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Abstract
This contribution presents our efforts to develop the automatic speech recognition (ASR) systems for three low resource
languages: Kurmanji Kurdish, Cree and Inuktut. As a first step, we generate multilingual models from acoustic training
data from 12 different languages in the hybrid DNN/HMM framework. We explore different strategies for combining the
phones from different languages: either keep the phone labels separate for each language or merge the common phones. For
Kurmanji Kurdish and Inuktut, keeping the phones separate gives much lower word error rate (WER), while merging phones
gives lower WER for Cree. These WER are lower than training the acoustic models separately for each language. We also
compare two different DNN architectures: factored time delay neural network (TDNN-F), and bidirectional long short-term
memory (BLSTM) acoustic models. The TDNN-F acoustic models give significantly lower WER for Kurmanji Kurdish and
Cree, while BLSTM acoustic models give significantly lower WER for Inuktut. We also show that for each language, training
multilingual acoustic models by one more epoch with acoustic data from that language reduces the WER significantly. We also
added 512-dimensional embedding features from cross-lingual pre-trained wav2vec2.0 XLSR-53 models, but they lead to only
a small reduction in WER.

Keywords: multilingual acoustic models, OpenASR20 Challenge, factored TDNN, bidirectional LSTM, wav2vec em-
bedding

1. Introduction
The low resource transcription and keyword spotting
effort received a great impetus from the IARPA Ba-
bel program1. The main goal of the program was to
improve the performance of keyword search on lan-
guages with very little transcribed data (low-resource
languages). Data from 26 languages was collected with
certain languages being held out as surprise languages
to test the ability of the teams to rapidly build a sys-
tem for a new language2. Many different DNN train-
ing algorithms have been experimented with within the
Babel program (Gales et al., 2014) (Knill et al., 2014)
(Huang et al., 2013) (Trmal et al., 2014) (Chen et al.,
2013) (Zhang et al., 2014). In (Gales et al., 2014)
they experiment with both DNN and tandem systems
and achieve token error rates (TER) between 60% and
77% with limited language packs (10 hours of training
audio), depending on the language and training algo-
rithms. They also experiment with data augmentation
by automatically labeling untranscribed data.
In (Huang et al., 2013), the authors keep the senones
separate for each language in the softmax layer, while
sharing the hidden layers across language. In (Vu et al.,
2014), the authors experiment with two different ways
of generating multilingual phone sets: keep phones for
each language separate, or merge phones that have the
same IPA symbols across different languages. In their
study, they show that keeping phones separate for each

1https://www.iarpa.gov/index.php/research-programs/
babel

2https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/
files/harper.pdf

language in multilingual DNN training results in lower
word error rate (WER) compared to merging phones
across languages for small amount of training data (1
hour). For larger acoustic training data per language,
the two multilingual DNNs (with and without merging)
give similar WER.

In (Li et al., 2020), the authors experiment with three
different ways of modeling multilingual phone sets in
order to generate good universal phone set with good
coverage across many low resource languages: private
(separate phones for each language), shared (pooling
phones with the same IPA symbol across languages),
and allosaurus (predict over a shared phone inventory,
then map into language-specific phonemes with an al-
lophone layer). They show that for phone recognition,
private phone set gives significantly lower phone error
rate (PER) than the shared phone set, while their al-
losaurus system improves on the separate phone set.

