
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 6139–6146
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

6139

Context-based Virtual Adversarial Training
for Text Classification with Noisy Labels

Do-Myoung Lee1∗, Yeachan Kim2∗, Chang-gyun Seo3

1ShinhanCard, 2Deargen Inc., 3GC Company
1domyoung89@shinhan.com, 2yeachan@deargen.me, 3ocean@gccompany.co.kr

Abstract
Deep neural networks (DNNs) have a high capacity to completely memorize noisy labels given sufficient training time, and its
memorization unfortunately leads to performance degradation. Recently, virtual adversarial training (VAT) attracts attention as
it could further improve the generalization of DNNs in semi-supervised learning. The driving force behind VAT is to prevent
the models from overffiting to data points by enforcing consistency between the inputs and the perturbed inputs. These strategy
could be helpful in learning from noisy labels if it prevents neural models from learning noisy samples while encouraging the
models to generalize clean samples. In this paper, we propose context-based virtual adversarial training (ConVAT) to prevent
a text classifier from overfitting to noisy labels. Unlike the previous works, the proposed method performs the adversarial
training in the context level rather than the inputs. It makes the classifier not only learn its label but also its contextual
neighbors, which alleviate the learning from noisy labels by preserving contextual semantics on each data point. We conduct
extensive experiments on four text classification datasets with two types of label noises. Comprehensive experimental results
clearly show that the proposed method works quite well even with extremely noisy settings.

Keywords: Text Classification, Learning with Noisy Labels

1. Introduction
Deep neural networks (DNNs) have shown human-

level performance in various domains, such as image
classification, machine translation, and speech recog-
nition. To achieve such an ability, it is indisputably
evident that we have to collect a large amount of train-
ing data. As labeling such data is laborious and ex-
pensive, previous works utilize search engine (Blum et
al., 2003; Li et al., 2017) or crowdsourcing (Yan et al.,
2014; Yu et al., 2018) to collect labeled dataset. Un-
fortunately, these low-cost approaches introduce low-
quality annotations with label noise. It causes DNNs
to completely memorize such label noises (i.e., nearly
100% training accuracy) (Zhang et al., 2016), deterio-
rating generalization capability (Frénay and Verleysen,
2013; Sukhbaatar et al., 2014).

To deal with label noises, recent works primar-
ily propose loss correction approaches. These meth-
ods directly correct loss function (e.g., cross-entropy,
mean squared error) or the probabilities used to com-
pute it. For example, (Zhang et al., 2016) learns sam-
ple weighting scheme via an auxiliary network (called
MentorNet) and applies it to noisy labels such that cor-
rupt data could get nearly zero sample weights on the
loss function. On the one hand, (Han et al., 2018)
utilizes an intervention between two same networks
with small-loss samples which are considered as clean.
However, there exists only a single work to handle label
noise on natural language. (Jindal et al., 2019) utilize
a noise transition matrix for text classification. This
method is useful at text classification on label noises,
but it turned out that estimating real noise transition
matrix is difficult (Jiang et al., 2018; Han et al., 2018)

*Equal contribution.

especially when the number of classes is large.
Recently, adversarial training at attracts attention

as it could prevent networks from misclassifying an
image that contains a small perturbation (e.g., adver-
sarial examples). The at enforces the classifier to
make consistent predictions on synthetic inputs that
have small, approximately worst-case perturbations.
(Miyato et al., 2015) extends the idea of at to the
semi-supervised regime by removing label dependency
on perturbations, which is called a virtual adversarial
training (VAT). Adversarial training indirectly have a
label smoothing effect as it prevents models from pre-
dicting given labels with high confidence by anisotropi-
cally smoothing around each data point. Several recent
works have shown that label smoothing is effective as a
means of coping with label noise (Lukasik et al., 2020)
and preventing memorization (Xie et al., 2016). Based
on such observations, we further study whether the ad-
versarial training methods, which is an indirect label
smoothing method, are useful at training a robust clas-
sifier on label noise.

In this paper, we propose a context-based virtual ad-
versarial training (ConVAT) to build a robust text clas-
sifier on label noise. We inherently follow a fundamen-
tal strategy of VAT. Unlike the previous work (Miayto
et al., 2016), ConVAT performs the adversarial training
on the context-level feature space not the word-level.
To that end, we solve min-max optimization by follow-
ing two steps: formulating perturbation and smooth-
ing. In the first phase, we calculate the worst-case per-
turbation into an adversarial direction that could max-
imize the classification loss on the given samples. We
then minimize the distributional distance between a
normal sample and a perturbed sample to learn robust
classifier on adversarial perturbations. This strategy al-
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Figure 1: Overall training procedure in (a) virtual ad-
versarial training (b) context-based virtual adversarial
training (ConVAT). Dotted line indicates a duplicated
propagation path to generate adversarial perturbation.

lows us to train a label noise-robust classifier without
placing a burden in a network computation.

