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Abstract
In this paper, we report experiments on Few- and Zero-shot Knowledge Graph completion, where the objective is to add
missing relational links between entities into an existing Knowledge Graph with few or no previous examples of the relation
in question. While previous work has used pre-trained embeddings based on the structure of the graph as input for a neural
network, nobody has, to the best of our knowledge, addressed the task by only using textual descriptive data associated with
the entities and relations, much since current standard benchmark data sets lack such information. We therefore enrich the
benchmark data sets for these tasks by collecting textual description data to provide a new resource for future research to
bridge the gap between structural and textual Knowledge Graph completion. Our results show that we can improve the results
for Knowledge Graph completion for both Few- and Zero-shot scenarios with up to a two-fold increase of all metrics in the
Zero-shot setting. From a more general perspective, our experiments demonstrate the value of using textual resources to enrich
more formal representations of human knowledge and in the utility of transfer learning from textual data and text collections
to enrich and maintain knowledge resources.
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1. Introduction

Knowledge graphs are formalized representations of
world knowledge, useful in many tasks such as Ques-
tion Answering, Language Representation Learning
and Recommender Systems (Ji et al., 2021). They con-
sist of nodes representing entities of interest and di-
rected edges representing different relations between
the entities. A knowledge graph is frequently incom-
plete: not every relation has been observed at the time
the its construction (Xiong et al., 2018; Min et al.,
2013). This is the basis for the Knowledge Graph com-
pletion task: to infer missing links, given a graph. More
formally, Knowledge Graphs can be described as a set
of triplets (h, r, t) ∈ T with a head entity h, a tail
entity t, and the relationship r defining their connec-
tion. A Knowledge Graph can therefore be described
as KG ⊆ E×R×E , where E denotes the set of entities
and R is the set of relationship types.
Knowledge Graph completion is mostly addressed by
scoring candidate triplets (h, r, t) for relation r by
some assigned validity score. True or valid triplet
candidates rank higher by the validity score and false
ones lower. Previous work (Bordes et al., 2013;
Yang et al., 2015; Dettmers et al., 2018; Sun et al.,
2019) have moved a Knowledge Graph to a Euclidean
vector space, assigning each entity and relation a d-
dimensional vector. These vectors are then trained,
given a scoring function f(·), to either maximize the
score f(h, r, t) for true triplets and minimize the score
f(h, r, t) for false ones. Examples of these include
TransE (Bordes et al., 2013) and DistMult (Yang et
al., 2015) and we refer to this type of Knowledge Graph
embeddings as structure-based, as they fully and solely
rely on the structure of the Knowledge Graph.
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Figure 1: A: Procedure of previous approaches in Few-
and Zero-shot Knowledge Graph completion. B: In-
stead of training structural embeddings, we obtain rep-
resentations through textual descriptors, reducing the
overall effort.

However, as pointed out by Xiong et al. (Xiong et
al., 2018), structural Knowledge Graph embeddings of-
ten fall short in predicting relations seldom observed in
the graph. To alleviate this issue, previous works have
framed the problem in a Few- or Zero-shot learning sce-
nario, gaining considerable improvements in complet-
ing links for rare relations. To the best of our knowl-
edge, no one has yet successfully, in a few- or zero-
shot setting, addressed this task by beginning only from
the textual descriptions available in the actual Knowl-
edge Graph: instead, previous efforts have focussed on
mainly leveraging the structure of the graph. Our work
enriches two Knowledge Graph benchmark data sets
with texts associated with them and uses those texts for
inferring missing relations with greatly improved re-
sults compared to a structural representation.
Few-shot and Zero-shot learning are learning frame-
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works where an existing pre-trained representation is
quickly adapted to new tasks with a very small amount
of previously seen examples, or none at all. They both
rely on the existing representation having been previ-
ously trained on suitably large and general data, and
then leverage this external knowledge to predict for the
unseen or barely seen cases (Chen et al., 2021a).
Previous approaches for Few- and Zero-shot Knowl-
edge Graph completion have used a transfer learn-
ing approach by first leveraging structural pre-trained
Knowledge Graph embeddings to embed incoming
triplets to the network trained on an existing Knowl-
edge Graph (see Figure 1A). While this has proven suc-
cessful, it is limited to the information derived from the
structure of the graph and requires explicit and costly
training on the Knowledge Graph at hand. This pre-
training process requires careful consideration during
training (Ruffinelli et al., 2019). Word embedding rep-
resentations such as Word2Vec or GloVe, and recent
transformer-based models such as BERT (Mikolov et
al., 2013; Pennington et al., 2014; Devlin et al., 2019),
on the other hand, are usually trained on larger corpora
of knowledge, and promise to be useful if combined
with an appropriate meta-learning architecture. Addi-
tionally, zero- and few-shot knowledge graph comple-
tion methods today inherently capture the structure of
the graph by design, which allows us to simultaneously
leverage structural and textual information by starting
with textual features.
In this paper we represent the entities h, t and relations
r of a Knowledge Graph by using word embeddings
trained on general textual resources to allow us to infer
the validity of suggested (h, r, t) triplets through their
textual descriptions. This allows us to capture rela-
tionships that have little support in structural examples
used by previous approaches. Using previously pub-
lished benchmarks, enriched by us with textual labels,
we experimentally demonstrate an up to a two-fold in-
crease in performance.

