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Abstract
Recent years have witnessed the tendency of neural encoding models on exploring brain language processing using naturalistic stimuli.
Neural encoding models are data-driven methods that require an encoding model to investigate the mystery of brain mechanisms hidden
in the data. As a data-driven method, the performance of encoding models is very sensitive to the experimental setting. However, it is
unknown how the experimental setting further affects the conclusions of neural encoding models. This paper systematically investigated
this problem and evaluated the influence of three experimental settings, i.e., the data size, the cross-validation training method, and the
statistical testing method. Results demonstrate that inappropriate cross-validation training and small data size can substantially decrease
the performance of encoding models, especially in the temporal lobe and the frontal lobe. And different null hypotheses in significance
testing lead to highly different significant brain regions. Based on these results, we suggest a block-wise cross-validation training
method and an adequate data size for increasing the performance of linear encoding models. We also propose two strict null hypotheses
to control false positive discovery rates.
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1. Introduction

In recent years, neural encoding models have become
increasingly important tools in studying the neural ba-
sis of language (Nunez-Elizalde et al., 2019). Neural
encoding models are data-driven methods that explore
the associative mapping between the linguistic stimuli
and the evoked brain response in the data. In the fMRI
literature, they have been used to investigate the corti-
cal representations of a broad range of linguistic fea-
tures (Mitchell et al., 2008; Wehbe et al., 2014; Huth
et al., 2016; Wang et al., 2020; Sun et al., 2020; Jain
et al., 2020; Zhang et al., 2020; Caucheteux et al.,
2021). Many of these studies formalized the encoding
models as linear regression models that trained with a
cross-validation method to predict the brain responses
to language stimuli. The conclusions reached in these
studies highly depend on the prediction performance
of encoding models. As the use the encoding models
increases, it is critical to know whether and how vari-
ous language-irrelevant factors affect prediction perfor-
mance and conclusions of encoding models. One im-
portant but often neglected kind of such factors is the
experimental settings.
As a data-driven method, the experimental settings
would undoubtedly affect the performance of encod-
ing models. However, it is unknown whether and how
this will further affect the neural encoding conclusions.
Existing work using neural encoding varied from the
amount of neuroimaging data, the training method, and
the significance testing methods used to test the sta-
tistical significance of encoding results. These experi-
mental setting differences prevent a formal comparison

between different works. More importantly, since the
rate of false positive results tends to increase with high
methodological flexibility (Carp, 2012), these differ-
ences may also impair the reproducibility and the relia-
bility of encoding models. Therefore, a comprehensive
investigation of how the variability of the experimental
settings affect the encoding results is necessary.
This paper investigates three settings of encoding mod-
els, including the training method, the data size, and
the way to perform significance testing. We ask two
questions. First, how should we use neuroimaging data
more efficiently when training and testing encoding
models? Second, how should we conduct significance
testing in order to control the false discovery results?
To address these issues, we collected the function mag-
netic resonance imaging (fMRI) data from 12 healthy
subjects when they were listening to 60 Chinese stories.
For each subject, we train voxel-wise encoding models
with different training methods and different data size
and analyze how these differences influence the predic-
tion accuracy on different brain regions. Then, we test
how different statistical testing methods affect the se-
lection of language-sensitive voxels.
Our results demonstrate that inappropriate training
method and insufficient data can substantially decrease
the prediction performance on many brain regions, es-
pecially in the temporal lobe and the frontal lobe. In-
appropriate significance testing may cause high false
positive discoveries. Based on these results, we give
the following practical suggestions on the using of en-
coding models:

• First, the cross-validation training of encoding
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models using a block-wise form with block length
longer than 32s can substantially increase the pre-
diction accuracy.

• Second, for the linear encoding models, the size
of neuroimaging data should be longer than 3
hours to avoid under-fitting. And, restricted by
the expressive capacity of linear regression mod-
els, more data can hardly further improve the pre-
diction accuracy.

• Finally, considering that encoding models can pre-
dict some voxels activation with permuted stim-
uli or predict their activation in resting state with
higher-than-zero accuracy, the null hypothesis in
significance testing should be designed carefully
to control for these false discoveries.

