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Abstract
Relation extraction (RE) is a sub-field of information extraction, which aims to extract the relation between two given named
entities (NEs) in a sentence and thus requires a good understanding of contextual information, especially the entities and their
surrounding texts. However, limited attention is paid by most existing studies to re-modeling the given NEs and thus lead to
inferior RE results when NEs are sometimes ambiguous. In this paper, we propose a RE model with two training stages, where
adversarial multi-task learning is applied to the first training stage to explicitly recover the given NEs so as to enhance the main
relation extractor, which is trained alone in the second stage. In doing so, the RE model is optimized by named entity recogni-
tion (NER) and thus obtains a detailed understanding of entity-aware context. We further propose the adversarial mechanism
to enhance the process, which controls the effect of NER on the main relation extractor and allows the extractor to benefit from
NER while keep focusing on RE rather than the entire multi-task learning. Experimental results on two English benchmark
datasets for RE demonstrate the effectiveness of our approach, where state-of-the-art performance is observed on both datasets.‡
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1. Introduction
Relation extraction (RE) is an important task in natu-
ral language processing (NLP), which has been widely
used in many downstream NLP applications such as
summarization (Wang and Cardie, 2012), question an-
swering systems (Xu et al., 2016a) and text mining
(Distiawan et al., 2019). The object of RE is to detect
the relation between two given named entities (NEs) in
the input sentence, where a good understanding of the
contextual information is important to achieve a satis-
fying performance. In doing so, most previous studies
(Xu et al., 2015; Miwa and Bansal, 2016; Xu et al.,
2016b; Zhang et al., 2018; Guo et al., 2019; Sun et
al., 2020; Yu et al., 2020; Mandya et al., 2020; Chen
et al., 2021; Tian et al., 2022) leveraged the depen-
dency tree of the input sentence and model the con-
textual information along the shortest dependency path
between the two entities and showed promising per-
formance on RE. However, although NEs are usually
given for RE, a good modeling of them is also highly
important especially when they are ambiguous in some
scenarios. For example, the example sentence in Figure
1 has three different NEs (i.e., “president”, “cabinet”,
and “room”), where the NE “room” is paired with the
other two NEs with separate relations: “room” is the lo-
cation of “president” and owned by “cabinet”. In this
case, with the same sentential context, “room” has am-
biguities when it is paired with different entities.
Although identifying NEs (even though they are given)
could provide more information to support RE, previ-
ous studies paid little attention to doing so. Currently,
the most common approach to model NEs is to add spe-

*Equal contribution.
†Corresponding author.
‡Our code is available at https://github.com/

synlp/RE-AMT.

Figure 1: An illustration of the ambiguities carried
by multiple NEs (i.e., “president”, “cabinet”, “room”)
in an example sentence, where “room” is paired with
other NEs via separate relations (e.g., “Located” means
the “president” is located at the “room”; “Owner” indi-
cates the “cabinet” is the owner of the “room”).

cial tokens before and after each NE in the input sen-
tence (Baldini Soares et al., 2019; Wu and He, 2019)
so as to explicitly mark them for next step. This simple
and straightforward approach has been demonstrated
to be effective, yet it only marks the boundary of the
NEs and cannot help the model to understand further
information about those NEs (e.g., the meaning of the
NEs). Thus, an appropriate approach to identifying the
given NEs in the input sentence has the potential to en-
hance RE models with better entity-aware context un-
derstanding.
In this paper, we propose an approach to enhance RE
through adversarial multi-task learning. Specifically,
our approach has two training stages. In the first train-
ing stage, an NE tagger is added to the main relation
extractor as another learning task and its object is to
recover the given NEs so as to enhance the extractor.
As a result, the extractor is optimized by the named
entity recognition (NER) task, from which RE is in-
corporated with detailed understanding to entity-aware
context. To further enhance the RE and NER learn-
ing, a discriminator is added to the relation extractor to
control the impact of the NER task on the main relation
extractor, which allows the extractor to benefit from the
NER task in a discriminative manner. In doing so, RE
learning is not dominated by the multi-task process and
thus the entire model focuses more on RE. Later, in the

https://github.com/synlp/RE-AMT
https://github.com/synlp/RE-AMT
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Figure 2: The overall architecture of the proposed adversarial multi-task learning for RE with an example input
sentence and its two entities (i.e., “air force” and “pilot” highlighted in red and blue, respectively). The main
relation extractor and NE tagger for multi-task learning of RE and NER are illustrated at left and top right, respec-
tively, where the encoder shared by both tasks (i.e., shared encoder) is presented at bottom left. The discriminator
to facilitate adversarial multi-task learning to control the effect of NER task is shown at bottom right.

