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Abstract
In this paper, we propose two neural machine translation (NMT) systems (French-to-Wolof and Wolof-to-French) based on
sequence-to-sequence with attention and Transformer architectures. We trained our models on the parallel French-Wolof
corpus (Nguer et al., 2020) of about 83k sentence pairs. Because of the low-resource setting, we experimented with advanced
methods for handling data sparsity, including subword segmentation, backtranslation and the copied corpus method. We
evaluate the models using BLEU score and find that the transformer outperforms the classic sequence-to-sequence model in
all settings, in addition to being less sensitive to noise. In general, the best scores are achieved when training the models on
subword-level based units. For such models, using backtranslation proves to be slightly beneficial in low-resource Wolof to
high-resource French language translation for the transformer-based models. A slight improvement can also be observed when
injecting copied monolingual text in the target language. Moreover, combining the copied method data with backtranslation
leads to a slight improvement of the translation quality.
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1. Introduction
Neural Machine Translation (NMT) based on the
encoder-decoder framework has achieved impressive
results in high-resource data conditions (Sutskever et
al., 2014; Cho et al., 2014). For low-resource con-
ditions, recent studies have shown that NMT perfor-
mance can be improved by using subword units (Sen-
nrich et al., 2016b), backtranslation (Sennrich et al.,
2015), and by adapting NMT systems to low-resource
settings (Sennrich and Zhang, 2019).
In this research work, we investigate the design and
implementation of NMT systems to translate between
French (FR)1 and Wolof (WO, ISO 639-3), a low-
resource Niger-Congo language mainly spoken in
Senegal (Gamble, 1950). We selected two NMT archi-
tectures: (i) an attentional sequence-to-sequence model
(henceforth S2S) based on gated recurrent units (GRU)
(Cho et al., 2014), and (ii) a Transformer (Vaswani et
al., 2017; Hassan et al., 2018). According to recent
studies, transformers have shown great promise as an
approach to NMT for low-resource languages (Abbott
and Martinus, 2018). At the same time, however, trans-
former models remain difficult to optimize and require
careful hyper-parameter tuning to achieve good trans-
lation quality (Nguyen and Salazar, 2019).
As a main contribution of the paper, we have imple-
mented and benchmarked state-of-the-art NMT sys-
tems, which are of high interest for French↔Wolof
translators, thereby considerably facilitating their
work. Our work will provide to large Wolof commu-
nities useful language resources they would not other-

1As the official language of Senegal (the country of the
most Wolof speakers), it is easier to find parallel data between
French and Wolof than between e.g. English and Wolof.

wise have access to. We have also conducted several
experiments to deal with the data lack problem faced
by low-resource languages. We hope that our work will
allow the machine learning community to advance re-
search on low-resource African languages.
The remainder of this paper is organized as follows.
First, Section 2 provides background research. Sec-
tion 3 outlines the methods used to address sparsity in
low-resource NMT. Section 4 describes the NMT mod-
els considered in this work. Section 5 presents the var-
ious experiments conducted to assess the performance
of the models. Section 6 presents the results and ex-
amines the implications of these findings. Finally, sec-
tion 7 concludes the discussion.

