a noisy ver-
sion of a gazetteer), and a time-aware POI tagger. The
time-aware POI tagger is a CRF trained to extract and
disambiguate fine-grained POIs. Ji et al. (2016) ex-
tend the POI tagger in Li and Sun (2014) by propos-
ing a joint framework that achieves POI recognition
and linking to pre-defined POI profiles simultaneously.
Xu et al. (2019) address the same problem of identify-
ing fine-grained POIs and linking them to location pro-
files. However, they use a deep learning model (specif-
ically, BiLSTM-CRF) to avoid the need for manually
designed features, and subsequently use a collection of
location profiles to perform the linking. The definition
of fine-grained POI tagging is different from our defi-
nition of fine-grained location tagging - we aim to as-
sign specific types/tags to location entities, as opposed
to identifying generic (yes/no) POI tags, and then link-
ing the tags to pre-defined profiles, as in prior works
(Li and Sun, 2014; Ji et al., 2016; Xu et al., 2019).
Moreover, we want to avoid the use of gazetteers to
ensure that the models are resilient to the informal na-
ture of the language used in tweets. Similar to (Xu et
al., 2019), we also want to avoid the need for manu-

ally designed features, and thus focus on deep learning
approaches.

2.3. State-of-the-art approaches for NER
State-of-the-art approaches for NER, in general, and lo-
cation identification, in particular, are sequence label-
ing type approaches based on deep learning language
models (Li et al., 2020). More specifically, compet-
itive architectures consist of three components: dis-
tributed representations of the input, a context encoder
model, and a tag decoder model. Both character-level
and word-level embeddings (or their combination) have
been used to represent the NER input in recent works
(Goyal et al., 2018), with BERT (Devlin et al., 2018)
contextual embeddings being among the most success-
ful (Li et al., 2020). In terms of context encoders and
tag decoders, recurrent neural networks, most often,
BiLSTM networks (short for Bidirectional Long Short-
Term Memory) (Hochreiter and Schmidhuber, 1997),
and CRF (short for Conditional Random Fields) (Laf-
ferty et al., 2001), respectively, contribute to some of
the best results on benchmark NER datasets (Luo et
al., 2019; Baevski et al., 2019; Liu et al., 2019; Jiang et
al., 2019). Given these successful architectures for the
NER task, one of our baseline models consists of three
components: BERT, BiLSTM and CRF, for the input
representation, context encoder and tag decoder, re-
spectively. As another strong baseline, we investigate a
recent state-of-the-art architecture, called LUKE, (Ya-
mada et al., 2020), based on a bidirectional transformer
architecture pre-trained to output both word and entity
contextualized representations. LUKE uses an entity-
aware self-attention to identify entities.

2.4. Existing location datasets
Most previous works on location identification in tweet
texts are focused on general tweets (Liu et al., 2014;
Inkpen et al., 2015) with a few notable exceptions of
works focused on crisis tweets (Lingad et al., 2013;
Kumar and Singh, 2019; Qazi et al., 2020). However,
the datasets used in these works are not all available
(Lingad et al., 2013; Kumar and Singh, 2019). Even
when available, the datasets focus on identifying loca-
tion mentions without specifically identifying the fine-
grained type of the location mentions (Liu et al., 2014).
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Qazi et al. (2020) used a gazetteer-only approach to
annotate tweets with geolocations, and the resulting
annotations are not very accurate. While not specif-
ically focused on crisis tweets, the dataset published
by (Inkpen et al., 2015) is the closest to our dataset
in terms of fine-grained location types used (which in-
clude city, country, state or province, etc.). However,
most locations in their dataset are not mentioned in
the tweet, but are inferred from auxiliary information.
Specifically, only about 3% of the tweet texts in their
dataset have location entities, for a total of only 220
different location entities. Furthermore, they also used
a gazetteer approach to annotate most of the tweets, and
performed manual annotations just for a small subset of
their dataset. Given the above-mentioned differences
between existing datasets and our datasets, it is not pos-
sible to directly use the existing datasets to transfer in-
formation to our tasks in a cross-domain setting.

3. Datasets
One main contribution of our work is to construct two
benchmark datasets for identifying fine-grained loca-
tions (see Table 3) useful for crisis monitoring and re-
sponse. The datasets cover events that are different in
nature, to enable studies in both in-domain and cross-
domain settings.