second training stage, the main relation extractor is fur-
ther trained alone on RE without NER and the discrim-
inator, following the standard procedure of supervised
RE training. This two-stage-training design allows our
model to not only benefit from the NER task, but also
be used in the same way as general RE models during
reference. Particularly, compared with previous studies
(Gupta et al., 2016; Luan et al., 2018) with multi-task
learning for NER and RE, our approach differs from
theirs in the task setting and learning objectives. In gen-
eral multi-task learning for the two tasks, the NEs are
not available and thus the object of their approaches
is to optimize NER and RE equally at the same time,
where only one training stage is required. However, in
our approach, RE is the final target and NEs are given
with our approach designed to focus on RE, where the
discriminator (which does not exist in general multi-
task learning framework) controls the effect of NER in
only a part of training process without affecting the en-
tire training and inference stages. Experimental results
on two English benchmark datasets, i.e., ACE2005EN
and SemEval 2010 Task 8, demonstrate the effective-
ness of our approach to RE, where state-of-the-art per-
formance is observed on both datasets.

2. The Proposed Approach
The architecture of our approach with adversarial
multi-task learning is illustrated in Figure 2, where the
main relation extractor for RE and the NE tagger for
NER are illustrated on the left and top right side, re-
spectively, with the shared encoder (SE) for both tasks

shown at the bottom left part. A discriminator that
takes the output of the shared encoder and determines
whether the NE tagger can correctly recover each given
NE in the input, is illustrated on the bottom right side.
Overall, our approach has two training stages. In the
first training stage, we train the model on both RE
and NER with adversarial multi-task learning, formal-
ized by

ŷRE, ŷNER = Adv-MT(X , E1, E2) (1)

where X = x1 · · ·xn is the input sequence with n
words; E1 and E2 denote the two given entities in X ,
which are usually sub-strings of X and is only visible to
the main relation extractor; ŷRE is the predicted relation
between E1 and E2; ŷNER is the sequence of recovered
NE tags. In the second training stage (presented in
the green box in Figure 2), we further train the main
relation extractor alone without the NE tagger and the
discriminator (i.e., in the same way as the standard su-
pervised RE training), which is formalized by

ŷRE = f(X , E1, E2) (2)

In doing so, the main relation extractor is further en-
hanced on the target RE task itself and thus is able to
achieve higher RE performance than models trained on
both RE and NER.
Since the second training stage follows the standard
procedure of supervised RE training, in the following
texts, we focus on the proposed adversarial multi-task
learning used in the first training stage. Specifically,



6192

we start with describing the multi-task learning of RE
and NER and then elaborate the details of the adver-
sarial mechanism applied to multi-task learning in our
approach.

2.1. Multi-task Learning for RE
In general, a good understanding of NEs and their sur-
rounding texts is highly important for RE. One com-
mon approach to benefit from heterogeneous tasks is to
perform multi-task learning, so that the model can learn
from different resources and thus achieve promising re-
sults (Gupta et al., 2016; Chen et al., 2017; Luan et al.,
2018; Xia et al., 2019; Barnes et al., 2019; Qin et al.,
2021a; Qin et al., 2022). Following this paradigm, we
propose to perform multi-task learning for RE and NER
to learn entity-aware contextual information and thus
enhance RE performance accordingly. Specifically, our
approach follows the encoding-decoding setting, where
the task-free encoder in the main relation extractor is
shared by both RE and NER. Such shared encoder (SE)
encodes task-free contextual information in the input
sentence X by