2. Background
So far, minimal attention has been given to machine
translation (MT) for African languages. A major diffi-
culty hindering the progress of MT of such languages
is that they are mostly very low-resource and the few
resources that exist are often scattered and difficult
to obtain. Recently, there have been a few attempts
at using common NMT techniques for some South
African languages (Martinus and Abbott, 2019; Ny-
oni and Bassett, 2021). More recent researches have
benchmarked NMT between English and five African
languages: Swahili, Amharic, Tigrigna, Oromo, and
Somali (Lakew et al., 2020). Also, Tapo et al. (2020)
investigated the case of Bambara in low-resource NMT
setting. In contrast, Senegalese languages have so far
not been subject to statistical or neural machine trans-
lation. In fact, none of these languages is currently sup-
ported by Google Translate. To our knowledge, Lo et
al. (2019; Lo et al. (2020) and Dione (2019) are among
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the very few studies that have so far explored Wolof
using neural network-based methods. Lo et al. (2020)
developed an encoder-decoder NMT system based on
bidirectional LSTMs and the attention mechanism. Al-
though Lo et al. (2020) achieved interesting perfor-
mance in terms of BLEU score, their results were quite
biased due to a large overlap between the training, val-
idation and test sets. Circa 60% of the sentences in the
test set were also found in the training data. In that
sense, the test set was not totally blind, leading to a
high inflation of the BLEU scores.
Wolof has around 10 million speakers mostly lo-
cated in the West African countries of Senegal and
Gambia (Gamble, 1950). There are some official
Wolof↔French dictionaries (Fal et al., 1990; Cissé,
1998; Diouf, 2003). The amount of written Wolof
monolingual data could be estimated to ca. 2 million
tokens (including encyclopedic, narrative, didactic, in-
formative and literary works). A good part of these data
(ca. 70%) can be accessed online using web crawling.
Recently, efforts towards the acquisition and construc-
tion of a bilingual parallel corpus between French and
Wolof have been reported by Nguer et al. (2020).
In this research work, we apply NMT techniques to a
low-resource French-Wolof dataset and assess the per-
formance of our models in terms of BLEU scores (Pa-
pineni et al., 2002). A more ambitious long-term goal
is to effectively use deep learning methods to design
NMT models that can be applied to local Senegambian
languages. Research advancements in this area will
represent monumental stepping stones towards provid-
ing support for translating several low-resource local
Senegambian languages (e.g. Fula and Soninke).

3. Techniques to handle data sparsity
As Wolof is low-resource, we explored advanced tech-
niques for handling issues of rare words and data bot-
tlenecks. Accordingly, for each of the NMT architec-
tures used in this work, we developed four different
translation models: (i) a word-level vs. (ii) a subword-
based model, (iii) a version using back-translation vs.
(iv) a model without back-translated data. In addition,
we used copied target-language data in combination
with subword units to exploit monolingual corpora in
the target language. Due to time constraints, backtrans-
lation and the copied method were only tested on the
best translation system, i.e. the Transformer.

3.1. Subword unit
Subword segmentation is a common method used to
enable open-vocabulary translation by encoding rare
words with sequences of subword units. This tech-
nique allows NMT models to translate or generate un-
seen words at inference time, while effectively decreas-
ing the vocabulary size of the whole training. In this
work, the subword units are learned by applying Byte
Pair Encoding (BPE) (Sennrich et al., 2016b) on the
union of the source and target corpora (i.e. joint BPE

segmentation). Original vocabulary sizes of the French
and Wolof baseline training data are 38,152 and 33,286
tokens, respectively. After applying BPE, the common
vocabulary size was (empirically) set to 15,000 pieces.

3.2. Backtranslation
We also experimented with using automatic back-
translation of monolingual data as a way of tackling is-
sues of data bottlenecks. This method has been shown
to be helpful for statistical machine translation (SMT)
(Bojar and Tamchyna, 2011), supervised NMT (Sen-
nrich et al., 2015) as well as unsupervised MT (Lam-
ple et al., 2018). Also, merging NMT/SMT back-
translated data can have positive effects (Poncelas et
al., 2019). For this purpose, we created synthetic par-
allel data by translating target-language monolingual
text into the source language. We first trained an ini-
tial target to source NMT system on the available par-
allel data, and then used that model to translate the
monolingual corpus from the target language to the
source language. The resulting back-translated data
was combined with the original parallel data and used
to train the final source to target NMT system. We ap-
plied back-translation for each direction (FR→WO and
WO→FR).