In order to show the strength of the proposed
method, we conduct extensive experiments on four dif-
ferent datasets with the different kinds of label noise.
Comprehensive evaluation results clearly show that
ConVAT outperforms the state-of-the-art method in
text classification with noisy labels. The in-depth anal-
ysis demonstrates that the proposed method have a
strong advantage over previous adversarial methods in
terms of time and memory complexity. Our code and
dataset are publicly available1.

2. Related Works
2.1. Adversarial Training

Adversarial examples are synthesized input that is
created by making small perturbations to the input,
which are designed to significantly increase the loss
incurred by a machine learning model(Szegedy et al.,
2013; Goodfellow et al., 2014). Adversarial training
(Goodfellow et al., 2014) and virtual adversarial train-
ing (Miyato et al., 2015) are proposed to build a robust
classifier against adversarial examples. The difference
between the two works lies in how to make an adver-
sarial perturbation. The former takes loss values from
label information and makes a worst-case perturbation
which prevents the classifier from correctly classifying
an input image into a given label. Rather than using
label information, the latter only uses the output distri-
bution of around data points since nearby points should
be similar in terms of their labels (Han et al., 2018).
Recently, VAT attracts attention from various domains.
For example, (Deng et al., 2019) applies this idea to
graph convolutional neural networks for node classifi-
cation by generating perturbations to all nodes in net-
works. (Chen et al., 2020) applies VAT into sequence
labeling tasks by combining VAT with the conditional
random field.

1https://github.com/domyounglee/
baseline/tree/convat

2.2. Noisy Label Learning
Several works try to train a robust classifier on la-

bel noise. Recently, these works popularly adopt loss
correction approaches which directly correct loss func-
tion or the probabilities used to compute it. One com-
mon approach is modeling the noise transition matrix
which defines the probability of one class flipped to an-
other one (Natarajan et al., 2013; Patrini et al., 2017).
However, it turns out that estimating real noise distri-
bution is difficult (Jiang et al., 2018; Han et al., 2018).
As a different line of work, several works utilize in-
ference modules to differentiate clean and noisy sam-
ples using a neural network (Jiang et al., 2018; Lee et
al., 2018), a graphical model (Xiao et al., 2015; Vah-
dat, 2017). These works are quite useful in learning a
robust classifier, but they require the extra clean data
or expensive noise detection, which is unpractical in
real-world applications. Refined training strategies is
another technique to handle label noise. These works
typically use two same networks, which have different
learning ability, and update parameters based on their
predictions such as agreement (Wei et al., 2020), dis-
agreement (Malach and Shalev-Shwartz, 2017; Yu et
al., 2019) between two networks.

3. Methodology
In this section, we describe context-based virtual

adversarial training, coined ConVAT, in details. We
first formulate the problem definition for the noisy la-
bel learning (Section 3.1). Then, we take a contextual
viewpoint for the classification (Section 3.2). Lastly,
we elaborate ConVAT with the contextual viewpoint
(Section 3.3). The training procedure is straightforward
and described in Figure 1.

3.1. Problem Definition
As we stated before, collecting large-scale labeled

datasets with low-cost approaches (e.g., search engine,
crowdsourcing) results in label noise in the datasets.
In other words, the label y is likely to be flipped into
another class y′ by human annotators.

Let the training dataset be denoted by D =
{(X1, y1), (X2, y2), ..., (XN , yN )} where Xi, yi is the
input and the class of i-th sample, respectively. Each
input Xi is the concatenated matrix of the word vec-
tors xj where subscript j indicates the j-th word in the
given text. The noisy dataset can be represented as fol-
lows:

D′ = {(Xi, y′i)|Xi ∈ RTi×d,

y′i ∈ {1, 2, ...,K}, i = 1, .., N} (1)

where Ti is the i-th sentence length, d is the dimension
of a word vector, and K is the number of the classes.