2. Data sets
For these experiments, we use benchmarks based
on two well-established knowledge graphs: NELL
(Mitchell et al., 2018) and Wikidata (Vrandečić and
Krötzsch, 2014) and the Wikidata benchmarks Wiki-
ZS (Qin et al., 2020) and Wiki-One (Xiong et al.,
2018).
The benchmark data sets Wiki-One and Wiki-ZS do
not include textual descriptions of entities and Wiki-
One does not have textual descriptions for relations. As
part of our experimentation, we therefore enrich these
benchmark sets. We collect textual descriptions1 for
every entity in the Wiki-One and Wiki-ZS data sets and
for the relations in the Wiki-One data set and add more
relational descriptions for the NELL-One and Wiki-
One data sets.

1Available at: https://bit.ly/3MHYCxV

Wiki-One and Wiki-ZS Wiki-One and Wiki-ZS
are both subsets of the Wikidata knowledge base
(Vrandečić and Krötzsch, 2014). This data set is sig-
nificantly larger, as they both are subsets from a Wiki-
data dump from 2018. Both relations and entities are
defined by their ID, a string starting with Q for entities
and P for relations, followed by a number.
For NELL-ZS and Wiki-ZS, the test, validation, and
training sets for Knowledge Graph completion bench-
marks have thorough textual descriptions collected by
Qin et al (Qin et al., 2020), but they lack textual fea-
tures for all entities. However, the relations included
in Wiki-One but excluded from Wiki-ZS have no tex-
tual descriptions. Our work completes these data sets
for the entities and relations without text, and by doing
so, we broaden the type of methods applicable to these
data sets.

Expanding Wiki-One and Wiki-ZS In the Wiki
data sets, the entities in the data set are only represented
by their IDs. To enrich the data set, we collect three
types of textual information for the entities and rela-
tions from the Wikidata knowledge base on which the
data sets are based.

• label: The label is usually the name of the en-
tity, such as a person’s or a location’s name.

• description: A brief textual description of an
entity which can be in any of several languages.

• For entities, we also collect the attribute
instance of, described as ”that class of
which this subject is a particular example and
member”2.

Some examples of textually enriched entities and rela-
tions are shown in Table 2. The descriptors were down-
loaded for all existing entities and relations contained
in the Wiki-One and Wiki-ZS data sets. The knowledge
base on which these data sets are based evolves con-
tinuously, illustrating the necessity for updating repre-
sentations: out of the 4 838 244 entities in the data set
snapshot, 16 779 (≈ 0.35%) had been deleted from the
Wikidata Knowledge Base and thus lack descriptive la-
bels and texts. These entities were labeled with ”Un-
known”. Besides the deleted entities, 404 298 entities
(≈ 8%) lacked labels in any language, 307 649 lacked
description texts, and 2697 had no superclass instance
attribute as shown in Table 3.
These collected data were first split into two sections:
one with entities and relations where both English la-
bels and description texts were present and another sec-
tion where entities and relations lack either a label or a
description text in English.
For entities in the latter section, we included every
available description and label from thirteen languages:
English, French, Spanish, Italian, Portuguese, Chinese,

2Described at https://www.wikidata.org/
wiki/Property:P31

https://bit.ly/3MHYCxV
https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Property:P31
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Setting Data set # Ent. # Rel. # Triplets Splits Word count

Few-shot NELL-One 68,545 358 181,209 51/5/11 3.3 ± 1.2
Wiki-One 4,838,244 822 5,829,240 133/16/34 8.6 ± 5.1

Zero-shot NELL-ZS 65,567 181 188,392 139/10/32 3.3 ± 1.1
Wiki-ZS 605,812 537 724,967 469/20/48 10.3 ± 5.5