3.1. Data collection
The first dataset, called MIXED, contains tweets posted
during four natural disasters and one man-made dis-
aster that happened in specific geographical regions.
The second dataset, called COVID, contains tweets
posted during the COVID-19 pandemic, and thus has
worldwide coverage. More specifically, the tweets in
the MIXED dataset were crawled during the follow-
ing events: Nepal Earthquake, Queensland Floods, Sri-
lanka Bombing, Hurricane Michael and Hurricane Flo-
rence. The tweets from Nepal Earthquake and Queens-
land Floods were obtained from (Alam et al., 2018a).
Tweets from Srilanka Bombing, Hurricane Michael
and Hurricane Florence were crawled locally using the
Twitter streaming API. A random sample of unique
English tweets was included in the MIXED dataset
that was annotated using AMT. More than 133 million
tweets from COVID-19 pandemic were also crawled
locally between February 27th and April 7th, 2020. A
random sample of unique English tweets was included
in the COVID dataset for AMT annotation. The key-
words used to crawl the tweets and the final number of
tweets included in the dataset for each event are listed
in Table 2.
In addition to the MIXED and COVID datasets that
are annotated as part of this work, we also used a
large number of unlabeled mixed crisis and COVID-19
tweets to further pre-train the BERT-base-uncased (De-
vlin et al., 2018) models and obtained crisis-specific
embeddings. In particular, to further pre-train the
BERT-base-uncased model for the MIXED dataset, we

Type Descr. MIXED Distr. COVID Distr.
# % # %

con Country 1,763 28.31 1,819 53.06
sta State 1,242 19.95 396 11.56

reg Region,
Continent 764 12.27 158 4.61

ctc City, Town,
County 797 12.80 518 15.11

lan Building,
Landmark 1,190 19.11 391 11.42

oth Other 471 7.56 146 4.24
All Entities 6,227 100.00 3,428 100.00

Table 3: Location types and their descriptions, together
with type distribution (as raw numbers # and percent-
ages %) in the MIXED and COVID datasets, respec-
tively.

collected a larger set of tweets pertaining to various cri-
sis events from prior works (Imran et al., 2016; Nguyen
et al., 2017; Alam et al., 2018b; Alam et al., 2018a;
Olteanu et al., 2014; Olteanu et al., 2015) in addition
to the locally crawled tweets. For the COVID dataset,
however, we only used the locally crawled tweets to
pre-train the existing BERT-base-uncased model.

3.2. Data annotation and quality assessment
To prepare the tweets for annotation, the follow-
ing pre-processing was performed. User mentions
were anonymized by replacing them with a generic
user keyword, and links were removed from the
tweet text. Special characters, including -= !#$% ˆ
&*()+[]{};\’:”|<>?, and non-printable ASCII charac-
ters were also removed. The tweet text was tokenized
to enforce annotation at the token level and avoid ac-
cidental annotation of token fragments. Tweet tokens
were annotated with six location types using the BIO
scheme (where B stands for Beginning, I stands for In-
side and O stands for Outside of a location entity). The
location types together with their brief descriptions are
shown in Table 3. Examples of annotated tweets are
shown in Table 1, where the first three tweets are rep-
resentative of the MIXED dataset, and the last three are
representative COVID.
We used feedback from a local annotator to iteratively
develop and improve a custom annotation tool for our
task. The tool was subsequently deployed to AMT.
Annotators were provided with definitions of the lo-
cation types included in our study, together with pre-
cise instructions for annotation, and examples of an-
notated tweets, such as those in Table 1. We selected
external AMT workers based on agreement with our
local annotator on a small subset of tweets (approx-
imately 500 tweets). Subsequently, each tweet was
annotated by 3 external AMT workers. Only enti-
ties where two or more annotators agreed were in-
cluded in the final datasets. The Cohen’s Kappa scores
that we obtained for inter-annotator agreement were
0.63 and 0.62, and the average pairwise F1-scores for
inter-annotator agreement were 68.87 and 65.86 for the
MIXED and COVID datasets, respectively. Accord-
ing to Cohen (1960), these scores represent substantial
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Dataset No. Train Test Dev Total
Tweets 2,620 820 656 4,096
Tokens 73,622 23,253 18,511 115,386
Entities 4,001 1,237 989 6,227

Entity type distribution
con 1,135 360 268 1,763

MIXED sta 752 267 223 1,242
reg 514 144 106 764
ctc 522 141 134 797
lan 768 238 184 1,190
oth 310 87 74 471

Tweets 3,355 1,049 839 5,243
Tokens 103,646 32,674 25,798 162,118
Entities 2,206 656 566 3,428