In E2E (end-to-end) multilingual ASR, if the text
scripts use different character sets for each language,
then there is a natural separation of end-to-end model-
ing for each language. For example, in (Dalmia et al.,
2018), the authors train E2E models to improve speech
recognition for low resource Babel languages. In (Kan-
nan et al., 2019), the authors train E2E models for 9
Indian languages. All the languages except two have
different scripts which separates the language training.
However, there is significant overlap of vocabulary in
these Indian languages, and many words are written in
Latin that result in higher error rates for languages with
less training data. So they condition the RNN-T en-
coder on a language vector.
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In (Conneau et al., 2020), the authors present a cross-
lingual speech representation (XLSR) system which
learns cross-lingual speech representations by pretrain-
ing a single model from the raw waveform of speech
in multiple languages. On the Common Voice bench-
mark, XLSR leads to significant reduction in phoneme
error rate. On BABEL also, the XLSR system shows
significant reduction in word error rate. So in one ex-
periment, we also computed 512-dimensional embed-
dings from this pretrained XLSR-53 system to see if we
can reduce word error rates even further for our multi-
lingual system.
In this paper, we experiment with training acoustic
models with different multilingual phone sets from 12
different low resource languages to minimize word er-
ror rate (WER). For each language, we have anywhere
from 20 hours to 80 hours for training the multilin-
gual models. For decoding, we decode test sets for 3
morphologically complex languages for which we have
more than 40 hours of audio for training: Kurmanji
Kurdish, Cree and Inuktut. In this scenario, we find
that multilingual acoustic models with separate phone
sets per language give significantly lower WER (than
unilingual acoustic models for each language) for two
of the languages. For Cree, the multilingual acoustic
model trained with merged phone set (from the 12 lan-
guages) gives lower WER. This is in contrast to the
results in (Vu et al., 2014) where multilingual acous-
tic models with separate phone sets gave significantly
lower WER only for small training sets (1 hour of audio
for each language).
Another issue is whether different DNN architectures
make a difference in multilingual acoustic model-
ing. So we experimented with two different architec-
tures: factored time delay neural networks (TDNN-F)
(Povey et al., 2018) and bidirectional LSTM (BLSTM)
(Graves et al., 2013) acoustic models used widely
in the literature. For Kurmanji Kurdish and for
Cree, TDNN-F acoustic models significantly outper-
formed the BLSTM acoustic models, while for Inuktut,
BLSTM acoustic models gave significantly lower WER
than the TDNN-F acoustic models. We note that Inuk-
tut is a highly polysynthetic language (Schwartz et al.,
2020) (Gupta and Boulianne, 2020a), where we decode
syllables and then merge syllable sequences into word
sequences. For Kurmanji Kurdish and for Cree we de-
code word sequences since we can have a small dictio-
nary with low out-of-vocabulary (OOV) rate for unseen
text, even though Kurmanji Kurdish is an agglutinative
language and Cree is polysynthetic (although much less
than Inuktut).
We also found that training the multilingual models for
one more epoch with a small learning rate from acous-
tic training data from one language results in significant
reduction in WER for that language.
Another issue is whether we can add features from pre-
trained cross-lingual XLSR models (Conneau et al.,
2020) to reduce WER for multilingual speech recog-

nition. So we generated 512-dimensional embeddings
(cross-lingual speech representations) using the pub-
licly available pretrained XLSR-53 model and added
them to 40-dimensional MFCC features. The enhanced
features reduced the WER for two development sets
by a small amount, so we probably need to adapt the
pretrained XLSR model with our multilingual acoustic
data to get a bigger impact on WER.
In summary, we revisit strategies and architectures for
training multilingual acoustic models but, differently
from previous studies, we include several morpholog-
ically complex languages in our test. We present four
main contributions in this paper. First, for separate vs
shared phoneme sets, we find that separate sets per-
form better, in contrast to previous studies. Second,
we observe that a TDNN-F architecture outperforms
BLSTM, with the exception of the highly polysynthetic
language. Third, we find that incremental fine-tuning
a multilingual model on the target language leads to
significant reduction in WER for that language. Fi-
nally, we report experiments with pre-trained multilin-
gual acoustic embeddings.

2. Data Resources
For multilingual acoustic model training, we used
training data provided by NIST for OpenASR20 chal-
lenge3 for 10 low resource languages: Amharic, Can-
tonese, Guarani, Javanese, Kurmanji Kurdish, Mongo-
lian, Pashto, Somali, Tamil, and Vietnamese. For each
of these languages there is close to 20 hours of audio.
We added acoustic data we have for two Canadian in-
digenous languages: Inuktut and Cree. Our focus in
this paper is on 3 languages: Kurmanji Kurdish, Cree
and Inuktut. So we added more acoustic training data
for these 3 languages. Table 1 summarizes the various
datasets we used for acoustic and language model train-
ing for these three languages. For Kurmanji Kurdish,
we added data from the LDC Kurmanji Kurdish cor-
pus4 and also data we received from TWB (Translators
without Borders). The openASR20 training data for
Kurmanji Kurdish was part of the data from LDC Kur-
manji Kurdish corpus. This LDC corpus contains 153
hours of transcribed audio for training. After removing
the noise and silence portion, we have 51 hours of tran-
scribed audio. The LDC disk also contained 88 hours
of untranscribed audio. After voice activity detection
and automated transcription of the untranscribed audio,
we added 19.35 hours of reliable segments for train-
ing. We followed a process similar to that for Cree
(Gupta and Boulianne, 2020b) to extract these reliable
segments. Our best acoustic model for Kurmanji Kur-
dish was trained from 70.4 hours of audio.
For Cree, we used 30 hours of transcribed audio and 71
hours of automatically transcribed audio from approxi-
mately 1045 hours of untranscribed CBC radio record-

3https://www.nist.gov/itl/iad/mig/openasr-challenge
4IARPA Babel Kurmanji Kurdish Language Pack,

