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Abstract
The long-standing endeavor of relating the textual and the visual domain recently underwent a pivotal breakthrough, as OpenAI released
CLIP. This model distinguishes how well an English text corresponds with a given image with unprecedented accuracy. Trained via a
contrastive learning objective over a huge dataset of 400M of images and captions, it is a work that is not easily replicated, especially for
low resource languages. Capitalizing on the modularization of the CLIP architecture, we propose to use cross-lingual teacher learning
to re-train the textual encoder for various non-English languages. Our method requires no image data and relies entirely on machine
translation which removes the need for data in the target language. We find that our method can efficiently train a new textual encoder
with relatively low computational cost, whilst still outperforming previous baselines on multilingual image-text retrieval.

1. Introduction
Bridging the gap between Computer Vision and Natural
Language Processing (NLP) has long been a goal within
Artificial Intelligence(AI) research. Recently, OpenAI re-
leased CLIP (Radford et al., 2021) which pushed State-
Of-The-Art in multimodal text and image representations.
CLIP has since received mainly positive attention from the
research community, as it has been proved useful for a large
variety of different tasks (see Section 2.1.).
However, CLIP and the majority of related work focus ex-
clusively on English. This has created a performance vac-
uum for other low-resource languages, where there is often
a lack of high-quality data. A problem further exacerbated
by the computational resources, and hence cost, required to
train large high-performing models. This language bias is
a common trend in current AI research and is the cause of
much concern in the discourse regarding fairness and inclu-
sivity (Bender et al., 2021).
To mitigate this problem we propose a teacher learning ap-
proach where we train a non-English language encoder for
CLIP. Our approach capitalizes on the clear text and im-
age modularization of the CLIP architecture, where the lan-
guage and vision encoder is only connected via the loss
function. This allows us to discard the CLIP vision encoder
during training, and train the student encoder to mimic the
original CLIP encoder when given language parallel data.
Our approach relies entirely on machine translation, hence
effectively side-stepping the data required in the target lan-
guage. Finally, our approach is significantly less computa-
tionally demanding than the original CLIP pretraining.
To evaluate our approach we focus on Image-Text retrieval.
We train a multilingual encoder in multiple languages si-
multaneously, along with a Swedish-only encoder. Our
multilingual CLIP encoder outperforms previous baselines
in 11 languages, and the monolingual Swedish model out-
performs its multilingual counterpart for Swedish. Finally,
we vary the number of data examples for the Swedish-only
encoder, and find that the number of translated captions has
a noticeable effect on performance.
The source code and pre-trained models are avail-
able at the following link: https://github.com/
FreddeFrallan/Multilingual-CLIP

2. Related Work
2.1. CLIP
CLIP incorporates two disconnected encoder models, one
for text data and one for image data. The text encoder is
based on the Transformer (Vaswani et al., 2017) architec-
ture, and the visual encoder is based on ResNet (He et al.,
2016), or Image Transformer (Parmar et al., 2018). Both
encoders output a fixed size embedding that is compared
via a Contrastive Loss (Hadsell et al., 2006), where the goal
is to maximize the cosine-similarity of embeddings from
matching image-text pairs while minimizing the cosine-
similarity of non-matching image-text pairs.
Applying this method to a large dataset with vast com-
putational resources resulted in an expressive joint image-
text representation space. Although the initial main contri-
bution was image classification without predefined labels,
CLIP representations have since proved useful for various
other tasks such as Image-Text retrieval (Radford et al.,
2021), Visual Question-Answering (Shen et al., 2021), and
Automatic Image Captioning (Mokady et al., 2021). No-
tably, OpenAI decided to only release the smaller versions
of CLIP, meaning that any succeeding work (including this
work) only works with smaller CLIP models.

2.2. Multilingual Image-Text Retrieval
Multilingual image-text retrieval has seen significantly less
attention than its English-only counterpart. This is most
likely due to the limited number of languages for which
there exist high-quality image-text datasets.
Aside from CLIP, previous work has investigated using
language-aligned word embeddings and a multimodal con-
trastive learning objective, to train a language encoder and
an image encoder (Portaz et al., 2019). Also pre-training
a single BERT (Devlin et al., 2019) like model, using
both images and texts from multiple languages (Fei et al.,
2021). Finally, there has been work that fine-tunes multi-
lingual sentence embedding models, such as mUSE (Yang
et al., 2020) and LASER (Artetxe and Schwenk, 2019) to
match a pre-trained vision embedding space (Aggarwal et
al., 2021).
Unfortunately, the majority of the mentioned methods have
not released their trained models, hindering us from evalu-
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Figure 1: Overall training procedure. The original CLIP training in step number 1 is to train the teacher model, and is the
most expensive. In step number 2 we temporarily replace the CLIP visual encoder and train a student model to mimic the
English CLIP encoder. At the inference step 3 we now use the student model together with the CLIP visual encoder.

ating against them on recently released datasets.