Table 1: Data sets used in the experiments. Word count denotes the number of words per entity and relation on
average, with its standard deviation. Split denotes the number of relations in each pre-defined split (train, validation
and test) of the data sets.

data set Data type ID Label Description Instance

Wiki

Entities

Q8180 Feyzin disaster
fire in a refinery near
the town of Feyzin, France desastre

Q83115 Fantasy World Dizzy 1989 video game video game
Q4776245 Antonia Juhasz American journalist human

Q17528437 Church of St Mary
historic church in Ellingham,
Hampshire, England,
United Kingdom

church

Relations

P37 official language
language designated
as official by this item N/A

P129 physically interacts with
physical entity that
the subject interacts with N/A

P277 programming language
the programming language(s)
in which the software
is developed

N/A

P2632 place of detention
place where this person
is or was detained N/A

NELL
Entities concept:company:kmau kmau N/A company

concept:male:ability ability N/A male

Relations concept:colorofobject color of object Object has color (NEIL) N/A
concept:lakeinstate lake in state The state/province a river is in. N/A

Table 2: Examples of the entities and relations for both the Wiki and NELL benchmarks, with their textual enrich-
ment data.

Japanese, Swedish, Arabic, Korean, Dutch, Russian,
and Indonesian. We then translated the missing texts
into English from the thirteen different languages us-
ing the MarianMT models (Junczys-Dowmunt et al.,
2018) seen in Table 4. In addition, out of 29 184 unique
“instance“ attributes, 189 did not have English names.
For these, we used the Google translate API to translate
them into English.
The relations were far fewer, and only five of them
lacked English language descriptions. For P2329,
P3592 and P3494 we translated the description text
to English manually. Relations P2157 and P2439 had
been removed from Wikidata, but their information was
recovered using the Wikidata log3.

Total Deleted No label No description No instance

Entities 4,838,244 16,779 404,298 307,649 2,697
Relations 822 2 0 0 N/A

Table 3: Deleted and missing entries in the data sets
collected from the Wikidata knowledge base.

NELL-One and NELL-ZS NELL (Mitchell et al.,
2018) is a Knowledge Graph initially constructed as

3https://www.wikidata.org/wiki/
Special:Log

Language MarianMT model # Labels # Descriptions

Arabic opus-mt-ar-en 22,082 93,148
Chinese opus-mt-zh-en 150,654 1,591
Dutch opus-mt-nl-en 73,938 151,658
French opus-mt-roa-en 75,632 65,338
German opus-mt-de-en 59,371 158,969
Indonesian opus-mt-id-en 1 113
Italian opus-mt-roa-en 12,856 9,870
Japanese opus-mt-ja-en 13,971 7,791
Korean opus-mt-ko-en 314 63
Russian opus-mt-ru-en 141,800 26,520
Portuguese opus-mt-roa-en 7,284 1,409
Spanish opus-mt-roa-en 23,783 13,188
Swedish opus-mt-sv-en 76,099 30,172

Total 657,785 559,830

Table 4: The different languages from which the de-
scriptive texts were translated, and the number of items
translated to English from each language.

an attempt to structure the knowledge of the internet.
Both data sets consist of about 65 000 entities and a
few hundred relations, with each entity and relation de-
fined by an ID which constitutes a descriptive phrase
which defines the concept it refers to. These ID:s have
been segmented into words by us, provided in the en-
riched data set resource. While we retrieved longer tex-

https://www.wikidata.org/wiki/Special:Log
https://www.wikidata.org/wiki/Special:Log
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tual descriptions for the relations through their defini-
tions from the NELL knowledge base through its meta-
data and therefore extended the NELL data sets for our
tasks (Mitchell et al., 2018), we were not able to obtain
longer textual descriptions for the entities. This gives
us less informative textual features for this data set,
but provides us with a comparison between scenarios
where textual descriptions are sparse and where they
are verbose, as in the Wiki-One and Wiki-ZS cases. For
examples of entities from the NELL graph, we refer to
Table 2. For entities, we use the instance relation and
the definition phrase as the label; for relations only the
definition phrase is used, again as the label.
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Figure 2: Cumulative distributions of the number of
words in the Wiki-One and NELL-One texts.