2. Related Work
In this section, we briefly introduce the basics of neu-
ral encoding models and the three settings (i.e., the
training method, the data size, and the significance test
method) used in previous work.
Neural encoding models use a set of stimuli features
to predict brain activities elicited by the stimuli. The
parameters of neural encoding models are trained on
a training set, usually with a cross-validation method.
And then, these parameters are fixed to predict brain
responses on a test set. The performance of encoding
models can be assessed through Pearson correlation be-
tween predicted and actual brain responses or a classifi-
cation task on a test set. After the testing process ends,
a significance test is needed to ensure that the testing
results are not coincidental.
An important step in cross-validation training is to split
data into training, validation, and test sets. Previous
work that collected fMRI with natural story stimuli of-
ten chose one story as a test set and conducted cross-
validation on the remaining stories (Huth et al., 2016;
Jain et al., 2020; Popham et al., 2021; Zhang et al.,
2020). When splitting data into training and valida-
tion sets, previous work usually concatenated stories
except the test story together and split data into k-folds
and chose one fold as the validation set (Zhang et al.,
2020; Schrimpf et al., 2020) or split data into blocks of
a certain length and randomly choose some blocks as
held-out sets (Huth et al., 2016). There are two prob-
lems with such a splitting strategy. First, there may be
possible information leakage between the training and
the validation sets. Because of the hemodynamic delay
of BOLD signals, successive data samples are not inde-
pendent. Inappropriate splitting may cause information
leakage between the training and the validation sets.
Second, choosing one story as the test story can avoid
information leakage from the test set. But the predic-
tion performance on the test story may be affected by
the subject’s condition when listening to this story (e.g.,
the subject may be absent-minded for a while) or the
specific nature of the content of the story.

Apart from the training method, the collected amount
of neuroimaging data also varied widely in previous
work. Before discussing the data size used in previ-
ous work, we must first clarify one point: the stimuli
modality and the temporal resolution of neuroimaging
data collection are often different in different works.
Existing work collected fMRI when subjects were
reading language words (Wehbe et al., 2014) or sen-
tences (Pereira et al., 2018) showed on the screen or
listening to speech (Huth et al., 2016; Zhang et al.,
2020; Caucheteux et al., 2021). The temporal resolu-
tion of fMRI collection also differed from 0.72s to 2s.
Thus, the data size can be quantified by time length of
recordings, the number of fMRI images, or the stim-
uli vocabulary. Here, we simply use total time length
of collected fMRI time series to quantify the data size.
The data size used in existing work varied from 45 min-
utes (Wehbe et al., 2014) to more than 5 hours (Zhang
et al., 2020). It is unknown whether lower amount of
data causes under-fitting in any brain regions. If so, the
brain regions representing language information may
be predicted with lower accuracy and thus lead to in-
correct conclusions.

Statistical significance testing in fMRI research has
long been a source of contention (Bhaumik et al., 2009;
Button et al., 2013; Eklund et al., 2016). Inappropriate
significance testing methods may fail to detect a true
effect or result in a high false discovery rate. A vi-
tal preliminary to significance testing is to make clear
what the null hypothesis is. Then, significance testing
can be conducted to decide whether the null hypothesis
should be accepted or rejected, using either a paramet-
ric or non-parametric test, depending on whether the
distribution of the object is known. However, previous
work often did not directly state their null hypothesis.

We sum up the significance testing methods used in ex-
isting work into three null hypotheses: H0 : r = 0,
H0 : r = rv , and H0 : r = rperm. r is the Pearson
correlation between predicted and real fMRI signals of
the test set. rv is the correlation between two inde-
pendent random vectors with the same length of test
set fMRI signals. rperm is the correlation between the
actual fMRI signals and the predicted signal by encod-
ing models trained with permuted stimuli. All three
null hypotheses aim to test the Pearson correlation r
between predicted and real BOLD signals, but they are
based on distinct assumptions. The first null hypoth-
esis assumes that a r greater than zero is sufficient to
demonstrate brain response predictability. The second
null hypothesis accounts for the bias of Pearson cor-
relation by assuming that the r between predicted and
real brain signals should be greater than that of two ran-
dom vectors. The third hypothesis assumes that the lin-
ear correspondence learned by encoding models may
be driven by factors unrelated to linguistic information,
thus the r should be greater than the rperm which is
the correlation between the actual fMRI signals and
the predicted signal by encoding models trained with
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permuted stimuli. Conducting significance test under
different null hypothesis may select different voxels.
Due to the problems identified above, we systemati-
cally investigate how the differences in all three settings
influence the encoding results.