IARPA-babel205b-v1.0a (LDC2017S22)
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ings (Gupta and Boulianne, 2020b). The training audio
for Cree is much larger than in (Gupta and Boulianne,
2020b) and the development set has changed to 6 hours
of CBC Cree recordings. For Inuktut, we used roughly
78 hours of transcribed stories for training, larger than
in (Gupta and Boulianne, 2020a), but we have kept the
development set to be the same (3 hours of audio) as in
(Gupta and Boulianne, 2020a).
The additional transcribed audio for Inuktut and Cree
came from the National Research Council of Canada
(NRC) funded project on Indigenous languages (Kuhn
et al., 2020). This NRC project developed software to
assist Indigenous communities in Canada in preserving
their languages and extending their use. Through this
NRC project, audio from many Indigenous languages
was transcribed for future use in developing speech-to-
text transcription for those Indigenous languages also.
The OpenASR20 development set for Kurmanji Kur-
dish (see Table 2) was 17.8 hours of audio with tran-
scripts. The transcribed audio for one speaker from
TWB (containing 5047 sentences and 58808 words
from a corpus of tales) was used as another Kurmanji
Kurdish development set. The tales text was excluded
from any language model training.
For Cree we used 6 transcribed CBC recordings for
development (roughly 1 hour per recording), and for
Inuktut 7 transcribed recordings (a total of 3 hours of
audio) as shown in Table 2.

Source Audio Text
Cree (CBC radio recordings) 101.0 h 245.1 k
Inuktut (Nunavut) 78 hours 172.1 k
Kurmanji OpenASR20 18.0 h 81.2 k
Kurmanji LDC transcribed 51.0 h 272.1 k
Kurmanji LDC untranscribed 19.4 h 187.9 k
TWB-news - 45.0 M
TWB-other - 1.1 M
TWB-all - 46.1 M

Table 1: Training sets, in hours of transcribed audio
and number of words in texts. TWB-all includes TWB-
news and TWB-other.

Source Audio Text
OpenASR20 (Kurmanji) 17.8 h 76.7 k
TWB-audio (Kurmanji) 6.5 h 58.8 k
Cree 6.0 h 31.3 k
Inuktut 3.0 h 7.7 k

Table 2: Development sets (in hours and number of
words).

2.1. Language models
The training lexicons for the 10 languages in ope-
nASR20 were taken from the openASR20 build. For
Kurmanji Kurdish, we used the lexicon from the LDC
Kurmanji Kurdish corpus. For Inuktut and Cree, which

Language Voc TTR OOV PPL Size
Cree 90k 0.26 10.3% 230 986k
Inuktut-w 129k 0.61 63.0% 1250 2.64M
Inuktut-s 3.2k - 0.0% 30.8 1.44M
Kurmanji 6k 0.21 6.3% 133 600k

Table 3: Language model details for each language.
Inuktut-w is word-based while Inuktut-s is syllable-
based. TTR is the ratio of types to tokens. OOV is
out-of-vocabulary rate. PPL is perplexity on dev set.
Size is the number of parameters in the model.

have writing systems very close to phonetic, we used
a simple set of rules derived from descriptions of the
writing systems. All the lexicons used IPA X-SAMPA5

phone symbols.
Table 3 summarizes language model characteristics
for each language, in terms of vocabulary, out-of-
vocabulary rate and perplexity. We computed TTR,
the ratio of the number of types (vocabulary size) to
the number of tokens (word occurrences), by randomly
selecting sentences from training texts until 50k to-
kens were collected, then counting types. TTR gives
an indication of morphological complexity and is well
correlated with other linguistic measures of complex-
ity (Bentz et al., 2016) such as the degree of polysyn-
thetism. With a TTR of 0.61, Inuktitut appears much
more complex than Cree, which is also polysynthetic,
and Kurmanji Kurdish, which is agglutinative. In com-
parison, English, on the same sample size, obtains a
TTR of 0.16 on the LibriSpeech corpus and 0.11 on
Switchboard.
For Kurmanji Kurdish language model training, we had
a total of 46.44 million words of text: 81.2k words from
OpenASR20 training text, 272k words of additional
text from LDC, and 46.1 million words of text from
TWB. TWB text can be divided into two parts: 45 mil-
lion words from TWB-news6 containing news (45.7%
accented words), and TWB-other from other sources
with 1.1 million words (46.9% accented words).
A separate trigram language model (LM) is trained for
each development set. For the OpenASR20 dev set,
the LM is trained from Kurmanji Kurdish LDC tran-
scribed + untranscribed text (see Table 1). For TWB-
audio, we train the LM from 46.1 million words of text
from TWB. For CBC Cree 6files development set, we
train the LM from all the Cree training text plus all the
text in East Cree we could find over the internet (ap-
proximately 253 k words (see (Gupta and Boulianne,
2020b) for details), and for Inuktut 7files development
set, we train a 4-gram syllabic LM from 53k words of
Inuktut training text + Nunavut parliament proceedings
(Hansard) containing 6.5 million words of text (see
(Gupta and Boulianne, 2020a) for details). The Inuk-
tut language model for decoding is syllabic with the

5https://fr.wikipedia.org/wiki/X-SAMPA
6https://anfkurdi.com/



6423

dictionary containing 3158 context dependent (begin,
middle or end of word) syllables. The decoded syl-
lable sequences are transformed into word sequences
with the help of syllables with word-end markers in the
decoded syllable sequence.