3. Related work
Few-shot Learning Few-shot learning, also known
as meta learning (Huisman et al., 2021), has the ob-
jective to quickly adapt a representation to new tasks
barely seen in the data before. This is done by using a
support set ST and a query set QT for every task, and
the support set size is usually very small, usually of a
size 1 to 5. In a Knowledge Graph completion scenario,
a task T involves predicting the correctness of triples
for some relationship t. Using a support set of true ex-
amples Sr = {(h, r, t) | h, t ∈ E , r ∈ Rfew}, and a
set of queries Qr = {(h, r, t) | h, t ∈ E , r ∈ Rfew},
the objective is to predict whether the query triples are
true or not. By moving to a K-shot scenario using
K examples in every iteration, one optimally leverages
the examples obtained previously for a specific task by
using a neural meta-learning approach. These are ei-
ther similarity-based, such as Matching or Prototypical
Networks (Vinyals et al., 2016; Snell et al., 2017) or
optimization-based, like Model-Agnostic Meta Learn-
ing (MAML) (Finn et al., 2017).

Zero-shot Learning Zero-shot learning refers to the
task of predicting classes and tasks previously not seen
at all (Geng et al., 2021; Chen et al., 2021a). When
the Zero-shot learning is Knowledge-based (as is in our
case) one uses some auxiliary information to align the
task at hand and enable a neural model to predict the
unseen classes.

Knowledge Graph Completion Most Knowledge
Graph completion methods are structural, i.e., com-
pletely relying on the structure of the Knowledge
Graph, and move the entities and relations into either
a joint or two separate Euclidean spaces RD by us-
ing the information given by the graph’s structure. For
many Knowledge Graph embedding methods, a set of
true (h, r, t) and false triplets (h, r, t′), are sampled in
each iteration. A contrastive loss is then used as in (1)
to maximise the score for true triplets and minimize it
for false ones. In both Zero- and Few-shot Knowledge
Graph Completion, this has been used as the main ob-
jective function.

L =
∑

(h,r,t)

∑
(h,r,t′)

γ + score(h,r,t′) − score(h,r,t) (1)

Two examples of structural embeddings are TransE
(Bordes et al., 2013) and DistMult (Yang et al., 2015).
While TransE is optimized to be additive such that the
embedding of the head and the relation added approx-
imates the tail through addition, such that h + r ≈ t,
DistMult is optimized to translate in a multiplicative
such that h · r ≈ t.
Several previous efforts in Knowledge Graph comple-
tion have demonstrated the effectiveness of exploiting
textual information (Hu et al., 2021; Xiao et al., 2017;
Xie et al., 2016; Socher et al., 2013). Xiao et al. (Xiao
et al., 2017) projected the Knowledge Graph embed-
ding space onto the word embedding space by using
textual features, and Xie et al. (Xie et al., 2016) used
both the structure and the descriptions of the entities
to create a model capable of Zero-shot learning. The
model for Knowledge Graph embeddings by Xie et al
was built jointly from both structural and textual de-
scriptions and proved useful in a Zero shot context
as well. This shows how a richer representation of
Knowledge Graph content is useful in a cold-start or
a Zero-shot situation. Our experiments are designed
to show how this holds for relation triple inference as
well, specifically for unseen relations.

Setting In both Few- and Zero-shot Knowledge
Graph Completion, we consider the setting of hav-
ing a background knowledge graph BG : {(h, r, t) ⊆
E × R × E} where E is the set of all entities and R
is the set of common relations. The task is to pre-
dict likely triplets for a set of rare or unseen relations
Rfew = {r1, .., r|Rfew||Rfew ∩R = ∅}. In each training
iteration, a correct triplet (h, r, t), r ∈ Rfew and a query
triplet (h′, r, t′) are sampled, where Rr is a set of true
triplets for a task relation is used as a support example.
In few-shot learning, a support set Sr is also sampled.

Few-shot Knowledge Graph completion Few-shot
Knowledge Graph completion has been done both
through similarity-based (Xiong et al., 2018; Zhang et
al., 2020; Sheng et al., 2020) and MAML-based ap-
proaches (Chen et al., 2019; Lv et al., 2019). One
of the first published studies is GMatching (Xiong et
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al., 2018) in a one-shot relational learning setting in
which the one-hop neighborhood graph around each
head and tail entity was aggregated by summing up em-
beddings of every entity and relation within one hop
from the entity. The query and support triplet were
then inserted into an LSTM-based Matching Network
(Vinyals et al., 2016), producing a score reflecting the
likelihood of the query. A similar work, improving
and extending upon GMatching was FSRL (Zhang et
al., 2020), by using attention mechanisms to weight
neighbors differently. However, these attention vectors
were static for an entity and did not change over rela-
tions. As in the example originally given by (Sheng
et al., 2020), the entity Microsoft might be more
important than MelindaGates when predicting for
task relation CeoOf, and the opposite might be true in
the case of FatherOf. (Sheng et al., 2020) therefore
introduced the Adaptive Attentional Network (FAAN)
which we explain in more detail in Section 4.2.