3.3. Copied monolingual data
Additionally, we investigated incorporating monolin-
gual training data into our NMT models as a way to
circumvent the data sparsity problem. Following Cur-
rey et al. (2017), we generated a bitext from the mono-
lingual data in the target language so that each source
sentence is identical to the target sentence. We then
added this copied material to the baseline parallel cor-
pus and train the NMT models on the mixed corpus.
In other words, we combined e.g. French→French and
Wolof→French into one system for the purpose of im-
proving Wolof→French quality. For the opposite di-
rection, we applied the same technique. Like Currey
et al. (2017), we used this method on models trained
with subword units (not on word-level models). Ac-
cording to Currey et al. (2017), the copied data method
proved to be beneficial for low-resource NMT (e.g. for
English→Turkish and English→Romanian). An im-
portant advantage of that method (compared to back-
translation) is that it does not require to train an addi-
tional target to source NMT system.

4. The NMT Models
This section briefly describes the attentional S2S model
and the transformer used in this work. Both systems are
implemented in TensorFlow Keras (Chollet and others,
2015).

4.1. The GRU-based S2S model
Our S2S system follows the common sequence-to-
sequence framework (Sutskever et al., 2014; Cho et al.,
2014). It is implemented as an encoder-decoder net-
work with gated recurrent units (GRU) cells. During
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training, the encoder learns the representations (em-
beddings) of the input sentence and generates a context
vector that comprises the “meaning” of the sentence.
Initialized with this vector, the decoder uses the start of
sentence <SOS> symbol as input to generate the tar-
get sentence for the input sentence. At every time step
t, we feed the predicted output word from the previous
time step (yt−1), and the previous hidden state (dt−1),
as an input to the decoder (dt) at the current time step,
and predict the current output (yt). The predictions are
used to calculate the loss. Teacher forcing is applied
to decide the next input to the decoder. The gradients
are calculated and applied to the optimizer before back-
propagation. The inference process occurs in a similar
manner, except that it does not use teacher forcing. The
input to the decoder at each time step is its previous
predictions along with the hidden state and the encoder
output. This process stops when the model predicts the
end of sentence <EOS> token.
The GRU-based model is extended with attention (Bah-
danau et al., 2014), a module that assigns weights to
each of the words in the source sentence when model-
ing target words. Thus, instead of taking the last hidden
state as a context vector and using it for the decoder, we
take the sum of all hidden states from the encoder and
use it as a context vector. This mechanism allows to
rank these hidden states in terms of their importance
to generate the target word at time t. The attention
weights are derived by first computing the similarity
score between each of the encoder’s hidden states with
the decoder’s hidden state using an alignment function.
Then, this similarity score is converted into probabili-
ties using the softmax function.

4.2. Transformer
Our transformer follows the architecture proposed by
Vaswani et al. (2017). It has a block of 4 encoders and
a block of 4 decoders which deal with source sequences
and target sequences, respectively (see Figure 1).
During encoding, each input word is turned into a vec-
tor using an embedding layer. Then, positional encod-
ing is employed to inject positional information into
the input embeddings. Each encoder uses two layers
to convert input to a continuous representation with
attention information: a multi-head attention and a
position-wise feed-forward neural network (FFN). The
multi-head attention uses the self-attention mechanism,
which allows the models to associate each word in the
input to other words. Self-attention is achieved by first
creating the query (Q), key (K), and value (V) vectors
from the input. Then, we compute a score matrix by
multiplying the query with the key vector and dividing
by the square root of the dimension of the key vectors
(noted as dk). We apply softmax on the scaled score
matrix to obtain the attention weights that are used to
get an output vector (see eq. 1). Adding the latter vec-
tor to the original positional input embedding creates
residual connection. The residuals go through layer

Figure 1: Our baseline transformer model

normalization and get projected through the pointwise
FFN, i.e. a couple of linear layers with a ReLU acti-
vation in between. The output of that is then again
added to the input of the pointwise FFN and further
normalized. The pointwise feedforward layer is used
to project the attention outputs potentially giving it a
richer representation.