Entity type distribution
con 1,162 347 310 1,819

COVID sta 264 75 57 396
reg 101 34 23 158
ctc 328 103 87 518
lan 265 62 64 391
oth 86 35 27 146

Table 4: Statistics for the number of tweets, to-
kens and the number of location entities in the
train/test/dev subsets of the MIXED and
COVID datasets, respectively. The entity type distribu-
tion in the train/test/dev subsets is also shown
for each dataset.

agreement.
The distributions of the location entities over the six lo-
cation types included in our study are shown in Table 3.
As can be seen, the annotated entities are more evenly
distributed over the types considered in the MIXED
dataset, while more than half of the entities are of type
country in the COVID dataset. The datasets also show
differences in terms of the number of entities per tweet,
with the MIXED dataset containing a majority of tweets
with one or two entities (and a small number of tweets
with more than two entities), and COVID containing
mostly tweets with one entity (and a small number of
tweets with two or more entities). Such differences em-
phasize specific characteristics and challenges in the
two domains, and are useful in studying the transfer-
ability of the models from one domain to another.

3.3. Benchmark Datasets
To enable progress on fine-grained location identifi-
cation in crisis tweets, and facilitate comparisons be-
tween models developed for this task (in-domain and
cross-domain), we created benchmark datasets by ran-
domly splitting our MIXED and COVID datasets into
training (train), development (dev) and test (test)
subsets, respectively. We use the training subset to
train our models, the development subset to select hy-
perparameters and the test subset to evaluate the final
performance of the models. Statistics for the MIXED
and COVID datasets in terms of number of tweets, to-
kens, entities in the train, test and dev subsets,
respectively, are shown in Table 4. The benchmark
datasets, together with the pre-processing script, are
made publicly available. More specifically, to com-
ply with Twitter’s Developer Agreement and Policy3,

3https://developer.twitter.com/en/
developer-terms/agreement-and-policy

the datasets is made available as pairs of tweet ID and
corresponding locations. The locations are specified
as a list of location-phrases and corresponding location
types. Given that the pre-processing script will also be
made available, the index of the location phrase should
precisely match the index of the tweet tokens.

4. Background and Approaches
The task of identifying fine-grained locations in tweet
text can be formulated as follows: Given a set of
(X,Y ) pairs, where X = {x1, · · · , xn} is a text se-
quence/tweet with n tokens, and Y = {y1, · · · , yn} is a
tag sequence with n location tags/types (in BIO format)
corresponding to the tokens in the sequence X; our se-
quence tagging task is to find a mapping fθ : X → Y
(with parameters θ) from input sequences to output se-
quences of fine-grained location types.

4.1. Baseline Models
We have experimented with three classes of models to
establish baseline results on the location identification
task.

4.1.1. Feature-Engineered Baseline.
Stanford NER (Finkel et al., 2005) uses an arbitrary
order linear chain CRF model over a set of predefined
word and character level features extracted from the
input. The model has been used as a strong baseline
for many NER models. We retrain the model with
both MIXED and COVID datasets, respectively, to learn
fine-grained location types.

4.1.2. Character and Word Embedding Baselines.
One model architecture in this category consists of
a distributed representation layer learning the embed-
dings at character and word level followed by an
LSTM-based context-encoder layer and a CRF tag-
decoder. The model is referred as CNN-GloVe-
BiLSTM-CRF in what follows. Considering the recent
success of transformer-based models, we also experi-
ment with a similar model where BERT is used as the
embedding layer instead of CNN+GloVe. We call this
model BERT-BiLSTM-CRF. For both CNN-GloVe-
BiLSTM-CRF and BERT-BiLSTM-CRF models, we
employ a multitask learning approach (Caruana, 1997),
in which the main task of fine-grained location tagging
is learned simultaneously with the auxiliary task of a
generic yes/no location tagging. We refer this model
using the -MTL suffix in what follows.

4.1.3. Word and Entity Embedding Baseline.
In addition to using contextualized word embeddings
learned from a transformer-based language model,
LUKE (Yamada et al., 2020) also learns contextualized
entity embeddings and subsequently uses an entity-
aware self-attention mechanism to perform tasks such
as entity typing, relation classification, NER, etc. The
LUKE approach has achieved state-of-the-art results on
standard NER datasets (among others). We fine-tune

https://developer.twitter.com/en/developer-terms/agreement-and-policy
https://developer.twitter.com/en/developer-terms/agreement-and-policy
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the pre-trained LUKE-base model with the COVID and
MIXED datasets, respectively. The LUKE model se-
lects candidate entity spans before making the entity
type category predictions, a task that is comparable to
the auxiliary task in the MTL models discussed earlier.
Hence, we do not use the multitask learning setting for
LUKE.