Zero-shot Knowledge Graph completion One of
the first published studies moving Knowledge Graph
completion to a zero-shot setting was DKRL (Xie et
al., 2016), a deep convolutional neural network. That
work shows that using textual descriptions combined
with a structural embedding approach a deep Convolu-
tional Neural Network (CNN) is able to learn to com-
plete triplets for unseen entities.

Our experiments focus on Zero-shot learning where the
relations to be inferred have not previously appeared
in the Knowledge Graph under consideration. Some
previous efforts in this direction include the Zero-shot
Generative Adversarial Network (ZS-GAN) (Qin et al.,
2020) and the Ontological Zero-shot Learning (On-
toZSL) model (Geng et al., 2021). Both of these rely
on generating plausible embeddings for previously un-
observed relations using a Generative Adversarial Net-
work (GAN) (Goodfellow et al., 2014), given a set
of descriptions of those unseen relations. These ap-
proaches both make use of auxiliary information about
these relations to be able to infer triplets with them. We
use both ZS-GAN and OntoZSL in our experiments be-
low. Another work related to ours is the work by Li et
al (Li et al., 2020) which uses logic-guided learning
for relation classification, i.e., identifying the correct
relation for a head, relation and tail. Li et al. com-
pare word embeddings and structural embeddings and
conclude that structural embeddings give better results
than word embeddings. This contradicts our findings,
but there are a few distinctive differences. Firstly, they
train their word embeddings only on the data set they
construct, and therefore limit the amount of knowl-
edge encoded. Secondly, they do not make use of con-
textualised transformer-based embeddings, and limit
themselves to using DeVISE (Frome et al., 2013) and
ConSE (Norouzi et al., 2013), two models originally
created for image-related zero-shot classification rather
than Knowledge Graph relation classification.
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Figure 3: Example of an entity from the Wikidata
knowledge base. With SIF, we embed the entities and
relations using a weighting of the words it has.

Integrating textual features Numerous studies have
used textual information to infer missing links in
Knowledge Graphs such as mentioned DKRL and
OWL2Vec (Chen et al., 2021b) which embeds the
nodes in a Knowledge Graph using a random walk-
based approach, while simultaneously incorporating
both logical, structural, and textual information. Other
studies (Wang et al., 2021) have developed large-scale
language models such as KEPLER where the model is
completely reliant on text, requiring a larger corpora of
knowledge for every entity to be embedded and prov-
ing powerful inductive capabilities. Our focus is to add
a data set with a smaller amount of text, and show that
this can still be highly useful.

4. Method
4.1. Embedding entities and relations

through text
The first step in our approach is to convert the textual
descriptions we have collected into vector-based rep-
resentations. In our experiments, we use two meth-
ods of embedding the entities and relations: Smooth
Inverse Frequency embeddings (SIF) and transformer-
based sentence embeddings (BERT).

Transformer-based sentence embeddings In our
Zero-shot learning experiments, we embed the
text collected using a pre-trained sentence em-
bedder paraphrase-MiniLM-L12-v2, produc-
ing semantic sentence embeddings of 384-dimensions
(Reimers and Gurevych, 2019). Initially, these are
trained on sentences. A high cosine similarity between
two sentences indicate that they have the same seman-
tic meaning, making it suitable to represent a collection
of information. However, we found in our experiments
that we were not able to utilize the sentence embed-
ding together with FAAN due to scalability constraints
in terms of memory resource limits. We therefore em-
ploy another method as well, known as Smooth Inverse
Frequency (Arora et al., 2019) which leverages word
embeddings and are less computationally costly, much
due to their lower dimensionality.