3. Optimization of Multilingual Training
We trained multilingual DNNs from the acoustic train-
ing data from all the 12 languages as described in the
data resource section. For testing, we used develop-
ment sets from three languages: Kurmanji Kurdish,
Cree and Inuktut. Kurmanji Kurdish is one of the ten
languages in the OpenASR20 challenge. Inuktut and
Cree are two of the most spoken indigenous languages
in Canada ( out of 70+ indigenous languages spoken
in Canada), and we have significant amount of data
for both these languages. Inuktut is a highly polysyn-
thetic language (Schwartz et al., 2020) and new words
are generated by concatenating morphemes to the ex-
isting word. One word in Inuktut can represent a whole
phrase or sentence in English. That is why, even with
a very large dictionary, the out-of-vocabulary rate for
a new text can be 60% or higher. For this reason, we
use syllabic decoding for Inuktut, and convert syllable
sequences to word sequences by concatenating sylla-
bles (Gupta and Boulianne, 2020a). This syllable se-
quence to word sequence conversion is facilitated by
adding word-end markers to syllables, and these de-
coded syllables with word-end markers are used to find
word boundaries. So it will be interesting to see if such
linguistic differences affect acoustic modeling.
To optimise acoustic modeling, we tried two different
multilingual phone sets: one phone set where the non-
silence phones for each language are kept separate by
adding a language tag to each phone, and second phone
set where all the common phones in the 12 languages
are merged. We also tried two different DNN architec-
tures: factored time delay neural network (TDNN-F)
(Povey et al., 2018) and bidirectional LSTM neural net-
work (BLSTM) (Graves et al., 2013). We also tried two
different feature parameters: 40-dimensional MFCC
features, and these MFCC features concatenated with
512-dimensional embeddings obtained from pretrained
cross-lingual XLSR-53 wav2vec2.0 model (Conneau et
al., 2020). In order to compare multilingual results with
unilingual results, we first give word error rates (WER)
when we train acoustic models separately for each lan-
guage (unilingual results).

3.1. Separate Training for Each Language
For the three languages Kurmanji Kurdish, Cree and
Inuktut, we trained factored TDNN (TDNN-F) mod-
els (Povey et al., 2018) using the Kaldi toolkit (Povey
et al., 2011). The architecture for the TDNN-F mod-
els corresponds to that in the librispeech egs7 in Kaldi
toolkit. We use 40-dimensional MFCCs together with

7https://github.com/kaldi-
asr/kaldi/egs/librispeech/s5/local/chain/run tdnn.sh

100-dimensional i-vectors as feature parameters. All
the manually transcribed acoustic data was speed per-
turbed 3-ways (speeds of 0.9, 1.0, and 1.1) (Ko et al.,
2015) before acoustic model training. The word error
rate for different test sets using TDNN-F acoustic mod-
els trained separately for each language are shown in
Table 4. The acoustic models are trained with lattice-
free MMI followed by discriminative training. For
Inuktut, we also trained a bidirectional long short-term
memory (BLSTM) acoustic model (Graves et al., 2013)
from Inuktut training data as we got the best results for
Inuktut with BLSTM acoustic models (compare lines 4
and 5 in Table 4).
The WER with unilingual acoustic models in Table 4
is compared with WER for multilingual models in the
next section.

Language Dev set WER
1. Kurmanji Kurdish OpenASR20 65.4%
2. Kurmanji Kurdish TWB-audio 58.5%
3. Cree CBC Cree 6files 62.5%
4. Inuktut Inuktut 7files 87.9%
5. Inuktut (BLSTM) Inuktut 7files 78.2%

Table 4: WER for development sets for Kurmanji Kur-
dish, Cree and Inuktut with separate TDNN-F acoustic
model trained for each language. For Inuktut, line 5
gives results with BLSTM acoustic models also.