To corrupt dataset D into D′, we assume a Noise
Transition Matrix Φ ∈ RK×K filled with probabili-
ties of flipping from one class to another. This follows
the same settings with (Jindal et al., 2019). We define

https://github.com/domyounglee/baseline/tree/convat
https://github.com/domyounglee/baseline/tree/convat
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two types of Label Noise as follows and depicted each
Noise Transition Matrix in Figure 2:

• Uniform label noise: the labels are flipped from
one class to another with the same probability
across all the classes.

• Random label noise the labels are flipped from
one class to another based on a certain random
distribution across all the classes.

Figure 2: Examples of the two types of noise transition
matrix Φ ∈ RK×K

Our goal is to train a robust text classifier from the
noisy dataset D′. In order to achieve such objective,
preventing the classifier from memorizing label noises
is significant to avoid performance degradation.

3.2. Classification from a context viewpoint
Given a task-specific network (e.g., CNN, Trans-

former), we denote the term context vector as last layer
activation before the softmax layer. The context vec-
tor contains rich contextual information which is cen-
tral to various NLP tasks, such as word sense disam-
biguation, named entity recognition, coreference reso-
lution(Melamud et al., 2016). Formally, given a input
Xi, a context vector ci can be written as ci = f(Xi)
where f is the function of a task-specific network. We
define the probability of the flipped class y′i given the
context vector c and weights Wc ∈ Rv×K , v is the
dimension of the context vector, as follows:

P (ci, y′i; θsm) =
e

c>i wy′
i∑K

k=1 e
c>i wk

(2)

where θsm is the trainable parameter Wc of the soft-
max layer. We also denote the parameter of the entire
network including θsm as θ.

Based on the probability function P , we define the
loss function l with cross entropy as follows :

l(ci, y′i; θ) = − 1

N

∑
i∈N

log P (ci, y′i; θ) (3)

However, several works have shown that cross-
entropy, which is a de-facto standard loss function
for the text classification, is vulnerable to label noises
(Ghosh et al., 2017) due to a memorization effect. In
the following subsection, we will describe how can we
sidestep the memorization effect.

3.3. Context-based Virtual Adversarial
Training

The goal of both AT and VAT is to train a robust
classifier against adversarial inputs. To prevent corrup-
tion from an input, most works usually add a perturba-
tion into an input (i.e., word embeddings) which is lo-
cated in most-bottom architecture. However, we have
to prevent corruption from an output layer due to label
noises. We thus mainly focus on the output layer (i.e.,
softmax layer), which converts a context vector into a
categorical distribution, and our strategy is to minimize
the distributional distance between the context vector
and the perturbed context vector.

∆KL(r, ci, θ̂sm) ≡

KL[P (ci, · ; θ̂sm)|| P (ci + rc−advi , · ; θ̂sm)]

where

rc−advi ≡ arg max
r

∆KL(r, ci, θ̂sm), ||r||2 ≤ ε (4)

where r ∈ Rv is a random perturbation vector and
KL[p||q] is a KL-divergence between distributions p
and q. We refer to rc−advi as contextual adversarial
perturbation vector which has a direction of maximum
perturbation called the adversarial direction. However,
calculating the exact value of rc−advi is intractable.
With the linear approximation method of (Miayto et
al., 2016), the resulting adversarial perturbation is re-
defined as follows:

rc−advi ≈ ε · g
||g||2

where

g = ∇rKL[P (ci, · ; θ̂sm)||P (ci + r, · ; θ̂sm)]|r=ξd
(5)

where d ∈ Rv is a normalized random unit vector and
ε, ξ is a norm constant. This approximation coincides
with a single iteration (t = 1) of the power method as in
previous work (Miayto et al., 2016). Since the goal of
the above process is to calculate the perturbation, we do
not update any parameters in this step. With a view to
maintaining the uniformity of context vector, we define
the context-driven label smoothing (CLS) :

CLS(ci, θsm) ≡ ∆KL(rc−advi , ci, θsm) (6)

Adding CLS term to the loss function, the label is
smoothed by tying the context vector with its neigh-
boring perturbed vectors. The model both learns its
label and its most distant neighbor. Since neighbors
have useful intermediate representations even with la-
bel noises (Bahri et al., 2020), CLS could make the
classifier robust against label noises. Therefore, we re-
define the loss function as:

l(ci, y′i; θ) =

− 1

N

∑
i∈N

log P (ci, y′i; θ) + λ
1

N

∑
i∈N

CLS(ci, θsm)

(7)
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where λ is a controlling factor of label smoothing and
it adjusts the degree of how much the context vector
count on its neighbors. We show our entire algorithm
in Algorithm 1.