[h̃1, · · · , h̃n] = SE(X ) (3)

where h̃i (i ∈ [1, n]) denotes the task-free hidden vec-
tor for xi. Then, h̃1 · · · h̃n are fed to task-specific en-
coders (e.g., BiLSTM) and decoders (e.g., softmax de-
coder) to predict the task labels (i.e., relations and NE
tags). Afterwards, the predictions are compared with
the gold standards to obtain the task-specific loss. Fi-
nally, the losses from RE and NER (denoted by LRE
and LNER, respectively) are summed together to obtain
the final loss L of the entire model by

L = LRE + λ · LNER (4)

where λ is a positive hyper-parameter to control how
much NER contribute to the overall learning process.
The detailed procedure to obtain the losses for RE (i.e.,
LRE) and NER (i.e., LNER) is described as follows.

Relation Extraction RE is generally formalized as a
classification task with a given input sentence X and
two NEs, i.e., E1 and E2. We firstly feed h̃1 · · · h̃n

obtained from the shared encoder to the RE encoder
(which can be any type of popular encoder such as BiL-
STM or Transformer (Vaswani et al., 2017)) and obtain
the task-specific hidden vector, i.e., hRE

i , for each xi.
Then, we apply the max pooling mechanism onto two
text spans. The first is for all h̃i and hRE

i to obtain the
task-free and task-specific global sentence representa-
tions, i.e., h̃X and hRE

X , respectively, through

h̃X = MaxPooling({h̃1, · · · , h̃n}) (5)

and

hRE
X = MaxPooling({hRE

1 , · · · ,hRE
n }) (6)

The second is for the hRE
i of those words that belong

to a particular NE (i.e., Ek, k = 1, 2) to compute the
vector representation of the entity hRE

Ek
by

hRE
Ek

= MaxPooling({hRE
i |xi ∈ Ek}) (7)

Then, we concatenate (i.e., ⊕) the task-free and task-
specific representations of the sentence (i.e., h̃X and
hRE
X ), as well as the two entity representations (i.e., hRE

E1

and hRE
E2

), to obtain

hRE = h̃X ⊕ hRE
X ⊕ hRE

E1
⊕ hRE

E2
(8)

for final prediction and feed hRE to a softmax classifier
and obtain oRE in the output space by

oRE = softmax
(
WRE · hRE + bRE

)
(9)

where WRE and bRE represent the trainable matrix and
bias vector, respectively, and each dimension of oRE

represents the predicted probability of a particular re-
lation type given X and two NEs (i.e., E1 and E2).
Finally, we apply the negative log likelihood loss func-
tion to the predictions, where the loss for RE (i.e., LRE)
is computed by

LRE = − log p(yRE∗
|X , E1, E2) (10)

where p(yRE∗ |X , E1, E2) denotes the predicted prob-
ability of the ground truth relation yRE∗

between the
given entity pair (i.e., E1 and E2) in the sentence X .

Named Entity Recognition NER is conventionally
performed as a sequence labeling task, where each
word is tagged by an NE label following the “BIO”
schema. Similar to RE, an NER encoder firstly takes
the output of the shared encoder (i.e., h̃1 · · · h̃n) and
outputs the task-specific hidden vector hNER

i for xi.
Next, for each xi, we concatenate h̃i and hNER

i and feed
the computed vector to a softmax classifier for NER,
which is formalized by

oNER
i = softmax

(
WNER ·

(
h̃i ⊕ hNER

i

)
+ bNER

)
(11)

where WNER and bNER are the trainable matrix and
bias vector, respectively, and each dimension of oNER

i

represents the predicted probability of a particular NE
tag for xi. Finally, we apply the negative log likelihood
loss function to NER predictions for all words and ob-
tain the loss (i.e., LNER) by

LNER = −
n∑

i=1

log p(yNER∗

i |X ) (12)

where p(yNER∗

i |X ) is the predicted probability of the
ground truth NE label yNER∗

i for the word xi.