3. Our Methods
As shown shown in Figure 1, the overall framework
contains three experimental settings, including training
method (section 3.1), data size (section 3.2), and the
statistical significance testing method (section 3.3). We
investigate whether and how these different experimen-
tal settings affect the results of encoding models. The
implementation details of data collection and language
representation are described in section 3.4
To formalize the training and test process of encoding
models, let X be the stimulus and Y be the brain ac-
tivity elicited by X . In this paper, X is a sequence of
words w1, w2, ..., wn and Y is a sequence of fMRI sig-
nals. The neural encoding models learn to map from
stimulus X to the elicited brain response Y for ev-
ery voxel. To align with the temporal delay of BOLD
signal, the word vectors are convolved with a canoni-
cal hemodynamic response function (HRF)1 and then
downsampled to the sampling rate of fMRI. The model
could be expressed as:

Y = downsample(conv(X,hrf))×W

By splitting data into training and test set, the re-
gression weight matrix W is trained with Ytrain and
Xtrain. And then, W is used to predict Ytest based
on Xtest. The Pearson correlation is computed by
Pearson(Ytest, Ŷtest).

3.1. Training Method
The key question in training and evaluating ridge re-
gression models with cross-validation is to split data
into training, validation, and test set. Considering that
randomly choosing one story as test set may have an ef-
fect of the session, we conduct nested cross-validation
(Figure 2). That is, the training process contains
two loops: the inner 5-fold cross-validation loop that
chooses the best hyper-parameters for ridge regression
and the outer loop that tests the encoding model on the
test set.
Specifically, we choose one story as test set in each
outer loop and run the outer loop for 60 times so that
each story can be the test set in different loops. As
shown in Figure 2, within each outer loop, we run a
5-fold cross validation by concatenating the remaining
59 stories together and then splitting them into train-
ing and validation set in the unit of different length
of blocks. Note that the blocks in validation set are
randomly selected among all blocks. We choose 7

1The canonical HRF is a mathematical model that de-
scribes what the BOLD signal would theoretically be in re-
sponse to a neural impulse.

Figure 1: The overall framework

block lengths (labelled in Figure 2 as c1 to c7) plus an
average-splitting (labeled as c8) that often used in pre-
vious work. The block lengths include two shorter than
32s and five as the integral multiple of 32s. The reason
to choose 32s as a borderline is that 32s is usually taken
as the length that an hemodynamic delay lasts. As men-
tioned above, this block-splitting strategy can not fully
avoid the information leakage between the training and
validation set. Hence, we also split data directly by sto-
ries (labeled as c9) to avoid the dependence between
training and validation set and use results of this strat-
egy as the ceiling, that is, the best results that the cross-
validation can reach.
In the end, we have 9 data-splitting conditions and 60
Pearson correlation coefficients for each condition. For
simplicity, we use rci to indicate the correlation of the
ith condition averaged across all 60 stories and all brain
voxels. By comparing the rci between different condi-
tions, we can know how the splitting method affect the
encoding results and which is a better way to conduct
cross-validation.

3.2. Data Size
Using the 9th condition of nested cross-validation, we
study how the data size affect the encoding results. We
analyze whether small data size makes certain brain re-
gions less predictable and whether there is sufficient
data size such that adding more data could not increase
the prediction accuracy. We use six different amounts
of data, including [10, 20, 30, 40, 50, 60] stories respec-
tively. We compute the averaged Pearson correlation
of each size and analyze which brain regions’ predic-
tion performance increases most when adding 10 more
stories.

3.3. Statistical Significance Testing
The purpose of significance test is to test whether the
prediction accuracy of encoding models is coinciden-
tal. Moreover, it should also test whether the prediction
accuracy is driven by the mapping irrelevant to stimuli
learned by encoding models. Based on this purpose,
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Figure 2: The nested cross-validation.

we adopt two null hypotheses used in previous work:
H0 : r̄ = 0, H0 : r̄ = r̄perm. Besides, we also add one
null hypothesis: H0 : r̄ = r̄rest, which computes the
Pearson correlation between the predicted fMRI signal
Ŷ and the resting state fMRI signal Yrest. The assump-
tion of both H0 : r̄ = r̄perm and H0 : r̄ = r̄rest is that
the encoding models may predict the brain activities ir-
relevant to stimuli.
To test these null hypothesis within our nested cross-
validation encoding framework, we compare the means
of the Pearson correlations between those computed
with encoding models and those computed under the
null hypothesis. Hence, significance testing becomes
the testing of mean difference between two popula-
tions. These three null hypothesis are tested both on
subject-level and group-level. For subject-level, the
correlations of all test stories of one subject are re-
garded as samples from one population. For group-
level, the correlations of all subjects and all stories are
regarded as samples from the same population. And
then we test whether the population means of r are sig-
nificantly larger than that of rperm and rrest.