3.2. Multilingual Acoustic Model Training
with 12 Languages

We trained multilingual DNNs from the acoustic train-
ing data from all the 12 languages as described in the
data resource section. The total audio is roughly 429
hours (339 hours manually transcribed and 90 hours au-
tomatically transcribed) and the manually transcribed
audio is speed perturbed 3 ways (Ko et al., 2015) be-
fore training. To optimise acoustic modeling, we tried
two different phone sets: one phone set where the
non-silence phones for each language are kept sepa-
rate by adding a language tag to each phone (a total of
522 phones), and second phone set where all the com-
mon phones from all the languages are merged (a to-
tal of 193 phones). For each of these phone sets, we
compared two different acoustic models (TDNN-F and
BLSTM). The WER for the different development sets
with multilingual training with separate phones per lan-
guage is shown in Table 5, while the WER with merged
common phones from all the 12 languages is shown in
Table 6.
The best results from all four scenarios (separate
phones for each language versus merged phones,
TDNN-F versus BLSTM) are shown in bold in Ta-
bles 5 and 6. We can see that it is not the same
acoustic model training scenario that gives the best re-
sults for all four different development sets. We see
that separate phones with TDNN-F acoustic models
give the lowest WER for Kurmanji Kurdish (develop-
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ment sets OpenASR20 and TWB-audio). For Cree dev
set, the lowest WER is with TDNN-F acoustic mod-
els with merged phones (62.1% with merged phones
versus 62.8% with separate phones). For Inuktut dev
set, the lowest WER is with the BLSTM acoustic mod-
els with separate phones, and the WER is significantly
lower compared to TDNN-F acoustic models (71.1%
WER for BLSTM versus 78.1% for TDNN-F).

Dev set TDNN-F BLSTM
OpenASR20 64.9% 75.7%
TWB-audio 50.2% 74.9%

CBC Cree 6files 62.8% 70.1%
Inuktut 7files 78.1% 71.1%

Table 5: WER for development sets for Kurmanji Kur-
dish, Cree and Inuktut with multilingual acoustic mod-
els trained with separate phones for each language.
We compare TDNN-F acoustic model versus BLSTM
acoustic models in this scenario. WER in bold is the
best WER from all training scenarios.

Dev set TDNN-F BLSTM
OpenASR20 65.5% 76.1%
TWB-audio 66.0% 79.3%

CBC Cree 6files 62.1% 73.2%
Inuktut 7files 89.6% 79.8%

Table 6: WER for development sets for Kurmanji Kur-
dish, Cree and Inuktut with multilingual acoustic mod-
els trained with merged phones from all 12 languages.
We compare TDNN-F acoustic model versus BLSTM
acoustic models in this scenario also. WER in bold
shows the best WER from all training scenarios.

To see why merged phones give lower WER for Cree
and higher WER for Inuktut and Kurmanji Kurdish, we
computed number of phones that do not overlap other
languages (column 2, Table 7), and the average number
of overlapping languages for other phones (column 3).
From Table 7 we see that Cree has 4 phones that do not
overlap with phones from other languages. The other
phones in Cree overlap with 7.4 other languages on an
average. So these statistics are not different enough to
explain the differences in WER. The only thing that
stands out is the fact that Cree has larger training au-
dio (101 hours) (Table 1) than Inuktut (78 hours) and
Kurmanji Kurdish (88 hours), so acoustic models with
merged phones are dominated by Cree, reducing WER
for Cree while increasing WER for other languages.
If we compare these lowest multilingual word error
rates (WER) with WER from unilingual training of
TDNN-F acoustic models for each language, then we
see that multilingual training reduces WER for each
dev set. For OpenASR20 dev set, the WER goes down
from 65.4% to 64.9% (0.5% reduction in WER abso-
lute), for TWB-audio, the WER goes down from 58.5%
to 50.2% (8.3% reduction in WER absolute). For CBC

Language Phones unique Overlap with #
to language of languages

Cree 3 r 5 T V 7.4
Inuktut K N: R 8.6
Kurmanji 6.7

Table 7: Phones unique to the language (column 2)
and average number of languages with which the re-
maining phones are shared (column 3).

Cree 6files dev set, the WER goes down from 62.5%
to 62.1%, and for Inuktut 7files dev set the WER goes
down from 78.2% to 71.1%.

3.3. Incremental Training per Language
from Multilingual Acoustic Models

We found that by starting with the final multilingual
acoustic models as the initial models, and training them
with one more epoch from just the acoustic data from
one language with a small learning rate, we can reduce
the WER even further. This reduction in WER is dis-
cussed in this section.
We tried many variations of incremental training of
TDNN-F acoustic models with just one language data
starting with the already trained multilingual TDNN-F
acoustic models: we varied the learning rate, the num-
ber of epochs to train, and number of previous models
to combine to produce the final model. We found that
if we just train for 1 more epoch with just the training
data from the language and combine models so that the
original multilingual model is included in the combined
model, then we get the lowest WER. It seems to be im-
portant to include the multilingual model in the model
combination. The incremental training is followed by
discriminative training of the models with just acoustic
data from that language. The WER with this incremen-
tal training for multilingual TDNN-F acoustic models
with separate phones for each language is shown in Ta-
ble 8. From this Table, we see that, for each develop-
ment set, there is a significant reduction in WER, es-
pecially for TWB-audio (2.2% absolute) and for CBC
Cree 6files development set (2.5% absolute).