Attention(Q,K, V ) = softmax(
Q×KT

√
dk

) (1)

The decoder has two multi-headed attention blocks in
one layer, one for the target sequences and one for the
encoder’s output. The former multi-head attention is
masked to prevent computing attention scores for fu-
ture words. The decoder also has a pointwise feed-
forward layer, residual connections, and layer normal-
ization after each sub-layer. As with encoding, during
decoding the input goes through an embedding layer
and positional encoding layer to get positional embed-
dings. Then, these embeddings get fed into the first
multi-head attention layer which computes the atten-
tion scores for the decoder’s input. The second multi-
headed attention layer uses the encoder’s outputs as the
queries and the keys, and the first multi-headed atten-
tion layer outputs are the values. This process matches
the encoder’s input to the decoder’s input, allowing the
decoder to decide which encoder input is relevant to
put a focus on. The output of the second multi-headed
attention goes through a pointwise FFN layer for fur-
ther processing. The output of the final pointwise feed-
forward layer goes through a final linear layer, that acts
as a classifier.

5. Experimental setup
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5.1. Datasets
The data used for the baseline training come from
the French-Wolof parallel corpus (Nguer et al., 2020),
which contains around 83k sentences drawn from six
main domains (education, general, law, legend, religion
and society). Religious texts such as the Bible and the
Quran represent ca. 50% of the corpus. In addition,
ca. 30% of the corpus are French sentences that were
extracted from the Tatoeba project2 and translated into
Wolof by professional translators. The translation work
concerns only the Wolof side (i.e. the 30% of texts that
we just mentioned; the rest are parallel sentences that
were obtained as such and which did not need further
translation). Figure 2 is taken from Nguer et al. (2020)
and shows the distribution of the domain data.
The French-Wolof parallel corpus was sharded into
78.5k sentences as training data (i.e. the baseline train-
ing corpus), 3k as validation data, and 1.5k sentences
set aside as test data for evaluation. The data split was
done randomly. Then, we automatically removed all
sentences that occurred in the training set from both the
validation and the test sets. In addition, we applied the
same process between the validation and the test set.
This was to make sure that the three sets are disjoint
and that there is no overlap between them. Further-
more, to ensure high quality translation in the targeted
direction, we carefully conducted manual inspection of
the data contained in the validation and test sets. The
former is used to learn the model parameters and the
latter to assess the performance of our final models. We
evaluate our models on both directions French↔Wolof.
Table 1 provides some statistics on the parallel corpus
used as baseline for training (i.e. without copied and/or
back-translated data).

Language Tokens Vocabulary Sentences

French 860,032 38,152
78,569

Wolof 814,619 33,286

Table 1: Statistic summary of the French-Wolof paral-
lel corpus used as baseline training corpus.

In addition, for each language, we collected monolin-
gual data to be used for back-translation. For the pur-
pose of improving French→Wolof translation quality,
we randomly sampled 35k Wolof sentences from web
crawled monolingual data. The data were harvested
mainly from online newspapers3 and literary works
(Diop, 2003; Ba, 2007).
Conversely, for the WO→FR NMT, we back-translated
39k French sentences gathered from the Tatoeba
project. This choice was motivated by the fact that
ca. 30% of the baseline parallel corpus comes from the
same source. So, we wanted to use data from the same

2https://www.manythings.org/anki/
3The online sources include Wolof-online.com,

https://www.defuwaxu.com, and http://saabal.com.

domain as those found in our baseline corpus. The
monolingual French data are disjoint from those sen-
tences that were already present in the parallel corpus.4

The monolingual data used on each side do not overlap
with the data included in the baseline training. Also, we
should mention that the monolingual data differ signif-
icantly in quality, size and domain. First, the Wolof
monolingual data come from domains like literature
and news, which are very underrepresented in the par-
allel corpus. In contrast, the French monolingual data
come from the same source as a good part of texts in
the parallel corpus. Second, while the French monolin-
gual data are quite clean, the Wolof data are very noisy
(e.g. contains misspelling, wrong word segmentation,
use of non-standard orthography). Finally, the French
monolingual texts have a moderate sentence length. In
contrast, the number of word tokens contained in the
Wolof monolingual data is significantly higher, as can
be seen in Table 2.