2.2. The Adversarial Learning of Multi-tasks
Although the aforementioned multi-task learning ap-
proach uses a predefined hyper-parameter (i.e., λ) to
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balance the effect of NER on the main relation extrac-
tor, this approach cannot automatically adjust the ap-
propriate contribution of NER during the training pro-
cess, which may lead the main relation extractor to ei-
ther learn limited entity information from the NER task
(in cases where the λ is small) or be dominated by NER
(in cases where the λ is big). To further enhance RE
and NER learning, we add a discriminator to the shared
encoder (i.e., SE) to control the impact of NER on the
main relation extractor. The discriminator is designed
to take the output of the shared encoder (i.e., h̃1 · · · h̃n)
as its input and predict whether the NE tagger can suc-
cessfully recover the given NEs. Therefore, for each
word xi, the discriminator aims to make a binary clas-
sification (we define the prediction for xi as ŷD

i in the
{0, 1} label set), where the ground truth (denoted by
yD∗

i ) of xi can be defined by

yD∗

i =

{
0 ŷNER

i ̸= yNER∗

i

1 ŷNER
i = yNER∗

i

(13)

where ŷNER
i and yNER∗

i refer to the recovered and the
ground truth NE label for the word xi, respectively.
Specifically, for each word xi in X , the discriminator
maps h̃i to a two dimensional vector oD

i by a fully con-
nect layer with softmax activation function, which is
denoted by

oD
i = softmax

(
WD · h̃i + bD

)
(14)

where WD and bD represent the trainable matrix and
bias vector, respectively. Herein, the values at the first
and second dimension of oD

i represent the probabili-
ties of classifying xi as class 0 and class 1 (defined by
Eq. (13)), respectively. Afterwards, we apply the neg-
ative log likelihood loss function to the discriminator
and compute the loss LD by

LD = −
n∑

i=1

log p(yD∗

i |X ) (15)

Finally, we use the loss from the discriminator to con-
trol the effect of NER by multiplying LD and LNER.
Therefore, the objective of our approach with adversar-
ial multi-task learning is to minimize the total loss L
defined by

L = LRE + LD × (λ · LNER) (16)

with LRE, LNER, and λ following Eq. (4).
Through this process, the effect of NER is dynami-
cally controlled by the discriminator, which can be fur-
ther explained as follows. On the one hand, when the
NE tagger successfully recovers the given NEs (i.e.,
yD∗

i = 1) and the discriminator predicts that the NE
tagger can recover the NEs (i.e., ŷD

i = 1) (which means
the shared encoder in the main relation extractor has al-
ready have a good modeling to the NEs and their con-
text), both LD and LNER are relatively small. Therefore,

RE Label Set NER Label Set
E1 E2

Cause-Effect Cause Effect
Instrument-Agency Instrument Agency
Product-Producer Product Producer
Content-Container Content Container
Entity-Origin Entity Origin
Entity-Destination Entity Destination
Component-Whole Component Whole
Member-Collection Member Collection
Message-Topic Message Topic
other other other

Table 1: Rules applied to tag NEs from different rela-
tion types.

Hyper-parameters Values

Learning Rate 5e− 6,1e− 5, 3e− 5, 5e− 5
Warmup Rate 0.06, 0.1
Dropout Rate 0.1
Batch Size 4,8

Table 2: The hyper-parameters are tested in tuning our
models and the best one used in our final experiments
are highlighted in boldface.

the loss from the NE tagger is further small and thus
reduces the influence of NER to the main relation ex-
tractor. On the other hand, when the NE tagger makes
an incorrect prediction (i.e., yD∗

i = 0) and the discrim-
inator predicts that the NE tagger cannot recover the
NEs (i.e., ŷD

i = 0) (which means the NE tagger can-
not identify the NEs correctly), LD is relatively small
while LNER is rather large. As a result, a mild loss from
NER is obtained, which allows the entire model learns
to identify NEs in a gentle manner. In the rest cases
where ŷD

i ̸= yD∗

i (which means the main relation ex-
tractor cannot understand the NEs correctly), LD is rel-
atively large, the main relation extractor is then forced
to learn more NE information from NER.