Dev set Before incre- After incre-
mental training mental training

OpenASR20 64.9% 64.4%
TWB-audio 50.2% 48.0%

CBC Cree 6files 62.8% 60.3%
Inuktut 7files 78.1% 76.9%

Table 8: WER for development sets for Kurmanji
Kurdish, Cree and Inuktut with incremental training
per language of multilingual TDNN-F acoustic models
with separate phones for each language. We compare
TDNN-F acoustic models before and after incremental
training.
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Since the TDNN-F multilingual acoustic models with
merged phones gave the best results for CBC Cree
6files dev set (see Table 6), we trained these acoustic
models incrementally with only Cree data. Similarly,
since BLSTM multilingual acoustic models with sepa-
rate phones gave the lowest WER for Inuktut 7 files dev
set (see Table 5), we incrementally trained this model
with only Inuktut training data. The results are shown
in Table 9. From this Table we see that the WER is re-
duced for both the Cree and Inuktut development sets
after incremental training of acoustic models.
From Tables 8 and 9 we see that incremental training
resulted in reduced WER in every scenario we tried: for
both TDNN-F models with separate phones or merged
phones, and for BLSTM models with separate phones.

Dev set Before incre- After incre-
mental training mental training

CBC Cree 6files 62.1% 60.7%
Inuktut 7files 71.1% 69.6%

Table 9: WER for Cree development set after incre-
mental training of multilingual TDNN-F model with
merged phones from Cree data alone, and for Inuk-
tut development set after incremental training of multi-
lingual BLSTM acoustic models with separate phones
from Inuktut data alone.

From Tables 8 and 9 we see that for Inuktut, the WER
with TDNN-F models (76.9%) is much higher than the
WER with BLSTM acoustic models (69.6%). Inuk-
tut is the only language where this is true. For other
languages the reverse is true: the WER with TDNN-F
acoustic models is lower than that for BLSTM acous-
tic models. Also, Inuktut is the only language where
we use syllable-based decoding instead of word-based
decoding. To see that if syllable-based decoding has
something to do with this issue, we ran word based
decoding for Inuktut with a dictionary of 129k words
(Gupta and Boulianne, 2020a). The decoding results
with this dictionary are shown in Table 10. We see that
with word-based dictionary TDNN-F acoustic models
give lower WER (106.6%) compared to BLSTM acous-
tic models (121.6%). The reason for the high WER is
because the 129k dictionary still leads to 62% out-of-
vocabulary words in the Inuktut dev set leading to very
high substitution rates (see Table 10 for breakdown).
To understand why syllable-based decoding for Inuktut
results in higher word error rate with TDNN-F models,
we compare decoding results for TDNN-F models ver-
sus BLSTM acoustic models in Table 11. From this Ta-
ble we see that there are significantly more word dele-
tions (19.6%) for TDNN-F acoustic models compared
to BLSTM based acoustic models (9.2%). To under-
stand these word deletions, we need to understand how
word boundaries are detected from decoded syllable se-
quences in syllable-based decoding.
The dictionary contains a total of 3158 syllables. The
syllables can occur in beginning, middle or end of the

Acoustic model TDNN-F BLSTM
insertion 6.6% 21.6%
deletion 8.7% 1.1%

substitution 91.3% 98.9%
WER 106.6% 121.6%

total decoded words 7520 9251

Table 10: WER breakdown into percent insertion,
deletion and substitution for Inuktut dev set with word-
based decoding. We also show the total number of de-
coded words in the decoded ctm file.

word. So syllables at the start of the word are marked
with B , while syllables at the end of the word are
marked with E markers. The total number of sylla-
bles includes these marked syllables. The language
model is trained with text in syllables that include these
marked syllables. The syllables themselves, whether
marked or not, have the same phonetic transcription.
So word boundary markers are decoded using the lan-
guage model weights, and any acoustic cues for word
boundaries in the audio. In TDNN-F based decoding,
only every third frame is used for decoding, so some
of these acoustic cues may be missing more than in
BLSTM based decoding which uses every frame for
decoding. That is why we see 9.2% missing word
boundaries for BLSTM based decoding versus 19.6%
missing word boundaries for TDNN-F based decoding
(see deletion row in Table 11).

Acoustic model TDNN-F BLSTM
insertion 1.3% 3.0%
deletion 19.6% 9.2%

substitution 56.0% 57.5%
WER 76.9% 69.6%

total decoded words 6270 7205

Table 11: WER breakdown into percent inser-
tion, deletion and substitution for Inuktut dev set with
syllable-based decoding. We also show the total num-
ber of decoded words in the decoded ctm file.