Smooth Inverse Frequency embeddings SIF is a
method that produces compact representations for sets
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of words using precomputed word vectors such as
Word2Vec (Mikolov et al., 2013) or GloVe (Penning-
ton et al., 2014) weighted by the observed frequencies
of word occurrence in a language. The representation
uses a Singular Value Decomposition computation step
to modulate the effect of frequent phrases and words by
removing the first N principal components in a matrix
of generated vectors.
SIF embeddings are appropriate to test for our exper-
iments for a few reasons. Firstly, SIF is fast and rel-
atively cheap compared to other approaches, assuming
access to pre-trained word embeddings. SIF vectors are
low-dimensional in comparison to transformer-based
models such as BERT (Devlin et al., 2019), and of
similar dimensionality as other Knowledge Graph em-
bedding techniques. Secondly, previous work (Allen
et al., 2021) has also shown a close relationship be-
tween Knowledge Graph embeddings and context-free
word embeddings, as they and TransE share their trans-
lational characteristics (Mikolov et al., 2013; Bordes
et al., 2013). Therefore, SIF is a well-suited replace-
ment for TransE since we remain in the word embed-
ding space, maintaining these properties. Thirdly, SIF
does not rely on word order or local frequency of oc-
currence, which makes it suitable for analysis of brief
textual material such as the ones at hand, as the vast
majority of descriptions contain less than 15 words
(see 2). This allows us to concatenate the labels, de-
scriptions, and superclass instance relations into sim-
ple sets of words (see Figure 3). In the singular value
decomposition of SIF, we remove the first five prin-
cipal components and use pre-trained GloVe vectors4

glove-wiki-gigaword-100 in 100 dimensions.

4.2. Few-shot setting
In the Few-shot setting, we investigate whether the
Adaptive Attentional Network (FAAN) by Sheng et al.
(Sheng et al., 2020) can benefit from the textual em-
beddings derived from the data collected.
FAAN FAAN is, as mentioned previously, an
attention-based neural network which maximizes the
scores for true triplets and minimizes the score for false
ones. In each iteration, a set of K support examples
for a rare relation r ∈ R, Sr = {(hi, r, ti) | i ∈
1..K, r ∈ R} are sampled along with a true query Q =
(hQ, r, tQ) and a false example Qf = (hQf

, r, tQf
).

For each entity in all triplets involved, the pre-trained
vector representations of the neighborhood on an entity
Ne = {(rnbr, enbr|(h, rnbr, enbr)} are aggregated into
a representation of each entity e ∈ Sr∪Q∪Qf through
attention-based mechanisms. For each triplet, the rela-
tion r is given an estimate er = et − eh, based on
the translational property of TransE. Each triplet’s set
of head, relation and tail vectors (eh, er, et) are then
concatenated and passed onto an transformer encoder,
where each triplet is transformed into a single repre-
sentation z(h,r,t). The vectors z(h,r,t) of the support set

4Available at https://nlp.stanford.edu/projects/glove/.

triplets are then aggregated into a representation Sr,
adapted to the query qr, again through attention. Fi-
nally, a similarity score ϕ(Qr,Sr) is given by their dot
product, trained to be maximized if Qr is a true triplet
and minimized otherwise. For a more in-depth expla-
nation, we refer to Sheng et al. (Sheng et al., 2020).

4.3. Zero-shot setting
In a Zero-shot setting, we investigate the benefit of
using textual embeddings using two relevant previous
works: the ZS-GAN (Qin et al., 2020) and OntoZSL
(Geng et al., 2021).

ZS-GAN The ZS-GAN, introduced by Qin et al.
(Qin et al., 2020) is a zero-shot architecture consisting
of three components; the feature encoder, the gener-
ator, and the discriminator. As a first step, a feature
encoder is trained to learn a better distribution of the
data from the pre-trained embeddings for entity pairs.
It consists of two encoders; one considering the head
and the tail jointly (fpair(vh, vr) as in Equation (2)), and
a neighbor encoder fN(Ne) (see Equation (3)) taking
the neighbors of an entity into account. Here, σ denotes
the tanh-function, Wpair ∈ Rd×2d is a trainable weight
matrix and b ∈ Rd its bias. A representation of a triplet
v(h,t) is then concatenated as in (4), producing the final
representation from the feature encoder. The feature
encoder is pre-trained through a contrastive loss where
true and false pairs are sampled, and the cosine similar-
ity between the outputted representation v(h,t) and the
original triplet (h, r, t) is maximized for the true exam-
ples and minimized for the false.

fpair(vh, vr) = σ(Wpair(vh ⊕ vt)) + bN (2)

fN(Ne) = σ(
1

|Ne|
∑

(r,e)∈Ne

W (vr ⊕ ve) + b) (3)

v(h,t) = fN(Nh)⊕ fpair(vh, vt)⊕ fN(Nt) (4)

The generator and the discriminator are trained with a
pre-trained feature encoder. A textual representation of
an unseen relation vrtext , produced by word embeddings
weighted by their tf.idf -score (Jones, 1972) is input into
the generator fGen(vrtext ⊕ z), concatenated with nor-
mally distributed noise z ∼ N (0, 1). The generator
fGen(·), which is a two-layer feed-forward neural net-
work, then outputs a representation which the discrim-
inator fDisc(·) learns to classify as true or false. The
discriminator is fed both outputs from the feature en-
coder and false examples generated by the generator
and learns to produce plausible embeddings for the re-
lations. These can then be used to complete the missing
links for new, unseen relation types even if the relation
has not been seen previously. For further reading and
implementation details, we refer to (Qin et al., 2020).

