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Abstract
State-of-the-art approaches for metaphor detection compare their literal - or core - meaning and their contextual meaning
using metaphor classifiers based on neural networks. However, metaphorical expressions evolve over time due to various
reasons, such as cultural and societal impact. Metaphorical expressions are known to co-evolve with language and literal word
meanings, and even drive, to some extent, this evolution. This poses the question of whether different, possibly time-specific,
representations of literal meanings may impact the metaphor detection task. To the best of our knowledge, this is the first
study that examines the metaphor detection task with a detailed exploratory analysis where different temporal and static
word embeddings are used to account for different representations of literal meanings. Our experimental analysis is based on
three popular benchmarks used for metaphor detection and word embeddings extracted from different corpora and temporally
aligned using different state-of-the-art approaches. The results suggest that the usage of different static word embedding
methods does impact the metaphor detection task and some temporal word embeddings slightly outperform static methods.
However, the results also suggest that temporal word embeddings may provide representations of the core meaning of the
metaphor even too close to their contextual meaning, thus confusing the classifier. Overall, the interaction between temporal
language evolution and metaphor detection appears tiny in the benchmark datasets used in our experiments. This suggests that
future work for the computational analysis of this important linguistic phenomenon should first start by creating a new dataset
where this interaction is better represented.
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1. Introduction
Accounting for figurative language is one of the key
challenges in Natural Language Processing (NLP) (Re-
forgiato Recupero et al., 2019; Shutova, 2015). Figura-
tive language often contains metaphorical expressions
which map one concept from a source domain to an-
other concept in a target domain. For instance, in the
sentence “The wheels of Stalin’s regime were well-oiled
and already turning”, a political system (target con-
cept) is viewed in terms of a mechanism (source con-
cept) that can function, break, have wheels, etc. This
association allows us to transfer knowledge from the
domain of mechanical engineering to that of politics.
Therefore, political systems are thought about in terms
of mechanisms, leading to multiple metaphorical ex-
pressions. The phenomenon of source-target domain
mapping was first introduced by George Lakoff known
as Conceptual Metaphor Theory (Lakoff and Johnson,
1980). Due to previously defined characteristics, the
presence of metaphorical expression in text causes mis-
interpretation in the algorithms such as machine trans-
lation or sentiment analysis (Mohammad et al., 2016).
Recent studies addressing the metaphor detection prob-
lem are based on machine learning and exploit word
embeddings (Shutova, 2015; Leong et al., 2020), often
relying on pre-trained models as linguistic resources.
The key intuition is to recognize that words are used
in a context that is different from their usual context.
In the previous example, the term “wheels” is collo-
cated, in the sentence, close to “Stalin” and “regime”,
thus defining a context different from the contexts in
which it usually appears, i.e., in the domain of me-