Algorithm 1 ConVAT loss function

1: Inputs :
2: context vector c ∈ Rv , logit vector z ∈ RK
3: , normalized random unit vector d ∈ Rv
4: Output :
5: KL-divergence ∆KL between z and ẑ
6: P (x) = x>W,W ∈ Rv×K
7:
8: Algorithm :
9: function CONVAT(c,d, z)

10: for 1..t do
11: ẑ = P (c + r)
12: g← ∇r∆KL(z, ẑ)|r=d

13: rc−adv = ε · g/ ‖g‖2
14: ẑ = P (c + rc−adv)
15: return ∆KL(z, ẑ)

4. Experiments
In this section, we conduct extensive experiments to

verify the efficacy of our method compared to previ-
ous works. We describe the datasets and experimental
settings in Section 4.1 and 4.2, respectively. We pro-
vide evaluation results compared to the state-of-the-art
method in Section 4.3.

4.1. Datasets
In experiments, we use popular text classification

datasets, which are SST-2 (Socher et al., 2011), TREC
(Voorhees and Tice, 1999), Ag-News (Zhang et al.,
2015) and DBpedia (Zhang et al., 2016), to evaluate the
proposed method. We explain the datasets in below:

• SST-2 : Stanford Sentiment Treebank dataset for
predicting the sentiment of movie reviews. The
dataset is composed of positive or negative re-
views.

• TREC: The TREC dataset is a dataset for question
classification consisting of open-domain, fact-
based questions divided into broad semantic cat-
egories. We use the six-class (TREC-6) version of
the dataset.

• Ag-News: The AG’s news topic classification
dataset is constructed by choosing the 4 largest
classes from the news corpus.

• DBpedia: DBpedia is a project aiming to extract
structured content from the information created in
Wikipedia. We used the classic 14 class version of
the dataset.

We conduct experiments on two types of label noise
(i.e., Uniform and Random noise) and evaluate the clas-
sification accuracy in the settings of different noise
rates. For example, if the noise rate is 0.5, the correct
class label is flipped with a 50% probability to other
labels.

4.2. Experimental Settings
In this experiment, we use single-layered convolu-

tional neural networks (Kim, 2014) for text classifica-
tion. The pre-trained GloVe (Pennington et al., 2014)
is used to initialize word vectors in a vocabulary. This
backbone model is denoted as CNN. The comparison
methods are equally applied to this model.

We mainly compare our method ConVAT with (Jin-
dal et al., 2019) which is the first work that han-
dles label noises in text classification and is denoted
as TransMAT. When it comes to the regularization
hyper-parameter for TransMat, we choose the best per-
forming value for each task in uniform and random, re-
spectively. We also compare the vanilla VAT, which
performs the adversarial training in input-level feature
space, to verify the strength of the context-level adver-
sarial training. To fairly compare with our work, we
equally set the network’s hyper-parameters (e.g., the
number of filters, the size of the window) and these are
tuned using the development set. We reproduce all the
results in the same settings to compare the performance
in the same noise datasets.

In our method, λ is set to 1.0 and epsilon ε differ-
ently for each dataset (details in Section 5.2). The rest
of the hyper-parameters is the same as TransMat for a
fair comparison. In training steps, we do early stopping
based on development set accuracy1. Entire models are
implemented using Pytorch framework. We train the
models on a single NVIDIA GeForce RTX 2080 Ti
with 11GB of RAM. Our code and dataset are avail-
able at https://github.com/domyounglee/
baseline/tree/convat.

4.3. Experimental Results
Table 1 shows the overall comparison results on the

four datasets with different levels and types of label
noises. We test all experiments in five times and re-
port the average test accuracy. As can be seen from
the table, the performance of the backbone model CNN
is largely decreased as the noise rate increases both in
two types of noise. However, TransMAT, ConVAT re-
cover the performance loss even in extreme noise set-
tings (i.e., 90% noisy dataset). Between these two
works, ConVAT outperforms TransMAT in most set-
tings and datasets. When the noise ratio is large, the
performance gap becomes more evident. For example,
ConVAT achieves as much as 3.4% and 5.8% improve-
ment on accuracy in the uniform and random noise set-
tings where the noise rate is set to highest. When it

1Labels in the development set are also flipped in our ex-
periment.