https://nlp.stanford.edu/projects/glove/
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OntoZSL OntoZSL (Geng et al., 2021) improves
upon ZS-GAN by incorporating ontological informa-
tion. It bears much resemblance to the ZS-GAN in
terms of its architecture, but with one additional mod-
ule: the Ontology Encoder. The Ontology Encoder
takes an ontological schema of a Knowledge Graph, en-
codes it as an embedding, and inputs it into the genera-
tor to generate a plausible structure- and text aware em-
bedding which contains richer information than a vec-
tor based only on a textual description of the relation.
Apart from incorporating ontological information, the
neural architecture of OntoZSL to synthesize examples
of unseen relation types is similar to that of ZS-GAN.
Entities are passed along with neighbors to a Feature
Encoder, which is then passed to a Discriminator as a
true example. For further details, we refer to Geng et
al. (Geng et al., 2021).

5. Experiments
In our experiments, which we make publicly available
(Cornell, 2022), our goal is to show that our textual
descriptions can easily replace the structure-based em-
beddings in the three existing neural architectures in-
troduced above and show the benefit of using the data
we collected for enriching the data sets for this task.

5.1. Few-shot experiments
We run experiments on the NELL-One and Wiki-
One data sets and perform five-shot learning using the
FAAN architecture. We use the same hyperparameters
on both data sets as the original authors (Sheng et al.,
2020); for more details, we refer to our experiments
(Cornell, 2022). We report four metrics: the hit ratios
Hits@10, Hits@5, and Hits@1, giving the ratio of cor-
rect entities landing in the top X results, and the Mean
Reciprocal Rank (MRR), giving the average of the in-
verse rank as in (5). We set X to be 1, 5, and 10.

MRR =
1

N

n∑
i=1

1

ranki
(5)

For both NELL-One and Wiki-One, we use 100-
dimensional SIF embeddings and run experiments with
TransE, DistMult, and SIF with the same settings. We
also conduct ablation studies and remove each text at-
tribute one at a time to see which contribute most when
using SIF with the 100-dimensional GloVe vectors.
This helps us understand further what type of informa-
tion in the word embeddings that are important. As
mentioned in Section 4.1, we are due to memory con-
straints limited to SIF, and cannot perform experiments
using the transformer-based embeddings.

5.2. Zero-shot experiments
In the Zero-shot experimental setting, we re-use the
ZS-GAN and OntoZSL architectures. As in the
Few-shot experiments, we use TransE and DistMult
Knowledge Graph embeddings, and also replace these
with SIF and BERT-based embeddings. We again use

the same hyperparameters used in the original experi-
ments (Cornell, 2022) and compare under similar set-
tings. We re-use parts of the code uploaded by the
authors of ZS-GAN (Qin et al., 2020) and OntoZSL
(Geng et al., 2021), respectively.

6. Results
Few-shot results Table 6 displays our results. For
NELL-One, the improvement from using SIF is not as
great as for Wiki-One. We hypothesize that the discrep-
ancy is due to the sparser text descriptions in NELL, in
particular for the entities.
The ablation study in Table 7 shows that the labels
carry most of the information in both data sets, which
indicates that information about entity names is cap-
tured through word vectors trained on large text cor-
pora. Using instance seems to make little differ-
ence on Wiki-One. We believe this is because the de-
scriptive text in instance often is terse, generic, and
unspecific: there are only 29 184 unique instance
descriptions in the Wiki-One data set and e.g. approxi-
mately 33% of all entities have the label human.

Zero-shot results The Zero-shot experiments
demonstrate a major improvement over the baselines,
as shown in Table 5. The performance increase on the
textually richer Wiki-ZS data set is considerable, and
lesser on the textually sparser NELL data set. Where
textual descriptions are available, both zero-shot
models make significantly better predictions.