2.3. Teacher Learning
Teacher Learning (Hinton et al., 2015) is a domain agnos-
tic Machine Learning method for transferring the knowl-
edge of an already trained teacher model into a new stu-
dent model. Although often used to train a smaller and ef-
ficient student model (Sanh et al., 2019; Tang et al., 2019),
previous work in NLP has used utilized this method for
other ends. Such as cross-lingual teacher learning of Sen-
tence Embeddings (Reimers and Gurevych, 2020) and mul-
timodal transfer learning of Text-To-Speech (Jiang et al.,
2021). To the extent of our knowledge, there has however
been no previous work investigating cross-lingual teacher
learning in a multimodal setting.

3. Method
Working from the assumption that the original training of
the CLIP text and image encoders has led them to produce
similar embeddings for matching text-image pairs, we can
ignore the image encoder and only focus on mimicking the
CLIP text encoder. This effectively alleviates the need to
incorporate any images into the training loop. Instead, we
apply teacher learning directly between the original English

text encoder, and a student model pre-trained in a different
language.
Using language parallel data, created via machine transla-
tion, the student model is trained to generate matching em-
beddings to that of the teacher model. The teacher CLIP
text encoder is kept unaltered, and only the parameters of
the student language encoder are updated during training.
The overall training procedure is summarized in Figure 1,
and additional details regarding hyperparameters are avail-
able in Appendix A.

3.1. Text Encoder
All investigated text encoders are BERT transformer mod-
els, pre-trained in either a monolingual or multilingual set-
ting. This is unlike the original CLIP paper, which found
no performance gain by using pre-trained language models.
However, the original work utilized a far larger dataset and
computational resources (see Section 5.3.).
Following previous work on sentence embeddings using
Transformer language models, we generate fixed-size text
embedding by mean pooling the model’s output tokens.
(Reimers and Gurevych, 2019; Wang and Kuo, 2020; Carls-
son et al., 2021). Additionally, we apply a linear transfor-
mation to this representation to match the dimensionality
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En De Fr It Es Ru Ja Zh Pl Tr Ko
mUSE PATR 83.6 71.2 75.6 76.9 76.1 73.4 64.3 73.6 71.8 66.9 69.4

mUSE m3 85.3 73.5 78.9 78.9 76.7 73.6 67.8 76.1 71.7 70.9 70.7
CLIP RN50x4 90.2 52.4 64.4 48.1 55.8 3.8 4.3 3.1 14.1 12.9 2.6
CLIP ViT-B 90.3 43.7 57.8 40.9 51.0 3.1 13.9 4.5 11.9 9.3 1.8

Our contributions
M-CLIP RN50x4 90.3 85.8 87.1 89.1 88.3 84.0 81.2 86.6 88.3 87.6 84.7
M-CLIP ViT-B 90.1 86.5 87.7 88.5 87.6 84.5 82.6 87.7 88.3 86.5 85.1

Table 1: Text-To-Image recall@10 for the XTD dataset.

of the image encoder. During training, both the model’s
parameters and the linear transformation are updated.

3.2. Cross-lingual Teacher Learning
The overall teacher learning can be summarized as feed-
ing the teacher and student model language parallel texts,
and minimizing the Mean Squared Error (MSE) between
their respective output embeddings. Notably, this differs
from the original CLIP training objective, where the model
is instead trained to correlate the cosine-similarity between
image-text pairs. But while it’s possible to use cosine-
similarity directly in the teacher learning, previous work
has found that minimizing MSE provides a richer learning
signal (Carlsson and Sahlgren, 2021).

Translation(X) = X∗

Teacher(X) = ET

Student(X∗) = ES

Loss = MSE(ET , ES)

(1)

For completeness, the full training objective is formalized
in equation 1. First, a set of captions X are machine trans-
lated into the target language, creating X∗. The teacher
CLIP model encodes the original texts X and generates
the set of embeddings ET . The student model encodes the
translated texts X∗ and generates ES . Finally, the loss is
calculated as the mean squared error between ET and ES .