3.4. Implementation Details
We collected the fMRI data from 12 healthy subjects
when they were listening to 60 Chinese stories. All
stories are collected from Renmin Daily Review web-
site and are available at https://www.ximalaya.
com/toutiao/30917322/. Each of these stories
last from 4 to 7 minutes and the total time length of all
60 stories is about 5 hour.
The text of all stories are transcribed and then seg-
mented into words. Then, we use a pre-trained BERT
model (Devlin et al., 2018) to generate the represen-
tation of every word. The sub-word embeddings are
averaged as the embedding of words.
For ridge regression, the regularization parameter is

chosen amongst 40 values log-spaced between 10−3

and 103.

4. Results and Analysis
We trained encoding models separately for each sub-
ject and evaluated the performance of neural encoding
models trained with different training methods and dif-
ferent data sizes for all 12 subjects. We also conducted
the significance test under all three null hypotheses de-
scribed in section 3.3. By comparing prediction perfor-
mance under different experimental settings, we have
several findings about how these experimental settings
affect the performance of encoding models.

Splitting data with longer blocks can improve pre-
diction performance As shown in Figure 3(a), in all
12 subjects, splitting data into training and validation
sets with blocks less than 32s can substantially decrease
the prediction accuracy. But as long as the block length
exceeds 32s, increasing the block length can hardly im-
prove or decrease the prediction results.
To intuitively show how the block length affects the
prediction accuracy in the whole brain, we directly sub-
tract the results of shorter blocks from that of longer
blocks and average across all subjects. The results are
shown in Figure 3(b)-(f). As illustrated, the predic-
tion accuracy of the whole brain improves when block
length increases from 7 to 14 seconds, with the tempo-
ral lobe and the frontal lobe showing the greatest im-
provement. When block duration increases from 14 to
32 seconds, there is still a whole brain rise, but it is
more uniform across the brain. Continuing to increase
the block length makes no difference in most brain re-
gions and even a slightly decrease in the temporal and
the frontal lobe. We also compare the results of the
average-splitting (c8) and the story-level splitting (c9)
in Figure 3(e) and Figure 3(f). As shown, the results
of story-level splitting are nearly identical to the results
of longer blocks, suggesting that blocks longer than 32
seconds is enough to avoid the influence of information
leakage caused by temporal correlation in successive
fMRI data.

Insufficient data makes the frontal and the tempo-
ral lobe substantially less predictable Figure 4(a)
shows the prediction accuracy of encoding models with
different data size. In general, the prediction accuracy
increases as the amount of data increases for all sub-
jects. And the increase of accuracy is more substantial
when the data size is small, such as adding 10 stories
to 20 stories.
To further analyze how the increase of data size im-
proves the prediction accuracy, we subtract the results
of each data size from the results after adding 10 sto-
ries. Figure 4(b) to 4(f) are subtraction results aver-
aged across all subjects. Results shown that adding data
mainly increases the prediction accuracy in the tempo-
ral lobe and the frontal lobe. Specifically, when adding
the number of stories from 10 to 20, the predictability
of almost all voxels increases. The increase of voxels in

https://www.ximalaya.com/toutiao/30917322/
https://www.ximalaya.com/toutiao/30917322/
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(a) Results of different block lengths.

(b) rc2 − rc1 (c) rc3 − rc2 (d) rc4 − rc3 (e) rc8 − rc7 (f) rc9 − rc8

Figure 3: Prediction results of different training-validation data-splitting conditions. (a) is the Pearson correlation
averaged across all brain voxels. The error bar indicates the standard deviation of all 60 test stories. (b) to (f) are
the subtraction results averaged across all subjects between different block conditions.

(a) Results of different data size

(b) r20 − r10 (c) r30 − r20 (d) r40 − r30 (e) r50 − r40 (f) r60 − r50

Figure 4: Results of different data size. (a) is the Pearson correlations averaged across all brain voxels of different
data size. The error bar indicates the standard deviation of all 60 test stories. (b) to (f) are the subtraction results
averaged across all subjects between different data size.

frontal and temporal lobe is especially greater than in
other parts of the brain. Adding the number of stories
from 20 to 30 and from 30 to 40 increases the frontal
and temporal lobe prediction results in a similar way,
but with smaller increases. When the number of stories
reaches 40, adding more can hardly improve prediction
results.