3. Experimental Settings

3.1. Datasets

Following previous studies (Wu and He, 2019; Tian
et al., 2021; Chen et al., 2021), we use two English
benchmark datasets in the experiments for RE, namely,
ACE2005EN (ACE05) and SemEval 2010 Task 8 (Se-
mEval) (Hendrickx et al., 2010). For ACE05, we use
its English section and follow previous studies (Miwa
and Bansal, 2016; Christopoulou et al., 2018; Ye et al.,
2019) to pre-process it, where two small subsets cts
and un are removed. Then, we split the dataset into
training, development, and test sets. For SemEval, we
use its official train/test split.
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3.2. NE Label Extraction
To perform our approach, the ground truth NE labels
with necessary detailed type information (e.g., person,
organization, or location) would be helpful to enhance
the model’s understanding to the given NEs. There-
fore, to facilitate the adversarial multi-task learning of
RE and NER, we try three different methods to assign
words with NE labels.
The first method uses simple labels (SL), which do not
distinguish different NE types (i.e., each word is ei-
ther tagged by “NE” or “non-NE”). The second method
uses relation labels (RL), which are obtained from the
relation type between the two NEs, to present NEs.
Normally, a relation label is in a “type1-type2” form
with two parts, where each of them illustrates the role
of a NE in that relation. Therefore, in this method,
different parts of the label (i.e., “type1”, “type2”) are
assigned to the two corresponding NEs. For example,
for the two entities E1 and E2 in relation “Content-
Container (e1, e2)”, the NE type of E1 is “Content”
while the NE type of E2 is “Container”. For the special
relation “Other” that only contains one part, we regard
“Other” as the NE type for both NEs. Table 1 elab-
orates all the rules to extract NE types from the rela-
tion type. The third method uses the NER results of an
off-the-shelf toolkit (TL), namely, Stanford CoreNLP
Toolkit Manning et al. (2014). We use the follow-
ing rules to resolve the conflicts between toolkit out-
puts and the given NEs in an input instance: (1) we
ignore the NEs recognized by the toolkit for the words
other than the given NEs; (2) we use “UNK” as the NE
type for the given NEs if they are not recognized by the
toolkit.
Note that, the extracted NE labels are only used in the
first training stage and they are either extracted from
the ground truth that are available in supervised train-
ing (for SL and RL) or obtained through off-the-shelf-
toolkit, without requiring any manual work. In the sec-
ond training stage and in inference, we follow the stan-
dard procedure to train and test supervised RE models,
where the NE labels are not used.

3.3. Implementation
For the shared encoder, because pre-trained word em-
beddings and language models have shown their effec-
tiveness for many NLP tasks (Pennington et al., 2014;
Song et al., 2018; Peters et al., 2018; Song and Shi,
2018; Zhang et al., 2019; Yang et al., 2019; Diao
et al., 2020; Joshi et al., 2020; Song et al., 2021;
Diao et al., 2021), we try one of the most representa-
tive ones, namely, BERT-large-uncased1 (Devlin et al.,
2019), following the default settings (i.e., we use 24
layers of multi-head attentions with 1024-dimensional
hidden vectors). In addition, we try two different types
of task-specific encoder, namely, BiLSTM and Trans-
former, for RE and NER. For other hyper-parameters

1We download the BERT models from https://
github.com/huggingface/transformers.

ACE05 SemEval # Para.

BiLSTM 75.84 88.93 351,964K

+ MT (SL) 76.27 89.53 368,783K
+ Adv-MT (SL) 77.39 89.69 368,785K

+ MT (RL) 78.35 89.53 368,805K
+ Adv-MT (RL) 79.11 89.89 368,807K

+ MT (TL) 77.27 89.35 368,818K
+ Adv-MT (TL) 77.48 89.58 368,820K

Transformer 77.04 89.01 343,556K

+ MT (SL) 77.13 89.47 351,972K
+ Adv-MT (SL) 77.70 89.64 351,974K

+ MT (RL) 77.19 89.53 351,983K
+ Adv-MT (RL) 79.25 90.02 351,985K

+ MT (TL) 77.25 89.35 351,989K
+ Adv-MT (TL) 77.69 89.51 351,991K

Table 3: F1 scores of different models with BiLSTM
and Transformer task-specific encoder on the test sets
of SemEval and ACE05, where the number of param-
eters (i.e., Para.) is also reported. “MT” is the base-
line with multi-task learning; “Adv-MT” refers to our
approach with adversarial multi-task learning. “SL”,
“RL”, and “TL” are three different types of NE labels
used for NER, respectively.