In Table 12 we compare WER for best unilingual train-
ing versus the best multilingual training (multilingual
training followed by incremental training). We see that
even with over 40 hours of acoustic training data for
each language, multilingual training gives significant
reduction in WER for each language. For TWB-audio,
the WER goes down by 10.5% (absolute), while for
Inuktut 7 files, the WER goes down by 8.6% (absolute).

3.4. Pretrained XLSR-based Speech Feature
Parameters

We extracted speech representations for all our mul-
tilingual acoustic data (training and development) us-
ing the publicly available XLSR-53 model (Conneau
et al., 2020), a wav2vec2.0 model pre-trained on 56k
hours of speech in 53 languages, from 3 datasets:
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Dev set Unilingual Multilingual
training training

OpenASR20 (Kurmanji) 65.4% 64.4%
TWB-audio (Kurmanji) 58.5% 48.0%

CBC Cree 6files 62.5% 60.3%
Inuktut 7files 78.2% 69.6%

Table 12: WER for the best scenario for unilingual
versus multilingual training for the different develop-
ment sets.

MLS (Multilingual LibriSpeech), CommonVoice and
Babel8. XLSR is pretrained directly from raw unla-
beled speech audio. We used the encoder output repre-
sentations zt which are 512-dimensional vectors com-
puted every 20 ms. We added these features to our 40-
dimensional MFCC features for training the TDNN-
F acoustic models. Since the frame rate for the 40-
dimensional MFCC features was 10 ms, we dupli-
cated every frame of the 512-dimensional features in
order to get the same frame rate before concatenating
the two features. The WER with these joint features
for multilingual TDNN-F models with separate phones
for each language is given in Table 13, and the WER
with/without these XLSR-based features is compared
in Table 13. The joint features gave lower WER for
2 out of the 4 dev sets (shown in bold). We probably
need to adapt the pre-trained XLSR model to our multi-
lingual training set in order to get significant reduction
in WER.

Dev set 40-dim 40-dim MFCC +
MFCC 512-dim wav2vec2.0

OpenASR20 64.9% 64.3%
TWB-audio 50.2% 51.8%

CBC Cree 6files 62.8% 62.1%
Inuktut 7files 78.1% 79.0%

Table 13: WER for development sets for Kurmanji
Kurdish, Cree and Inuktut with multilingual acous-
tic models trained with separate phones for each lan-
guage. We compare TDNN-F acoustic model with
40-dim MFCC versus 40-dim MFCC + 512-dim pre-
trained XLSR-based features.

4. Discussion of Results
When we see the word error rates (WER) for the differ-
ent development sets, we see a big variation in WER,
from 48% for TWB-audio to 69.6% for Inuktut dev set.
We would like to explain some of these differences. Let
us take Kurmanji first: There is a 16.3% difference in
WER between OpenASR20 dev set (64.3%) and TWB-
audio (48%). There are multiple reasons for this dif-
ference in WER. First, the OpenASR20 dev set corre-
sponds to conversational speech with many hesitations,

8These datasets do not include Cree or Inuktut, but Babel
includes Kurmanji Kurdish.