The choice of null hypothesis has much greater im-
pact on the significance test results than the test
method Figure 5 shows the subject-level and group-
level significance test results under three null hypothe-
ses. As illustrated, significant voxels under differ-
ent null hypotheses varied substantially, especially at
subject-level. However, for the same null hypothesis,
the results between parametric test and non-parametric
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Figure 5: Results of significance test. Color-highlighted areas are significant voxels under different null hypotheses
(FDR q < 0.01, the color bar represents values of − log q)

test are pretty similar. This phenomenon suggests that
choosing the appropriate null hypothesis is more im-
portant than choosing the statistical test method.
Among the results of all three hypotheses, the H0 : r̄ =
0 selects the most voxels at both subject level and group
level. However, among these significant voxels, many
of them are not significant under the other two null
hypothesis, suggesting that a r̄ greater than zero may
not enough to prove a voxel represents linguistic infor-
mation. Because the encoding models can learn some
mapping even with the permuted stimuli and with the
rest fMRI signals. Furthermore, the results of subject-
level test and group-level test are also different. Almost
all voxels are statistically significant in group-level test.
The reason is that with an increased number of samples,
a small effect can also be significant.

5. Discussion
Exploring brain language processing with neural en-
coding models highly depends on the performance of
encoding models in predicting brain responses. Our
experiment shows that different experimental settings
can lead to highly different encoding results. In this
section, we discuss the results of our experiment.
Our first finding is about the cross-validation method
used to train the encoding model. A main challenge for
cross-validation is that the successive measurements of
fMRI are temporally correlated. We find that splitting
training-validation data with blocks longer than 32s can
substantially increase the prediction performance. The
reason may be that the influence of temporal correlation
in fMRI data could be diminished with longer blocks.
This is reasonable because the temporal correlation be-

tween fMRI images decreases as the distance increases.
We also find a slight decrease on the temporal lobe and
the frontal lobe when continuing to increase the block
length. A possible explanation is that shorter blocks
can better mix up the data from different stories and
therefore choose a better hyper-parameter. From our
experiment, a block length around 32s reaches the best
performance of encoding models. This finding about
the best block length is also very useful when using
bootstrapping methods.
The second finding is about the data size used to train
encoding models. As a data-driven method, there is
no doubt that more data can lead to better results of
encoding models. However, our concerns are whether
small data would miss some brain regions and whether
increasing the data can linearly increase the predic-
tion performance. The experimental results show that
when data size is small, adding data can substantially
increase the prediction accuracy especially on the tem-
poral lobe and frontal lobe. However, as the data size
continues to increase, the improvement brought by new
data becomes lower, and the prediction performance
tends to be stable. This phenomenon may be explained
by the limitation of the expressive capacity of linear
models. As discussed by Ivanova et al. (2021), ex-
isting work focused excessively on the linear encod-
ing model. It is quite reasonable to use linear models
when the data size is small because complex models
are prone to over-fitting on small data. However, as the
amount of data available grows, more powerful models
may be adopted in the future to better learn the map-
ping between deep language models and brain signals.
Finally, we discuss the statistical significance test-
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ing. On one hand, in neuroscience studies, signifi-
cance testing is an important step and various testing
methods have been raised in the past decades (Nichols
and Holmes, 2002; Winkler et al., 2014; Etzel, 2015;
Lohmann et al., 2018). However, fewer attention has
been paid on it in studies using encoding models. Our
results show that choosing appropriate null hypothesis
is very important in controlling false discoveries. But
the three null hypotheses we considered are only at-
tempts to control different bias that encoding models
may learn in data. There may also be other bias that
the encoding models can learn. More discussions are
needed to further clarify this question. On the other
hand, as mentioned by Hamilton and Huth (2020),
many neuroscience studies paid too much attention to
statistical significance and too little to effect size. As in
our results, almost all voxels are statistically significant
in the group-level testing. However, a small Pearson
correlation may be significant but not important in ex-
plaining brain mechanisms. Future work can pay more
attention to statistical power and effect size.

6. Conclusion
Neural encoding models predict brain responses based
on the stimuli that elicited them. The present study
systematically investigates how different experimental
settings of encoding models affect the results. By ex-
ploring encoding models with different training meth-
ods, different data size, and different significance test-
ing methods, we find that in cross-validation, splitting
training-validation set with blocks longer than 32 sec-
onds can reach substantially higher prediction accuracy
than blocks shorter than 32 seconds. And for a linear
encoding model, the recording duration of fMRI data
longer than three hours may be sufficient to avoid the
under-fitting training results. Finally, the careful choice
of null hypothesis is very important to control for false
discoveries. We considered three null hypotheses in
this work, but more discussions are needed to clarify
what is the best way to conduct significance testing.
As more researchers begin to use neural encoding mod-
els to study the neural basis of language, a thorough
analysis of the settings of these models can aid in their
proper application and replication. We hope this pa-
per will encourage more discussions about the settings
used in brain encoding analysis and improve the sound-
ness of the research.
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