chanical engineering. Most of the recent approaches
have therefore combined non-contextual and contex-
tual word embeddings to provide signals for this com-
parison (Mao et al., 2019; Swarnkar and Singh, 2018).
For example, (Mao et al., 2019; Gulordava and Baroni,
2011; Mikolov et al., 2013a) combine non-contextual
GloVe embeddings (Pennington et al., 2014) with con-
textual ELMo embeddings (Peters et al., 2018) within a
BiLSTM neural network for sequence labeling. GloVe
embeddings account for literal word meanings, while
ELMo embeddings account for contextual word mean-
ings.
An important linguistic phenomenon that is not con-
sidered in state-of-the-art methods for metaphor detec-
tion is language evolution. The trait of the evolution of
meaning over time is also shared by metaphorical ex-
pressions, which can be due to various reasons such as
cultural and societal impact. Metaphorical expressions
are known to co-evolve with language and literal word
meanings drive this evolution to some extent (Smith
and Höfler, 2015; Aitchison, 2010). This leads to the
question of whether different, possibly time-specific,
representations of literal meanings impact the task of
metaphor detection. In conclusion, if metaphor detec-
tion approaches tend to compare a sentence-specific
and a literal meaning, we must be aware that literal
meaning as accounted for in static word embeddings
1) depends on the corpus (the reference linguistic re-
source) and method used to train the embeddings, and
2) evolves over time.
To this end, this empirical study focuses on analyzing
the impact of different word embeddings accounting
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for literal word meaning on the task of metaphor detec-
tion. Special attention should be paid to possible inter-
actions between metaphor detection and time-specific
(non–contextual) word representations used to account
for literal meanings at different times. The empirical
study discussed in this paper aims to make a first step
towards addressing the co-evolution of metaphors and
language evolution which is known to be an important
factor in language evolution itself (Smith and Höfler,
2015; Aitchison, 2010).
The methodology adopted in this study consists of
the following protocol. First, a state-of-the-art Recur-
rent Neural Networks (RNN)-based model (Gao et al.,
2018), which uses static word embeddings to account
for literal word meaning, is selected for metaphor de-
tection. This model performs metaphor detection as
a sequence classification task where each word occur-
rence is labeled as either a metaphor usage or a literal
usage. Second, three widely used benchmark datasets
are selected to evaluate the performance of the models.
Third, the RNN-based model is fed with literal mean-
ing vectors obtained from different (non-contextual)
word embeddings including temporal word embed-
dings computed for different decades and aligned with
state-of-the-art alignment methods, such as Procrustes
(Grave et al., 2018) and Compass (Bianchi et al., 2020)
(first referred to as Temporal Word Embeddings with a
Compass (Di Carlo et al., 2019) - TWEC).
The experimental results indicate that different word
embeddings impact the metaphor detection task and
some temporal word embeddings slightly outperform
classic methods on some performance measures. These
quantitative results are then explained with the help of
a qualitative analysis of the predictions made by the
models. An example that illustrates our findings is
given in the following figurative sentence coming from
a state-of-the-art dataset (see Section 3.3), which has
been mistakenly classified as literal by a model exploit-
ing an atemporal embedding, and correctly detected as
metaphorical by the same model exploiting a tempo-
ral word embedding: “The virus attacked Argonne Na-
tional Laboratory outside Chicago starting at 11.54 pm
EST Wednesday and throughout the night”. If we inves-
tigate the ten nearest neighbors of “virus”, in a temporal
embedding we find words such as “infection”, “respi-
ratory” and “organism”, while in the atemporal one we
find, for example, “malware” and “spyware”, which
diverge from the original literal core meaning and are
related to a modern connotation of the word. When
exploiting the temporal word embedding, the model is
able to understand that the “virus” in this sentence is a
computer virus, and therefore is used metaphorically
along with the verb “attacked”. However, the anal-
ysis provided in this paper also suggests that tempo-
ral word embeddings may provide representations of
words’ core meaning too close to their metaphorical
meaning, thus confusing the classifier.
The paper is organized as follows: Section 2 discusses

the related work about metaphor detection as well as
temporal word embeddings. Section 3 discusses the
methodology which has been followed, while Section 4
shows the experimental results of the paper. Finally,
Section 5 concludes the paper.

2. State of the Art
This section discusses the state-of-the-art approaches
for metaphor detection and the studies related to tem-
poral language evolution.

2.1. Early Approaches for Metaphor
Detection

In (Wilks, 2015), the author proposes an approach
for metaphor detection based on preferential seman-
tics, which affirms that metaphors are “a violation
of semantic constraints put by verbs onto their argu-
ments”. In (Fass, 1997), the author proposes an ap-
proach for processing metonyms as well as metaphors
that take into account the distinction between literal-
ness, metonymy, metaphoricity, and anomaly. This
work uses hand-coded patterns for testing sentences
containing metonymic relations. The drawback of
this approach was that the interpretations were always
context-dependent. In (Peters et al., 1998), the authors
use WordNet hierarchy to group senses and to find hy-
ponymy relations. If two words are not included in
the same synset and/or in hierarchically related synsets,
then they are most likely part of a metaphorical phrase.
CorMet (Mason, 2004) was the first system to auto-
matically discover source-target domain mappings. A
survey on these approaches has been given in (Shutova,
2015).