used in training our model, we illustrate them in Table
2. We test all combinations of them for each model and
use the one achieving the highest accuracy score in our
final experiments.
For evaluation, we follow previous studies to use
the standard micro-F1 scores for ACE05 and macro-
averaged F1 scores for SemEval, where the relation
type “Other” is ignored. In our experiments, we try
different combinations of hyper-parameters, and tune
them on the dev set. Then we conduct evaluation on
the test set of the model that achieves the highest F1
score on the dev set.

4. Results and Analyses
4.1. Overall Results
In the experiments, we run two baselines and our model
with BERT-large as the shared encoder and different
types of task-specific encoders (i.e., BiLSTM or Trans-
former). The first baseline (i.e., “BiLSTM” or “Trans-
former” in Table 3) follows the standard process to train
a RE model without using multi-task learning; the sec-
ond baseline (i.e., “MT ” in Table 3) performs multi-
task learning on RE and NER without the adversarial
learning. For all models with multi-task learning, we
try three different methods (i.e., SL, RL, and TL) to
extract NE labels for the NE tagger. The F1 scores2

of different models (as well as their sizes in terms of

2We report the performance of these models on the devel-
opment set and the mean and the standard deviation of the
test set results in Appendix E and Appendix F, respectively.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Models ACE05 SemEval

†Zhang et al. (2018) - 84.8
Wu and He (2019) - 89.2
Christopoulou et al. (2018) 64.2 -
Ye et al. (2019) 68.9 -
Baldini Soares et al. (2019) - 89.5
†Mandya et al. (2020) - 85.9
†Sun et al. (2020) - 86.0
†Yu et al. (2020) - 86.4
Wang et al. (2020) 66.7 -
Wang and Lu (2020) 67.6 -
Wang et al. (2021) 66.0 -
†Tian et al. (2021) 79.05 89.85

BiLSTM + Adv-MT (RL) 79.11 89.89
Transformer + Adv-MT (RL) 79.25 90.02

Table 4: The comparison of F1 scores between pre-
vious studies and our best model with BERT-large on
the test sets of ACE05 and SemEval. Previous stud-
ies that leverage syntactic information (e.g., the depen-
dency tree of the input sentence) are marked by “†”.

ACE05 SemEval
RE NER RE NER

TF + MT (SL) 76.81 52.31 88.72 52.49
TF + Adv-MT (SL) 77.02 50.28 89.13 49.37

TF + MT (RL) 77.10 50.85 88.96 52.34
TF + Adv-MT (RL) 77.70 49.92 89.57 47.21

TF + MT (TL) 76.58 50.39 88.67 51.97
TF + Adv-MT (TL) 77.03 48.32 89.11 50.02

Table 5: The RE and NER results (F1 scores) of multi-
task baselines and our approach after the first training
stage. “TF” denotes Transformer task-specific encoder.

the number of trainable parameters) on the test sets of
ACE05 and SemEval are reported in Table 3.
There are several observations. First, although
the baselines without multi-task learning (MT) have
achieved outstanding performance, all models with MT
further improve model performance. This observation
confirms the effectiveness of learning from NER task
to improve RE. Second, compared with the baseline
with the standard multi-task learning (i.e., MT), our ap-
proach with adversarial learning (i.e., Adv-MT) further
improves the model performance with only 2K more
parameters. It indicates the effectiveness of the dis-
criminator to control the impact of the NER task on the
main relation extractor, which allows the extractor to
benefit from the NER task in a discriminative manner.
Third, among models with different NE types (i.e., SL,
RL, and TL), the ones configured with RL achieve the
highest F1 scores in most cases. A possible explanation
could be that, compared with SL that ignores NE type,
labels extracted from the relation labels (i.e., the RL NE
type) provides more detailed information of the given

ACE05

Transformer 73.27

+ MT (SL) 73.35
+ Adv-MT (SL) 73.94

+ MT (RL) 73.39
+ Adv-MT (RL) 74.51

+ MT (TL) 73.33
+ Adv-MT (TL) 73.96

Table 6: F1 scores of baselines and our approach with
Transformer task-specific encoder and different types
of NE label (i.e., SL, RL, and TL) on a subset of the
ACE05 test set, where each test sentence contains at
least two entity pairs.