4. Model Training
4.1. Training Data
We create a text corpus by compiling captions from mul-
tiple English datasets. Although our method could hypo-
thetically work with any text data, the intuition is to have
text data that is strongly linked with the visual domain.
These English captions are then translated into their tar-
get language using the corresponding MarianMT (Junczys-
Dowmunt et al., 2018) model.
Our corpus is comprised of the training data from MS-
COCO (Lin et al., 2014), Google Conceptual Cap-
tions(GCC) (Sharma et al., 2018), and VizWiz (Bigham et
al., 2010). The size of each dataset is available in Table 2.

4.2. Model Versions
Starting from a pre-trained Multilingual-BERT (M-BERT)
(Devlin et al., 2019), we train one model against the
CLIP ViT-B vision encoder, and one model against the
CLIP RN50x4 encoder. Resulting in two different M-CLIP

(Multilingual-CLIP) models. Although the original model
M-BERT was trained towards 101 languages we limit our-
selves to 68 languages (see Appendix B). Throughout the
training, we uniformly sample captions and which language
to translate them to.
Additionally, we train two versions of a Swedish-only en-
coder by starting from the Swedish KB-BERT (Malmsten et
al., 2020). For one version we limit the number of sampled
captions to 500k, and for the other, we limit the number of
sampled captions to 2M.

5. Experiments
To test the proficiency of our method we evaluate on the
task of image-text retrieval in multiple different languages.
This is achieved by encoding the images using the corre-
sponding official OpenAI vision encoder, and embedding
the captions with our non-English text encoder. The en-
coded images and texts are then ranked in descending order
according to their cosine-similarity, and the goal is thus to
minimize the rank between an image and its corresponding
text.

5.1. Multilingual Image Retrieval
To evaluate our multilingual models we use the recent XTD
dataset (Aggarwal et al., 2021), which provides translation
of the 1K MS-COCO test set for 11 different languages.
MS-COCO, and hence XTD, provide 1 caption per im-
age, and the task is to retrieve the matching image given
that caption. Following convention, we report Recall@10
and compare against the baseline mUSE trained with both
a Positive aware Triplet Ranking Loss(PATR) and mUSE
trained with a Multi-modal Metric Loss (M3L) (Aggarwal
et al., 2021). The results of these experiments are is avail-
able in Table 1.
Most notably, both M-CLIP models outperform the pre-
vious baselines on all languages, often by a large margin.
This is interesting considering that the M-CLIP models are
trained in 69 languages, unlike the baselines which special-
ize directly in the 11 evaluation languages. Discounting the
original English CLIP, Japanese is the language where all

Dataset Quantity Percentage
MS-COCO 118 k 3.4

GCC 3.3 M 95.9
VizWiz 23.4 k 0.68

Table 2: Training data distribution
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Image2Text Text2Image
Text Encoder Vision Encoder Language Median R@1 R@5 R@10 Median R@1 R@5 R@10

OpenAI ViT-B/32 En 1 82.3 95.2 97.5 1 61.4 85.9 91.7
OpenAI RN50x4 En 1 84.8 96.6 98.9 1 64.6 87.3 92.7

Our contributions
M-BERT ViT-B/32 En 1 77.2 93.5 97 1 55.7 82.4 89.4
M-BERT RN50x4 En 1 67.6 92.1 96.8 1 57.6 82.8 88.9
M-BERT ViT-B/32 Sv 1 72.3 90.6 95.3 2 48 75.1 83.7
M-BERT RN50x4 Sv 1 56.5 87.3 94.3 1 50.2 75.6 83.5

KB-BERT 500k RN50x4 Sv 1 69.9 92.9 96.9 1 55.7 81.4 88.1
KB-BERT 2M RN50x4 Sv 1 76.5 94.4 97.6 1 62.8 85.4 91.4

Table 3: Unilingual Flickr30 image-text retrieval results.

models performed the worst, and English is the language
where all models performed the best.
There does not seem to be any clear winner between the
two M-CLIP models, as they perform nearly equally well
in all languages. Finally, we note that there is nearly no
difference in performance in English when compared to the
original CLIP models.