2.2. Neural Network Based Approaches for
Metaphor Detection

Numerous approaches based on BiLSTM take advan-
tage of both contextualized and pre-trained embeddings
in the classification layer (Mao et al., 2019; Swarnkar
and Singh, 2018). In particular, the Di-LSTM Contrast
system (Swarnkar and Singh, 2018) encodes the left
and right side context of a target word through forward
and backward LSTMs. The classification is based on
a concatenation of the target word representation and
its difference with the encoded context. (Mao et al.,
2019) combined GloVe and BiLSTM hidden states for
sequence labeling. Some of the most recent systems
fine-tune pre-trained contextual language models such
as BERT (Devlin et al., 2018) and RoBERTa (Liu et
al., 2019). For example, (Dankers et al., 2020) fine-
tuned a BERT model, fed with a discourse fragment
as input. Hierarchical attention computes both token
and sentence level attention after the encoded layers,
leading to better results. A more detailed discussion
on methods for metaphor detection is given in this ded-
icated survey (Rai and Chakraverty, 2020). Another
recent approach (Li et al., 2021) uses the hierarchical
contextualized representation to extract more informa-
tion from both sentence-level and discourse-level. For
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our study we tested the approaches (Gao et al., 2018)
for two main reasons: they explicitly model the in-
teraction between literal and contextual meaning (and
thus they support the replacement of embeddings ac-
counting for literal word meaning with different corpus
and time-specific embeddings) and they achieved state-
of-the-art performance on several metaphor detection
datasets when we started our study.

2.3. Temporal Language Evolution
According to (Aitchison, 2010), theories often come as
a formalization of metaphors, which “can populate his-
tory with new objects and kinds, and provide both ac-
cess to interesting new worlds and great field-internal
success”. Based on the observations that language
is always changing (Beckner et al., 2009; La Man-
tia et al., 2017; Massip-Bonet and Bastardas Boada,
2013), linguists have formulated different theories and
models searching for rules and regularities in seman-
tic change, such as the “Diachronic Prototype Seman-
tics” (Geeraerts, 1997; Geeraerts et al., 1999), the “In-
vited Inference Theory of Semantic Change” (Traugott
and Dasher, 2001), and “semantic change based on
metaphor and metonymy” (Heine et al., 1991).
Historically, much of the theoretical work on seman-
tic shifts has been devoted to documenting and cate-
gorizing various types of semantic shifts (Breal, 1897;
Stern, 1975). Semantic shifts are separated into two
important classes: “linguistic drifts” (slow and steady
changes in core meaning of words) and “cultural shifts”
(changes in associations of a given word determined by
cultural influences). In (Gulordava and Baroni, 2011),
the authors showed that distributional models capture
cultural shifts, like the word “sleep” acquiring more
negative connotations related to the sleep disorders
domain, when comparing its 1960s contexts with its
1990s contexts. Researchers studying semantic change
from a computational point of view have empirically
shown the existence of this distinction (Hamilton et al.,
2016a).
Diachronic corpora provide empirical resources for se-
mantic change analysis. The availability of large cor-
pora enabled the development of new methodologies
for the study of lexical-semantic shifts within general
linguistics (Traugott and Dasher, 2001). A key as-
sumption is that changes in a word’s collocational pat-
terns reflect changes in word meaning, thus providing
a usage-based account of semantic shifts. Semantic
changes are often reflected in large corpora that can
be sliced into time-specific chunks (e.g., texts com-
ing from a same decade), which account for changes
in the contexts of a word that is affected by the shift.
Most recent approaches to studying diachronic seman-
tic change are based on temporal word embeddings.
These approaches are based on (1) slicing a corpus into
time-specific slices (e.g., one slice per decade), and (2)
generating slice-specific representations by solving the
cross-slice alignment problem (Hamilton et al., 2016a).