repeats, noise, pauses, etc. So a voice activity detector
(VAD) separates noise segments from speech segments
and we recognize only the speech segments. This VAD
helps reduce WER, but still the WER is higher than
that for read speech. Secondly, the topics of discus-
sion can vary significantly and it is difficult to train a
good language model for conversational speech from
any kind of news corpus. The only text corpus that re-
duced WER for the OpenASR20 dev set was the tran-
scribed conversations in the training set. There could
be two reasons for it. One is probably that the conver-
sation topics may be somewhat similar to those in the
development set. Secondly, the training and dev sets
were transcribed by the same group of transcribers with
the same instructions, so the transcribed text is proba-
bly quite uniform both in terms of spelling and putting
accent marks on words. When we compare the per-
centage of words accented in the LDC training text for
Kurmanji versus the percentage of accented words in
TWB-news and TWB-other, we see that 40.9% words
are accented in LDC text versus 45.7% in TWB-news,
and 46.9% in TWB-other. We also find that when
we add TWB-news or TWB-other text to the language
modeling text, the WER for OpenASR20 dev set goes
up significantly. All the above issues lead to high WER
for OpenASR20 dev set.
The TWB-audio in Kurmanji Kurdish is different: the
text corresponds to Kurmanji Kurdish tales, and they
have been read by one speaker. There are no hesita-
tions or repeats, and only small silent gaps between
words. The WER with/without voice activity detec-
tor is about the same. Also, the language model cre-
ated from over 45 million words of text from TWB-
news and TWB-other reduces the WER significantly
for the TWB-audio. So the language model created
from TWB-news and TWB-other more closely repre-
sents the word contexts in TWB-audio. For all the
above reasons, we get the lowest WER for the TWB-
audio when compared to the other dev sets.
The Cree dev set is extracted from CBC (Canadian
Broadcasting Corporation) broadcasts in Cree from
four different current affair programs. The recordings
are clean except that for musical intervals and tele-
phone interviews. The training set for Cree is also from
CBC broadcasts. So the language model created from
these broadcasts does represent the dev set. For that
reason, the WER for Cree is reasonable: around 60%.
The WER is higher than the 48% WER for TWB-audio
for a few reasons: music and telephone interviews in-
creases the WER, the broadcasts are not read speech,
and the language model for Cree is trained from only
245k words of text, while the language model for
TWB-audio is trained from over 45 million words of
text.
The Inuktut dev set is extracted from recorded sto-
ries and sometimes include singing and chanting. Like
Cree, both the training and dev sets are from the same
source. For Inuktut, we also have a million words of
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text from Nunavut parliament proceedings. However,
the context for the parliament proceedings is quite dif-
ferent from the stories recited by elders in the training
and dev sets. But the major reason why Inuktut dev
set WER of 69.6% is much higher than the 60.3% for
Cree is that Inuktut is highly polysynthetic, more so
than Cree. Even with a word dictionary of a million
words, the out-of-vocabulary rate for unseen text can be
as high as 60% (Gupta and Boulianne, 2020a). For that
reason, we use a syllabic dictionary and decode the au-
dio as a sequence of syllables. The syllables have word
boundary markers. Those markers in the decoded sylla-
bles are used to convert decoded syllable sequence into
word sequence. The use of syllables for decoding and
then using word markers to convert syllable sequences
into word sequences increases the word error rate.

5. Conclusions
We experimented with multilingual speech recognition
using acoustic data from 12 low resource languages (10
languages from OpenASR20 challenge, plus Canadian
Indigenous languages Cree and Inuktut) in order to op-
timize recognition accuracy for three low resource lan-
guages: Kurmanji Kurdish, Cree and Inuktut. We tried
two different multilingual phone sets: separate phones
for each language, and a phone set where common
phones are merged. We find that for Kurmanji Kurdish
and for Inuktut, keeping separate phone sets is better,
while for Cree merged phone set gives lower word er-
ror rate (WER). The reason for this is that Cree has
the largest acoustic training data, and merged phone
set acoustic models represent Cree more than the other
languages.
We also compared WER with factored time delay neu-
ral networks (TDNN-F) and bidirectional long short-
term memory (BLSTM) neural networks. The TDNN-
F based acoustic models give lower word error rates for
both Cree and Kurmanji Kurdish, while BLSTM acous-
tic models give significantly lower WER for Inuktut. It
also happens that Inuktut is decoded with syllables to
provide sufficient coverage of unseen text, and decoded
syllable sequences are transformed into words by syl-
lables with word-end markers. We show that syllable-
based decoding is the reason why BLSTM acoustic
models give lower WER than TDNN-F based acoustic
models.
We also show that training the multilingual acoustic
models for one more epoch with just the acoustic data
from one language results in significant reduction in
WER. In this scenario, the final acoustic model, which
is a combination of previous N models, should include
the final model trained with multilingual data.
We concatenated 512-dimensional features from pre-
trained XLSR models with 40-dimensional MFCC fea-
tures, and the combined features gave a small reduction
in WER for two development sets.
To summarize, we get significant reduction in WER
with multilingual acoustic models as compared to

unilingual acoustic models. We show when we can
use merged phone sets and when we should use sep-
arate phone sets. We also show why we should use
BLSTM acoustic models for highly polysynthetic lan-
guages where we need to decode using syllabic or sub-
word dictionary. Training for one more epoch (with
multilingual models as initial models) with acoustic
data for only one language leads to significant reduc-
tion in word error rate for that language.
We also discuss why the word error rate (WER) for dif-
ferent development sets varied from 48% (for TWB-
audio) to 69.6% (for Inuktut). The WER depends
on acoustics (read speech is the easiest, followed by
broadcast stories, and then conversational speech). It
also depends on how well the context of the develop-
ment audio matches the context of language modeling
text. The conversational speech text in general is quite
different from the news text generally available over
the internet. Also, highly polysynthetic languages like
Inuktut are difficult to decode, since they require a sub-
word dictionary and a way to merge decoded sub-word
sequences into word sequences. Ultimately, this work
stresses the importance of including morphologically
complex languages in multilingual research if we ex-
pect conclusions to generalize to all languages.
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