7. Discussion
In our results, we see an improvement of performance
on the data sets for which we have textual descriptions.
On NELL, where textual descriptions are not available
for the entities, the improvement is smaller since the
entities and relations are represented using much less
information. The improvement is also smaller for the
few-shot setting than in the zero-shot setting. The abla-
tion study confirms this result (Table 7), where we see a
clear drop in performance when we remove the textual
description, in particular the label. However, we still
witness a solid improvement in the zero-shot scenario,
indicating that using textual features in these scenarios
is highly beneficial.
We also see that for all metrics, the transformer-based
embeddings provide a better result than the SIF em-
beddings. This may be due to a better model of phrase
structure in the description texts, or in better coverage
of the background text data the model’s word vectors
are trained on. The effect of training data coverage
needs still to be determined. It is worth noting that
the processing cost of using transformer models may
be prohibitive, as indeed was found by us in Few-shot
condition, and that models such as the more econom-
ical SIF have their place in practical use. In only one
case do we see that DistMult embeddings are slightly
better than the BERT embeddings in the zero-shot sce-
nario (see Table 5).
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Data set Model Embed method Hits@10 Hits@5 Hits@1 MRR

NELL-ZS

OntoZSL

TransE .352 .295 .156 .225
DistMult .371 .313 .188 .252
SIF (Ours) .407 .336 .184 .261
BERT (Ours) .411 .349 .185 .266

ZS-GAN

TransE .340 .274 .144 .211
DistMult .378 .310 .179 .247
SIF (Ours) .383 .314 .151 .232
BERT (Ours) .426 .352 .200 .277

Wiki-ZS

OntoZSL

TransE .259 .211 .140 .184
DistMult .289 .238 .167 .211
SIF (Ours) .501 .411 .240 .329
BERT (Ours) .604 .528 .349 .437

ZS-GAN

TransE .245 .195 .109 .159
DistMult .277 .235 .158 .204
SIF (Ours) .475 .392 .237 .318
BERT (Ours) .567 .489 .327 .409

Table 5: Results on Zero-shot learning data sets. Bold marks the best results for each neural model; underlined the
best for each data set.

Data set Embeddings Hits@10 Hits@5 Hits@1 MRR

NELL-One
TransE .413 .343 .221 .282
DistMult .404 .348 .25 .301
SIF .446 .384 .272 .328

Wiki-One
TransE .443 .373 .253 .313
DistMult .359 .303 .206 .256
SIF .491 .422 .294 .357

Table 6: Results from running 5-shot completion with
the FAAN architecture on NELL-One and Wiki-One.

Features Hits@10 Hits@5 Hits@1 MRR

NELL-One

All .437 .365 .22 .291
No relation description .446 .384 .272 .328
No Category .404 .329 .204 .268
No Label .303 .240 .151 .204

Wiki-One

All .492 .422 .304 .363
No Label .443 .368 .242 .305
No Description .463 .398 .265 .323
No Instance .494 .429 .303 .365

Table 7: Results from the few-shot ablation studies.
Removing labels and descriptions decreases the perfor-
mance the most.

One limitation with our method is of course the require-
ment that all entities and relations have some form of
textual description. Even for NELL, a data set with
sparse textual descriptions, we do find a performance
improvement, leading us to conclude that using text is
helpful even in a low-resource setting.
Another important point to discuss is that there is a
strong link between Wikidata, Wikipedia, and pre-
trained models in general: as many pre-trained mod-
els are trained on the English part of Wikipedia
(among other sources of text) there is a higher prob-
ability that the words for a head and a tail en-
tity have been seen together during the training
of the word vectors. While the GloVe vectors
used in this were trained on a Wikipedia dump,
the Paraphrase-MiniLM-L12-v2 was trained on
SimpleWiki, a version of Wikipedia with simple En-
glish. This, we argue, is precisely the advantage that

textual background resources are intended to convey
to our approach. The specific relations of the Knowl-
edge Graph are not explicitly encoded in the trained
representations, and the fact that the textual informa-
tion links the head and the tail entities is what general
purpose learning is all about. This motivates every tex-
tual transfer learning approach where the objective is
to move from unstructured text data to a structured for-
mat, for example, in the format of a Knowledge Graph.

8. Conclusion
In this paper, we have shown how descriptive text in
Knowledge Graphs is useful for inferring missing re-
lations. Our textually enriched representation of en-
tities and relations yields better results on two well-
established benchmarks for the Few- and Zero-shot
Knowledge Graph completion task. We also show that
when the textual material is sparse, as in one of the
benchmarks, performance improvement is lesser, al-
though still considerable in most conditions. Our ex-
periments bridge the gap between using structural and
textual features as input to Few- and Zero-shot Knowl-
edge Graph Completion methods and make a new en-
riched Knowledge Graph resource available for future
research. From a more general perspective, our experi-
ments demonstrate the value of using textual resources
to enrich more formal representations of human knowl-
edge and in the utility of transfer learning from textual
data and text collections to enrich and maintain knowl-
edge resources in general.
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