NEs, which leads our approach to have a better NE un-
derstanding. In addition, compared with TL, RL tends
to provide more information of the particular roles that
the NEs are playing in a relation, which is more closer
to the object of the RE. As a result, our model benefits
more from the RL and obtains the highest performance
among different NE type settings.

4.2. Comparison with Previous Studies
To further demonstrate the effectiveness of our ap-
proach, we compare our approach with BERT-large
shared encoder under the best setting (i.e., Adv-MT
(RL) with Transformer task-specific encoder) with pre-
vious studies and report the results in Table 4, where
state-of-the-art performance is observed. Specifically,
our approach outperforms Wu and He (2019) and Bal-
dini Soares et al. (2019) that use BERT-large encoder,
which demonstrates the effectiveness of our approach
to learn NEs and their contexts from adversarial multi-
task learning. In addition, compared with previous
studies (Zhang et al., 2018; Mandya et al., 2020; Guo
et al., 2019; Sun et al., 2020; Yu et al., 2020) that lever-
age dependency information (marked by † in Table 4),
our approach provides an alternative to improve RE by
explicitly modeling the NEs and its contexts through
adversarial multi-task learning, without relying on the
existence of a dependency parser.

4.3. Effect of the Discriminator
Compared with the standard multi-task learning base-
line, our approach applies a discriminator to the main
relation extractor to control the effect of NER task so
as to allow the extractor discriminatively learn from
but not being dominated by NER. To explore whether
the discriminator functionalizes as excepted, we ex-
tract the intermediate models (checkpoints) obtained
after the first training stage from our best perform-
ing models with and without the discriminator (Trans-
former+MT) and evaluate such intermediate models
on RE and NER separately. The results are reported
in Table 5. It is clearly showed that our approach
(i.e., Transformer+Adv-MT) outperforms the baseline
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Figure 3: A case study of different models on an example sentence with three NEs (i.e., “exxon mobil”, “share-
holders”, and “dallas” highlighted in blue, red, and green colors, respectively), where the relations of each NE pair
are different. The model predictions on different NE pairs are also presented, where the prediction from our model
(i.e., Transformer + Adv-MT (SL)) matches the gold standard while the other two baseline models fail to do so.

without the discriminator (i.e., Transformer+MT) on
RE and both models show comparable performance on
NER. Given that our approach outperforms the baseline
after the second training stage (see Table 3), the obser-
vation from intermediate models confirms that the dis-
criminator successfully controls the influence of NER
on the main relation extractor and avoid performance
hurt from the plain multi-task learning.

4.4. Effect of NER for RE
To explore whether our approach successfully lever-
ages the information from NE from the first training
stage, particularly by handling the ambiguities intro-
duced by different NEs, we extract sentences with at
least two entity pairs from the test set of ACE05 dataset
and evaluate both baselines and our approach with the
best setting on these sentences. Table 6 reports the
F1 scores of different models on the subset, where our
model outperforms the two baselines and demonstrates
its validity and effectiveness to learn and address the
ambiguities of NEs to improve RE. Specifically, among
the three different types of NE labels, our models with
RL achieves the best performance, which is reasonable
based on the following explanations. Compared with
SL, RL carries more detailed information of the given
NE (i.e. the corresponding relation types), leading
to better understandings of NEs along with their sur-
rounding texts. In addition, compared with TL which
migrates the label types from other benchmark datasets
whose domain might be different from the domain of
ACE05, RL provides more localized knowledge in-
stead of cross domain knowledge for RE.