5. Experimental Setup
In this section, we discuss the metrics used in the eval-
uation, implementation details and experiments per-
formed.

5.1. Metrics
We use standard metrics, including precision (Pr), re-
call (Re) and F1 measure (F1), to evaluate the perfor-
mance of the models trained.

5.2. Implementation details
We performed a grid-search with 5 trials and used the
development subsets to identify best-overall hyperpa-
rameter values. We used the best-overall values in
the experiments. We used the Glorot uniform initial-
izer (Glorot and Bengio, 2010) to initialize the model
weights. The optimization was performed using the
AdamW optimizer (Loshchilov and Hutter, 2019), with
a learning rate of 1e−3, weight decay of 1e−2, and gra-
dient clipping with max norm of 5. We used a dropout
of 0.5 and mini-batch size of 32 in all the experiments.
We set a patience of 5 epochs on the development F1-
measure, as early stopping of training. All experiments
are run on NVIDIA Tesla V100 GPU.

5.3. Experiments
We conducted experiments in two settings, in-domain
and cross-domain. In the in-domain setting, models
were trained and tested on the same dataset (e.g., mod-
els were trained on MIXED-train, tuned on MIXED-
dev, and tested on MIXED-test). The goal was to study:

1. the performance of the deep learning models by
comparison with the traditional Stanford NER
model;

2. the effect of the auxiliary task in the MTL frame-
work;

3. the effect of different types of embeddings.

In the cross-domain setting, we used the best in-
domain model to investigate several ways to perform
transfer of information between domains:

1. a zero-shot transfer setting, where models trained
on one dataset were tested on the other dataset
(e.g., models trained on MIXED-train, tuned on
MIXED-dev and tested on COVID-test);

2. an embedding-level transfer, where the trans-
former block fine-tuned on one dataset (e.g.,

Dataset MIXED
Model Pr Re F1
Stanford NLP (retrained) 82.52 65.64 73.12
CNN-GloVe-BiLSTM-CRF 80.26 65.20 71.95
CNN-GloVe-BiLSTM-CRF-MTL 76.92 59.30 66.97
BERT-BiLSTM-CRF 74.98 70.07 74.52
BERT-BiLSTM-CRF-MTL 74.58 74.75 74.67
LUKE 80.71 73.08 76.71
Dataset COVID
Model Pr Re F1
Stanford NLP (retrained) 85.71 57.62 68.92
CNN-GloVe-BiLSTM-CRF 77.27 68.81 71.66
CNN-GloVe-BiLSTM-CRF-MTL 78.64 52.74 63.14
BERT-BiLSTM-CRF 73.41 70.74 72.05
BERT-BiLSTM-CRF-MTL 77.06 69.43 73.04
LUKE 78.49 71.12 74.66

Table 5: In-domain results. Comparison of the fol-
lowing models: Stanford NER, CNN-GloVe-BiLSTM-
CRF/BERT-BiLSTM-CRF and their MTL variants,
and LUKE.

MIXED) was used as a starting point for the trans-
former block of the model trained/tuned/tested on
the other dataset (e.g., COVID);

3. a model-level transfer, where the model
trained/tuned on a dataset (e.g., MIXED-train,
MIXED-dev) is used as the starting point of the
model for the other dataset (e.g., COVID-train,
COVID-dev, COVID-test, respectively).

6. Results and Discussion
We first present and discuss the in-domain results, fol-
lowed by the cross-domain results. In addition, we also
perform error analysis and discuss the robustness of the
models.

6.1. In-domain Setting
Table 5 shows the in-domain results of the models. As
can be seen in Table 5, the entity-embedding based
LUKE model is the best overall in terms of F1-measure
for both MIXED and COVID datasets, with a rela-
tively high recall compared to most of the other mod-
els. Specifically, the F1-measure is 76.71% for the
MIXED dataset and 74.66% for the COVID dataset.
While the Stanford NLP has the highest precision over-
all, we argue that in the context of disaster monitor-
ing and response, recall is more important than preci-
sion, as the final results will be reviewed by humans
before any action is taken. Comparing the results for
the MIXED and COVID datasets, we can see that the
models have slightly better performance on the MIXED
dataset. While this dataset contains a variety of cri-
sis events, the events are relatively localized to spe-
cific geographical regions, which may make it easier
for the models to identify the locations. As opposed to
that, the COVID dataset has a big variety of locations
as it covers a global pandemic. Nevertheless, the F1
score of the LUKE model on COVID is 8.3% higher
than the score of the Stanford NLP model, which uses
manually designed features for training. We can also
observe that the contextualized word and/or entity em-
beddings obtained from transformer architectures are
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Datasets COVID→MIXED
Model Transfer style Pr Re F1