Language Tokens Average length Sentences

French 381,507 9.64 39,559

Wolof 584,851 16.40 35,674

Table 2: Statistic summary of the monolingual data
used for back-translation.

When creating the synthetic data for back-translation,
we first trained an initial target to source NMT system
on the baseline parallel data, and then use this model
to translate the monolingual corpus from the target lan-
guage to the source language. In our experiments, this
translation was done by each NMT system indepen-
dently. In other words, we used the best S2S model and
the best transformer model, respectively, to translate
the target monolingual data into the source language.
The motivation behind using the best model is to min-
imize the number of additional systems to train (since
back-translation requires the training of an additional
target → source MT system).
When conducting the experiments, we followed the
common practice which consists in tokenizing and low-
ercasing the parallel and monolingual training data.
Similar to Bahdanau et al. (2014), we filtered out sen-
tence pairs whose length exceeds 50 words and used
padding to compensate for the empty slots in shorter
sentences. We applied exactly the same parameters (in-
cluding the sentence length limit) to both the training
and the validation data.
When experimenting with subword units, we learned a
shared byte pair encoding (BPE) model on the parallel
data only (not on monolingual data). As recommended

4We did not include news texts for French, because the
original parallel corpus did not contain texts from that do-
main. Adding monolingual dataset from news texts (or other
text genres) might cause some bias due to the difference be-
tween the baseline corpus and backtranslation corpus.

https://www.manythings.org/anki/
http://www.wolof-online.com
https://www.defuwaxu.com
http://saabal.com
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Figure 2: Distribution of domain data in the French-Wolof corpus (Nguer et al., 2020).

by Sennrich et al. (2016a), we removed diacritics from
the source training data.

5.2. Model configuration
For all models, the following hyper-parameters were
kept constant across the different experiment settings:
embedding size, optimizer, and batch size. We used
256 dimensional word embeddings and the efficient
Adam approach to stochastic gradient descent (Kingma
and Ba, 2015) (adam beta 1: 0.9; adam beta2: 0.998),
and noam as decay method. Our shuffled mini-batch
contained 64 training sentences,5 and each model was
trained for 500 epochs. The dropout rate was set to 0.1.
For the S2S system, we used encoder and decoder
GRUs with 256 units. For the transformer, we chose
a setting with a total of 8 blocks, where each block
contains a self-attention layer, an encoder-to-decoder
attention layer and a feed-forward layer. The hidden
state dimension, the number of layers and the number
of heads are 256, 6 and 8 respectively. As suggested by
van Biljon et al. (2020), transformers with a moderate
depth (i.e. 6 layers) seem to perform better than shal-
low (i.e. 2 transformer layers) or deep (12 transformer
layers). The learning rate was set to 2.0, with warm-
up of 800 steps. Decoding was performed using beam
search (beam size=5). For the S2S and the transformer,
the best hyperparameter settings were chosen based on
results obtained during validation.
Training a single (word-level or subword-level) based
model for 500 epochs on the baseline corpus took ca.

5In the future, we plan to experiment with smaller batch
sizes, as these proved to be beneficial in low-resource settings
(Nguyen and Chiang, 2018; Sennrich and Zhang, 2019).

25 hours for S2S and 15 hours for the transformer on
a single GPU (RTX 2080). Training on the combined
corpus (i.e. baseline + backtranslated or copied corpus)
took ca. twice longer.