4.5. Case Study
Further more, we conduct a case study on an exam-
ple sentence to further analyze the effect of NER for
RE. Figure 3 illustrates the example sentences with two
entity pairs, namely (“exxon mobil”, “shareholders”)
and (“shareholders”, “dallas”), as well as the predic-
tions from the baseline (i.e., Transformer), the multi-
task learning baseline (i.e., Transformer+MT (SL)),
and our approach (i.e., Transformer+Adv-MT (SL)),
where our approach correctly extracts the relation be-
tween both entity pairs whereas the two baselines do
not. In this case, the NE “shareholders” is ambiguous
because it plays different roles when it is paired with
“exxon mobil” and “dallas”. Therefore, the baseline
model without multi-task learning misinterprets the en-

tity pair “shareholders”, “dallas” and hence predicts
incorrect relation “PART-WHOLE” between them. In
addition, we note that, for both Transformer+MT (SL)
and Transformer+Adv-MT (SL) with multi-task learn-
ing, their corresponding intermediate models obtained
from the first training stage can successfully recognize
the NEs. In this case, although the Transformer+MT
(SL) baseline identifies the NEs, it still makes incorrect
prediction, where one possible explanation is that the
main relation tagger in the baseline is potentially over-
influenced by the NER task and thus leads to inferior
performance for RE. As a comparison, our approach
with the discriminator is able to prevent the main rela-
tion extractor from being dominated by NER and hence
extracts the correct relations between different entity
pairs.

5. Related Work
Recently, neural methods (Zeng et al., 2014; Zhang et
al., 2015; Zhou et al., 2016; Wang et al., 2016; Shen
and Huang, 2016; Zhang et al., 2017; Christopoulou et
al., 2018; Wang and Lu, 2020; Wang et al., 2020; Sainz
et al., 2021; Chen et al., 2021; Lyu and Chen, 2021;
Qin et al., 2021b) with advanced encoders (e.g., Trans-
former) have achieved satisfying performance in RE
because of their power in capturing contextual infor-
mation. To further improve model performance, most
studies (Xu et al., 2016b; Zhang et al., 2018; Guo et
al., 2019; Sun et al., 2020; Yu et al., 2020; Mandya et
al., 2020) leverage extra resources, such as dependency
trees of the input sentence, to capture more contex-
tual information along the shorted dependency path be-
tween two given NEs, where necessary pruning strate-
gies are required (Xu et al., 2015; Xu et al., 2016a;
Miwa and Bansal, 2016; Zhang et al., 2018; Yu et al.,
2020) to filter noise in the dependency trees. How-
ever, although NEs are given in the task setting, a good
modeling to them and their contexts is also highly im-
portant, especially in cases where NEs are ambiguous.
Currently, the most common approach to identifying
NEs is to add special tokens before and after each en-
tity in the input sentence (Baldini Soares et al., 2019;
Wu and He, 2019). However, it only marks boundaries
of NEs and cannot assist the model to understand fur-
ther contextual information around NEs.
Compared with the aforementioned methods, our ap-
proach learns to identify NEs from NER through adver-
sarial multi-task learning, from which RE is enhanced
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with detailed understanding to entity-aware context.
In terms of multi-tasking learning, previous studies
(Gupta et al., 2016; Luan et al., 2018) for both RE and
NER are set in the situation that NEs are not available
and their object is to optimize both tasks equally, our
approach treats RE as the final target, where the dis-
criminator controls the effect of NER in only a part
of training process without affecting the entire train-
ing and inference stages. Moreover, considering that
in most RE tasks that NEs are given, our proposed
approach has the advantage of improving RE perfor-
mance without requiring complicated resources (e.g.,
syntax) which may not be available in real applications.

6. Conclusion
In this paper, we propose to enhance relation extrac-
tion (RE) through adversarial multi-task learning. In
detail, our approach has two training stages, where an
NE tagger is added to the main relation extractor as an
extra learning task. The object of the NE tagger is to
recover the given NEs in order to improve the main ex-
tractor with detailed understanding to entity-aware con-
text through named entity recognition (NER). Based on
multi-task learning of RE and NER, adversarial learn-
ing is applied to it to further control the effect of NER
on the main relation extractor and thus allows RE to
benefit from NER other than equally treating the two
tasks. Experimental results on two English benchmark
datasets illustrate the validity and effectiveness of our
model, with state-of-the-art performance.
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