BERT-BiLSTM-CRF-MTL

zero-shot 77.05 54.80 64.05
embedding-level 76.40 71.20 73.71
model-level 79.86 71.05 75.20

LUKE
zero-shot 50.65 47.41 48.98
embedding-level 78.13 74.21 76.12
model-level 81.32 73.57 77.25

Datasets MIXED→COVID
Model Transfer style Pr Re F1

BERT-BiLSTM-CRF-MTL

zero-shot 36.23 45.85 40.41
embedding-level 67.19 68.85 68.01
model-level 66.44 71.47 68.86

LUKE
zero-shot 79.94 43.17 56.06
embedding-level 76.95 73.78 75.33
model-level 78.08 73.32 75.63

Table 6: Cross-domain results. Comparison between
three transfer styles: zero-shot, embedding-level and
model-level.

better than both the engineered features in Stanford
NLP and the character/word-embeddings in the CNN-
GloVE-BiLSTM-CRF models. Finally, when compar-
ing the BERT-BiLSTM-CRF-MTL model (with auxil-
iary task) to its BERT-BiLSTM-CRF variant (without
the auxiliary task), the results show that the auxiliary
task can help improve the F1-measure, especially in the
case of COVID. However, for CNN-GloVe-BiLSTM-
CRF, the addition of the auxiliary task decreases the
F1-measure. This suggests that the transformer allows
for a richer transfer of knowledge between similar tasks
as compared to the CNN/GloVe architectures.

6.2. Cross-domain setting
Table 6 shows the results of the BERT-BiLSTM-CRF-
MTL and LUKE models (which give the best overall
results in the in-domain setting) in the cross-domain
setting. Specifically, we compare three transfer styles,
zero shot, embedding-level, and model-level, when
COVID is used as source and MIXED as target, and the
other way around. As expected, the model-level trans-
fer style gives the best results overall, while the zero-
shot style gives the worst results overall. Notably, in the
case of the COVID to MIXED transfer, the model-level
transfer improves the results of the in-domain LUKE
model, from 76.71% to 77.25%. This is probably due
to the diversity in the COVID dataset, which enables
more accurate locations to be identified in the MIXED
dataset. As opposed to that, the transfer from MIXED
to COVID causes more specific locations to be identi-
fied, which improves the recall but negatively affects
the precision (and the overall F1-measure).

6.3. Error analysis
We performed error analysis of the model-level transfer
from Table 6 for both BERT-BiLSTM-CRF-MTL and
LUKE (specifically, model-level transfer from COVID
to MIXED and from MIXED to COVID). The analy-
sis is based on the framework proposed by Ribeiro et
al. (2020), where a model is tested for a capability
using three tests: minimum functionality test (MFT),
invariance test (INV) and directional expectation test

Model level COVID→MIXED transfer
Model Test Pr Re F1

BERT-BiLSTM-CRF-MTL
MFT 79.86 71.05 75.20
INV 67.78 52.29 59.03
DIR 47.48 31.34 37.76

LUKE
MFT 81.32 73.57 77.25
INV 70.52 50.71 58.99
DIR 56.87 34.41 42.88

Model level MIXED→COVID transfer

BERT-BiLSTM-CRF-MTL
MFT 66.44 71.47 68.86
INV 57.64 59.35 58.48
DIR 40.26 33.80 36.75

LUKE
MFT 78.08 73.32 75.63
INV 69.86 53.43 60.55
DIR 49.47 29.28 36.79

Table 7: Error analysis tests (MFT, INV and DIR) for
the capability of the model-level transfer approach to
generalize the concept of a location entity.