6. Results and evaluation
The quality of our translations is evaluated by com-
paring the predictions and ground truth using BLEU
(Papineni et al., 2002). We report case-insensitive and
detokenized BLEU scores computed with SacreBLEU
(Post, 2018). BLEU scores of the two NMT sys-
tems trained on the baseline corpus for 500 epochs are
shown in Table 3. From all models, the subword-level
based Transformer achieves the best performance (36.5
BLEU points on WO→FR and 37.5 on FR→WO trans-
lation), outperforming the S2S by ca. 12 BLEU points
on the WO→FR direction. For all models, BLEU score
increases when words are split into subword pieces. In-
tegrating this technique has a quite positive impact on
all models and both directions.

NMT model Unit Test set
FR→WO WO→FR

S2S word 21.0 24.3
subword 22.3 (+1.3) 26.0 (+1.7)

Transformer word 31.8 36.5
subword 33.6 (+1.8) 37.5 (+1.0)

Table 3: FR↔WO translation performance when using
word vs. subword units for baseline training.

Table 4 shows results of the NMT systems when adding
back-translated data to the baseline corpus. For the
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setting with back-translated data, we used target-side
back-translated data for both directions.
Translation quality drops for the Transformer models
when using backtranslation, but only for the word-
based FR→WO direction. Interestingly, this technique
led to a slight improvement of translation quality in
WO→FR direction (by up to 2.1 BLEU points).

NMT model Unit Test set
FR→WO WO→FR

Transformer

word 31.8 36.5
+backtrans 26.5 (-9.0) 37.9 (+1.4)
subword 33.6 36.5

+backtrans 25.1 (-8.5) 37.7 (+1.2)

Table 4: FR↔WO translation performance when us-
ing back-translated monolingual data and training the
Transformer models for 500 epochs.

The results in Table 4 also seem to indicate that back-
translations in the 78.5K setup are of very poor quality
and the noise is too detrimental for this low-resource
setting. Interestingly, on the low-resource side (i.e.
Wolof), the backtranslated output may still provide use-
ful training signal to both the word-based as well as
the subword-based transformer models.6 On the high-
resource language side, this hypothesis is difficult to
verify as the signal might have been damaged by the
noise from the monolingual Wolof data. In addition,
the accuracy of backtranslated Wolof news is not so
good, since the domain of the backtranslated data and
the parallel corpus do not match. This seems to have a
negative impact on the FR→WO translation.
Furthermore, we studied whether the copied corpus can
help improve the translation quality. Following Cur-
rey et al. (2017), we only tested this method on the
subword-based transformer, which was trained on the
parallel corpus + copied data for 500 epochs. The re-
sults of this experiment are given in Table 5, showing
a slight improvement of BLEU points (between 0.3 to
0.9) for both translation directions.

Unit Test set
FR→WO WO→FR

subword 33.6 37.5
+copied 34.5 (+0.9) 37.8 (+0.3)

Table 5: FR↔WO translation performance of the
transformer using copied monolingual data.

Our final experiment consisted in verifying the im-
pact of combining the copied data method with back-
translation. The results of this experiment are shown in
Table 6. As can be seen, the combination of these two

6Manual inspection of the backtranslation shows that the
WO→FR translation was quite good. However, the FR→WO
translation quality was quite poor due to the domain mis-
macth and the very low quality of the target-side input.

corpora results in a slight improvement for subword-
based models.

Unit Test set
FR→WO WO→FR

subword 33.6 37.5
+copied + backtranslation 35.1 (+1.5) 38.3 (+0.8)

Table 6: FR↔WO translation performance of the
transformer using a combined corpus (copied monolin-
gual data + backtranslated data).

To give the reader a qualitative flavor of the translations
produced by our models, Tables 7 and 8 show samples
that represent good and sometimes erroneous transla-
tions (marked in red) made by our models. These ex-
amples provide insights into understanding the poten-
tial of our current approach, despite the scarcity of the
training data. Both NMT systems seem to perform
quite well on the test set, with the transformer being
more sensitive to long sentences. As can be seen, the
output of the S2S model may be fluent for short sen-
tences (ca. 7 words). However, for longer sentences
(ca. 20 words), there is a substantial drop in terms of
both fluency and accuracy. This issue has been ob-
served in both translation directions. Also, the S2S
model tends to output named entities which are not re-
lated at all to the input text. In contrast, the transformer
seems to handle long sentences much better than the
S2S model. In addition, it also often produces exact
matches or paraphrases that convey a meaning very
similar to the target sentence.
Translations generated by our models have been
showed to professional Wolof translators (Akaademi
Wolof). They found our results very promising in as-
sisting them when translating French to Wolof. In addi-
tion, we have developed a web platform allowing these
translators to concretely test and exploit our models.