https://github.com/domyounglee/baseline/tree/convat
https://github.com/domyounglee/baseline/tree/convat
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Uniform (Symmetric) Random (Asymmetric)
A

G
-N

ew
s Noise 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7

CNN 92.31 89.96 87.42 84.55 79.96 75.42 68.78 59.94 89.71 86.11 79.05 76.04 65.09 45.79 38.12
VAT 92.55 91.4 90.8 90.03 89.9 89.21 88.13 87.74 92.23 90.93 90.4 90.0 87.92 60.93 52.04
TransMat 92.53 92.36 91.8 91.13 90.17 89.85 88.9 88.52 91.98 91.5 90.56 89.75 83.22 60.22 49.31
ConVAT (Ours.) 92.44 92.02 91.85 91.24 91.01 90.70 89.85 88.92 91.66 91.52 91.06 89.86 88.28 62.93 53.94

T
R

E
C

Noise 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7

CNN 92.8 87.27 83.07 75 69.13 61.53 50.13 39.8 85.93 82.2 74 68.4 53.53 48.2 31.47
VAT 91.52 91.56 90.17 88.31 83.15 77.51 68.1 66.13 90 90.2 87.12 86.28 79.9 68.92 48.86
TransMat 92.6 91.53 90 86.1 84 82.4 78.67 74.4 90.78 89.6 85.8 84.5 74.4 73.4 48.2
ConVAT (Ours.) 92.9 92.06 91.6 89.58 87.27 85.48 79.47 78.01 90.12 89.53 87.73 89.2 82.93 76.93 49.4

D
B

pe
di

a

Noise 0.0 0.3 0.5 0.7 0.75 0.8 0.85 0.9 0.3 0.5 0.7 0.75 0.8 0.85 0.9

CNN 99.01 95.19 89.59 74.01 67.73 57.87 47.48 34.01 94.72 86.08 62.87 53.13 40.78 26.6 12.42
VAT 98.04 97.94 96.81 96.61 95.52 94.33 94.13 93.53 99.01 94.86 94.66 93.1 91.67 50.62 10.27
TransMat 98.78 95.10 98.01 97.46 96.95 96.24 95.23 92.185 98.18 97.24 91.39 88.28 76.73 42.76 9.29
ConVAT (Ours.) 98.86 98.65 98.39 97.97 97.67 97.69 96.77 95.36 98.58 98.17 96.1 95.08 90.55 54.01 10.12

SS
T-

2

Noise 0.0 0.1 0.2 0.3 0.4 0.45 0.47 0.5 0.1 0.2 0.3 0.4 0.45 0.47 0.5

CNN 87.27 83.29 79.08 73.42 64.03 58.1 54.73 49.7 81.44 75.58 71.88 63.39 57.12 55.81 52.32
VAT 87.82 86.35 84.21 82.89 79.73 69.76 63.4 48.74 85.17 85.35 79.9 77.8 69.96 68.56 46.6
TransMat 87.04 85.19 85.48 82.59 76.94 64.63 60.2 48.63 86.27 84.73 80.46 73.37 60.54 61.43 51.71
ConVAT (Ours.) 87.25 85.53 84.23 82.48 80.83 68.41 63.9 51.18 85.59 83.74 82.68 78.47 75.94 68.95 53.13

Table 1: Performance evaluation results on entire datasets with different kinds of noise (Uniform, Random). The
best results are highlighted in boldface.

comes to the comparison with VAT, ConVAT exhibits
superior performance in almost every settings. These
results clearly demonstrates that infusing perturbation
into context-level is more effective than infusing it into
input-level. That is to say, ConVAT has more resiliency
on noisy labels, notably on extreme cases.

5. Analysis
In this section, we analyze the proposed method

in depth. We first examine whether the proposed
method could maintain accuracy without memorizing
label noises in Section 5.1. We then describe the choice
of the epsilon ε (in Eq. 5) at various noise levels in
Section 5.2. Lastly, we confirm whether our method is
indeed superior to the normal virtual adversarial train-
ing (Miayto et al., 2016) in terms of time and memory
efficiency.