(DIR). We performed the tests on the model’s capabil-
ity to generalize the concept of a location entity. In our
case, MFT is the model’s performance on the original
MIXED or COVID test set, respectively. For INV, the
location entities in the original test set were replaced
with other randomly selected location entities of the
same type from the test set. Finally, for DIR, the orig-
inal location entities were replaced with randomly se-
lected location entities of different types from the test
set. The results of the analysis are shown in Table 7.
The MFT score serves as a baseline for the other two
tests. As can be seen, in both cases, the performance
degrades when the locations are mixed up - tests INV
and DIR as compared with the test MFT - suggesting
that the model captures correlations between locations
and their context. However, the F1 score for INV is
better than the F1 score for DIR, which shows that the
model expects a particular type of location in a given
context.
Table 8 shows sample predictions for different tests
(MFT, INV, DIR). In the first example, for the MFT
test, the model makes a correct prediction for a tweet
where a location entity of type ctc is followed by a lo-
cation entity of type sta, which is the general conven-
tion for specifying a city, state location. However, for
the DIR test, when the entities are replaced with others
in reverse order of the type as compared to the original
tweet (i.e., sta, ctc instead of ctc, sta), the model incor-
rectly, but not surprisingly, predicts sta as ctc and vice
versa. In the second example, for the MFT test, the
model correctly predicts Sri Lanka as a country (i.e.,
con). However, when Sri Lanka is replaced with South
Africa in the case of the INV test, the model predicts it
as reg. This is probably because Africa as a continent
is a location of type reg, and also because cardinal di-
rections are commonly associated with reg locations.
Hence, without any external knowledge about South
Africa as a country, reg is the next best prediction.

7. Conclusions and Future Work
In this paper, we introduced two new crisis tweet
datasets manually tagged with specific fine-grained lo-
cation types. These are the first manually annotated
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No. Test Tweet text

1 MFT NEW Hurricane Florence has made landfall near Wrightsville Beach
ctc→ctc , North Carolina

sta→sta at 7 15 AM EDT

DIR NEW Hurricane Florence has made landfall near WI,
sta→ctc

Panama
ctc→sta at 7 15 AM EDT

2 MFT On this Easter Sunday my thoughts are with Sri Lanka
con→con following the horrific attacks on worshippers there.

INV On this Easter Sunday my thoughts are with South Africa
con→reg following the horrific attacks on worshippers there.

Table 8: Examples of location predictions for different error analysis test settings (MFT, INV and DIR). The
examples are from the MIXED datasets and the predictions are made using model-level transfer from COVID to
MIXED. The locations are highlighted with pink. The labels and predictions for entities are shown as a subscript
to the corresponding locations using the convention gold label→model prediction.

datasets for fine-grained location identification in crisis
tweet texts, and can foster research in this area of great
importance for crisis monitoring and response. The
two datasets are different in nature, with one of them
focused on mixed natural and man-made crisis events,
which are generally localized to specific regions, and
the second one focused on the worldwide COVID-19
pandemic. The different nature of the two datasets en-
ables studies on location identification for localized and
global events, as well as studies on the transferability of
information between localized and global events.
In addition to introducing these datasets, we reported
baseline results for the fine-grain location identifica-
tion task using state-of-the-art models based on dif-
ferent embedding styles. Our results suggest that the
entity-embedding style of the LUKE model gives the
best results. We also used MTL to incorporate an aux-
iliary task in one of the models and showed its effec-
tiveness in transferring information between datasets.
As part of future work, we plan to improve the results
of the models by including other crisis-related tagging
and classification tasks in the LUKE/MTL settings.

8. Ethics and Impact Statement
The dataset that we plan to share will not provide
any personally identifiable information, as only the
tweet IDs and human annotated location tags will
be shared. Thus, our dataset complies with Twitter’s
Developer Agreement and Policy4 in terms of privacy.
Furthermore, in compliance with the Twitter’s Devel-
oper Agreement and Policy, Section III.E, the location
information is used only in conjunction with the tweet
content, and, as allowed by Twitter, we "only use
such location data and geographic
information to identify the location
tagged by the Twitter Content." In
terms of impact, the research enabled by this dataset
has the potential to help officials and health orga-
nizations identify actionable information useful for
fast response during a crisis situation, or facilitate
the health organizations to aggregate information
relevant to COVID-19 by locations (which in turn can
be useful in preventing a serious resurgence of the
novel coronavirus in a particular region). However,

4https://developer.twitter.com/en/
developer-terms/agreement-and-policy

we want to emphasize that we do not use any of
the information in Twitter content, in particular the
location information, to infer any sensitive information
about the user, and most importantly our models do not
infer any information about users’ health5. The models
are simply trained to identify location tags in tweets
(as explicitly allowed by Twitter) and nothing more.
Also important, our pre-processing script removes any
user mentions from the tweet content before feeding
the tweets to the models for training.
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