7. Conclusion
In this paper, we proposed an attentional GRU-based
S2S and a transformer for translating between French
and Wolof. We experimented with methods for improv-
ing low-resource NMT, including subword segmenta-
tion, backtranslation and copied monolingual data. Our
experiments showed that the best baseline results (37.5
BLEU points) are achieved when training the trans-
former on data segmented at subword-level. This kind
of segmentation seems to have a quite positive impact
on the translation quality, leading to an increase in
BLEU scores for almost all models. In addition, for the
transformer, backtranslation proved to be slightly ben-
eficial when translating from the low-resource (WO) to
the high-resource (FR) language. Likewise, a similar
improvement can be observed when injecting copied
material from target-language text. Finally, a combi-
nation of backtranslation and the copied data method
proved to an effective way of improving translation
quality (BLEU scores increased by up to 38.3 points).
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Translation issue(s)
Source Je ne sais pas si j’aurai le temps de le faire.

(I don’t know if I will have time to do it.)
Target Dama xamul ndax dinaa am waxtuw def ko.

I not.know if I.will have time do it.

Transformer xamuma ndegam dinaa am waxtuw def ko. Translation is fine.
S2S xamuma ndax dama koy war a def. Fluent, but slightly inaccurate

translation (“I don’t know if I
will have to do it.”)

Source Et maintenant je vous dis: Ne vous mêlez plus de ces hommes et laissez-les.
(And now I say to you, Do nothing to these men, but let them be.)

Target Léegi maa ngi leen di wax génnleen ci mbirum ñooñu te bàyyi leen ñu dem.

Transformer
(word
based)

Léegi maa ngi leen di wax génnleen ci mbirum ñooñu nit ñi mu ne leen ñu dem. Almost matches exactly the ref-
erence translation, use of para-
phrases

S2S (word
based)

Waaye bàyyileen li ma leen wax leen ba noppi di leen yëgal yii ngeen nekk ci
samay taalibe.

Less fluent, but also inaccurate
translation (issues with word
order and lexical choice)

Table 7: Sample FR→WO translations made by the S2S and transformer systems (errors are marked in red).

Source Ba juróom ñaareelu weer wa amee fukki fan ak juróom ñaar, gaal gaa nga teereji
tundi Araraat.
(The ark rested in the seventh month, on the seventeenth day of the month, on
Ararat‘s mountains.)

Target Et le dix-septième jour du septième mois l’arche s’arrêta sur les montagnes
d’Ararat.

Transformer et le dix-septième mois l’arche s’arrêta sur les montagnes d’Ararat. Missing translation + mismatch
(17th instead of 7th month; 17th
day not translated)

S2S et le septième jour du côté du roi de Juda sortit de la montagne de Babylone
jusqu’au septième mois.

Translation not accurate; also
added unrelated named entities
like Juda and Babylone

Table 8: Sample WO→FR translations made by the S2S and transformer systems (errors are marked in red).

Although the designed NMT systems achieved
state-of-the-art performance on low-resource
French↔Wolof translation, we believe there is
still some room for improving the performance of
our transformer models by more carefully tuning
their hyper-parameters. As recent studies pointed
out, low-resource NMT seems to be very sensitive to
hyperparameters such as BPE vocabulary size, word
dropout, and others. Future work will concentrate
on exploring sophisticated techniques to refine our
current models without necessarily relying on auxiliary
resources such as monolingual data.
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