5.1. Denoising Effect of ConVAT
To analyze the denoising effects of ConVAT, we

train ConVAT and CNN with the noisy datasets and
recorded the accuracy of train, validation, and test ac-
curacy for every epoch. We plot the results in Figure
3. In this analysis, we train each method on TREC,
SST, and Ag-News where 50% of training samples are
corrupted by uniform noises. Not surprisingly, we ob-
serve that train accuracies of CNN tend to keep increas-
ing over training epochs and, however, the test accura-
cies drop rapidly after certain points where the memo-
rization occurs. This performance trend can be widely
observed in previous literature (Malach and Shalev-
Shwartz, 2017; Han et al., 2018). However, ConVAT
not only maintains its performance robustly, but it is
also increasing little by little. This result indicates that
the classifier with ConVAT does not overfit to noisy la-
bels. This effect can be observed in the entire datasets.

To further analyze the effect, we visualize the con-
text vectors of each sample from TREC datasets with
50% uniform noises through t-SNE (Van Der Maaten,
2014) and this is shown in Figure 6. The context vec-
tors from ConVAT is represented in Figure 6 (a) and
vectors from CNN is visualized in Figure 6 (b). We
first found that vectors from ConVAT stay clustered
and are arranged more distinctively as the training pro-
ceeds. We believe that such well-clustered results come
from the smoothing effect between context vectors and
near data points and this smoothing prevents the model
from overfitting to noisy labels. In contrast, the vectors
from CNN shows some clustered result on early train-
ing epochs, but it starts to lose each cluster as training
proceeds. This shows that CNN overfits noisy labels
and loses the ability to discriminate each data points
into their classes.

5.2. Choice of Perturbation length ε
Epsilon in Eq. 5 plays a role in determining how

far a data point considers the neighbors. If the ep-
silon is small, the data point only takes into account
the close distance neighbor which has similar logits. If
the epsilon is big, data points see more diverse contexts
that lead the model to be more general and labels to be
smoother. Therefore the optimal result of the dataset
with a low noise rate can be driven with small epsilon.
On the other hand, when training with a higher noise
rate, the model must consider a longer range of neigh-
bors.

We confirm whether such epsilon choice is indeed
effective by finding optimal epsilon values through a
grid search. The search space ranges from 0.0 to 3.0
with 0.1 steps. The best performing epsilon on datasets
is shown in Figure 4. As can be seen from all datasets,
the optimal epsilon increases when the noise rate in
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(a) (b) (c)

Figure 3: Train, validation and test accuracies versus training epochs on each datasets.

Figure 4: Optimal value of epsilon ε on the validation performance for supervised task on AG-NEWS, DBpedia,
SST

Figure 5: Time and memory usage comparison between ConVAT and VAT (Miayto et al., 2016).

datasets is large. This result supports our strategy of
choosing proper epsilon. To find the best epsilon on
datasets in practice, estimating the noise rate is re-
quired. Fortunately, noise rate can be easily estimated
in practice (Liu and Tao, 2015; Patrini et al., 2017)
and we, therefore, could find best performing hyper-
parameters without an exhaustive grid search.

5.3. Time and Memory usage Analysis of
ConVAT

We design the proposed method to handle label
noises instead of adversarial inputs. We thus have
strong advantages in terms of both time and mem-
ory efficiency compared to the normal VAT (Miayto
et al., 2016). Specifically, previous works perform a
forward and backward propagation twice to calculate
a perturbation, but ConVAT propagates the whole net-
work once. It results in that the computational cost of
ConVAT does not depend on network architecture un-
like VAT. We quantitatively analyze the effect on en-
tire datasets and Figure 5 shows the comparison results.

As can be seen from the figure (left), ConVAT requires
5x less time cost compared to VAT. The computational
time gap becomes bigger as the size of the networks is
larger.

We also have found that our method requires fewer
memory footprints than the VAT. The difference comes
from the process of calculating worst-case perturba-
tions (Eq. 5). Specifically, our method only requires
the gradients of the softmax layer while VAT requires
every gradient of entire networks (i.e., embedding layer
to softmax layer).

6. Conclusion
In this paper, we have proposed context-based vir-

tual adversarial training, coined ConVAT, that is a ro-
bust training method against label noises. Unlike previ-
ous works, ConVAT is designed as a network-agnostic
manner and does not require additional training param-
eters. Comprehensive evaluation results have clearly
shown that ConVAT is superior to previous works and
has strong advantages in terms of the time complex-
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(a) Context vectors from ConVAT

(b) Context vectors from CNN

Figure 6: tSNE visualization of the context vectors from ConVAT and CNN.

ity. Furthermore, we analyze our method in-depth and
found that ConVAT robustly prevents networks from
overfitting to label noises. As future work, we plan to
apply our method to different natural language tasks
such as a sequence labeling task where noise labels fre-
quently occur.
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