5.2. Unilingual Text-Image Retrieval
Unfortunately, there exists no image-caption dataset for
Swedish. Therefore we translate the test data of Flickr30K
(Young et al., 2014) using MarianMT, and using the test
set split of (Plummer et al., 2017). Unlike MS-COCO,
Flickr30K provides 5 captions per image, and the task is
both to retrieve images from text, and vice-versa. Follow-
ing the convention, we report the median recall along with
the recall at the thresholds 1, 5, and 10. These results are
available in Table 3.
Starting by comparing the M-CLIP against the original
CLIP in English, we find that M-CLIP performs noticeably
worse, although R@10 remains fairly close. This is unlike
the scores seen in Section 5.1., and seemingly indicates that
increasing the number of captions per image aggravates the
M-CLIP performance.
Interestingly, the Swedish model trained with 2M cap-
tions outperforms M-CLIP using the original English cap-
tions, and performs on par with the original CLIP model
in the Text-To-Image setting. The Swedish model trained
with 500k captions performs more similarly to M-CLIP for
Swedish, but significantly worse than its 2M counterpart.
Finally, we note that all models using the ViT-B/32 encoder
perform better than the models using RN50x4 on Image-
To-Text, and worse on Text-To-Image.

5.3. Computational Comparison
As detailed in the hyperparameter section in Appendix A,
we train each model with a batch size of 64, and perform
53772 update steps. The number of update steps was cho-
sen so that the M-CLIP models, which don’t limit the num-
ber of unique samples, would perform 1 full epoch of the
dataset. This means that for each of our models, there were
exactly 3,441,408 samples propagated through the training
process.
The original CLIP training used a dataset consisting of
400M image-text pairs, where each model trained for 32

epochs. This entails that the original CLIP training propa-
gated in total 12.8 billion samples. As displayed in Table 4
this means that the original CLIP training performed 3719
times more computations.
Finally, a very important distinction between the original
CLIP training and our approach is the batch size, and sam-
ple independence within each batch. The contrastive CLIP
loss compares each sample in the batch against all other
samples within the batch. This entails that unlike most loss
functions (including ours), the samples in each CLIP batch
are not independent, making it expensive to compute large
batch sizes. Notably, CLIP was trained using a large batch
size of 32,768 samples.

6. Discussion & Conclusion
We have presented a method for training new text encoders
for existing CLIP models using a teacher learning setup
that utilizes machine translation. Results for image-text
retrieval for multiple languages indicate that one can effi-
ciently train new text encoders by starting from pre-trained
language models. Utilizing a model pre-trained in a multi-
lingual setting we outperform previous benchmarks on the
newly released XTD dataset. A hint that machine transla-
tion is becoming a ripe technology, and a potential tool for
overcoming language bias.
In our experiments, we notice that the number of unique
captions have a noticeable effect on the final results. In-
dicating that future work could most likely achieve better
results by increasing this quantity. Other hyperparameters
such as batch size and the size of the text encoder are also
interesting investigations for future work.
It is our belief that cutting-edge AI should be equally avail-
able to people, independent of what language they speak.
And indeed, the models presented here were released in the
spring 2021 and have, as of writing this paper, been down-
loaded roughly two million times, and amassed close to 300
Github stars.

CLIP Our Method Factor
#Samples 12.8 B ∼3.44 M ∼3719
Batch Size 32,768 64 512

Table 4: Training statistics comparison between the orig-
inal CLIP training and our method. Factor denotes how
many times larger the corresponding CLIP value is.
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A Hyperparameters
We train all models using the same hyperparameters and for
53772 update steps. The number of update steps was cho-
sen so that the M-CLIP models, which don’t limit the num-
ber of unique samples, would perform 1 full epoch of the
dataset. The Swedish-only models thus perform the same
amount of weight updates, but do this over a smaller num-
ber of samples. Finally, we used the Adam optimizer with
a final learning rate of 5−5, and a linear warm-up schedule
for the first 1000 updates.

B Multilingual Training Languages
The 68 languages included in the M-CLIP training are
available in Table 5.

Afrikaans
Albanian
Amharic
Arabic

Armenian
Azerbaijani

Bengali
Bosnian

Bulgarian
Catalan

Chinese Simplified
Chinese Traditional

Croatian
Czech
Danish
Dutch

English
Estonian
Finnish
French

Georgian
German
Greek

Gujarati
Haitian
Hausa

Hebrew
Hindi

Hungarian
Icelandic

Indonesian
Italian

Japanese
Kannada
Kazakh
Korean
Latvian

Lithuanian
Macedonian

Malay
Malayalam

Maltese
Mongolian
Norwegian

Persian
Polish
Pushto

Portuguese
Romanian
Russian
Serbian
Sinhala
Slovak

Slovenian
Somali
Spanish
Swahili
Swedish
Tagalog
Tamil
Telugu
Thai

Turkish
Ukrainian

Urdu
Uzbek

Vietnamese
Welsh

Table 5: Languages included in the M-CLIP training pro-
cedure.
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