Other novel approaches include (Giulianelli et al.,
2020) those based on contextualized word embeddings
and (Tsakalidis and Liakata, 2020) those based on se-
quential modeling. The current study uses temporal
word embeddings for decade-specific slices generated
with two alignment methods: HistWords (SGNS) em-
beddings aligned with the Procustes method (Hamil-
ton et al., 2016a; Hamilton et al., 2018) and CADE
word embeddings aligned with the Compass method
(Bianchi et al., 2020; Di Carlo et al., 2019). Hist-
Words embeddings are used in this study because they
are used in the key studies about semantic change and
are available as pre-trained embeddings; CADE em-
beddings are used because they achieved state-of-the-
art performance on different tasks at the time this study
was started (Di Carlo et al., 2019).

3. Methodology
This paper considers the metaphor detection task in its
more general settings: the task consists in detecting all
the occurrences of words used metaphorically in an in-
put sentence, independently from their POS tags. To
analyze the effect of different word embeddings (i.e.,
temporal or static) on the metaphor detection task, the
metaphor detection approaches proposed in (Mao et al.,
2019) were selected. These approaches use both (non-
contextual) word embeddings and contextual word em-
beddings within a neural network with a final classifi-
cation layer.
The goal is to train and test different instances of the
same architecture with different (non-contextual) word
embeddings that account for literal meanings in the
metaphor detection algorithms, to verify whether using
word representations derived from different linguistic
resources leads to different classification outcomes.

3.1. Metaphor Detection Approach
In (Mao et al., 2019), two end-to-end metaphor identi-
fication models for detecting metaphors are proposed,
both performing better than the previous state-of-the-
art baseline (Gao et al., 2018). The two proposed state-
of-the-art models are: (i) Recurrent Neural Network
Hidden GloVe (RNN HG), based on the interaction be-
tween literal and contextual word meanings; (ii) Multi-
Head Context Attention (RNN MHCA), based on multi-
head context attention. It was observed that the RNN
HG and RNN MHCA models achieve comparable re-
sults on state-of-the-art metaphor detection datasets.
After some preliminary experiments, RNN HG was
found to be more suitable to our concerns, since the
static embedding is explicitly digested by the network
and compared with the contextual embedding.

RNN HG. Figure 1 shows the overall architecture of
RNN HG as described in the original study. The RNN
HG model can be represented through the following
equations:

t = fBiLSTM

(
[gt; et] , h⃗t−1,

←
h t+1

)
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p (ŷt | ht, gt) = σ
(
w⊤ (ht; gt) + b

)
where: ht is the hidden state; gt is the input GloVe
(Pennington et al., 2014) literal representation; et is the
input ELMo (Peters et al., 2018) representation; w is
trained parameters; σ is the softmax function; ŷ is the
the probability of a label prediction for a target word at
position t; t is the target word.
In the original architecture/model GloVe embeddings
serve as literal (non-contextual) representations of a
word (gt) and are concatenated with the representation
from the hidden layer (ht) of a BiLSTM. These em-
beddings, located in two different encoding spaces, are
concatenated feeding the BiLSTM network and fulfill-
ing the MIP (Group, 1997) requirement. The literal and
contextual representations then get compared in the so-
called comparison stage. This last step consists of a
softmax function σ, which computes the probability of
a label prediction ŷ for a target word at position t, con-
ditioned on both its contextual and literal meaning rep-
resentations.

Figure 1: RNN HG model architecture based on MIP
procedure.

In RNN HG, both static and contextual representations
are used to account for the differences (or the similar-
ities) between them. Also, from the equation it can be
easily seen that the vector of the static representation
can be modified without touching the model. The dif-
ferent static representations used in this paper are ex-
plained in section 3.2.

3.2. Word Embeddings
Word embeddings providing literal word meanings in
the RNN HG network used in our experiments are
of two main kinds: temporal word embeddings and
static word embeddings. Both kinds of embeddings
are trained with different approaches and corpora to ac-
count for several variables that are expected to have an
impact on the final representations (especially: corpus,
word embedding algorithm, and alignment method).

3.2.1. Temporal Word Embeddings
HistWords - SGNS1 provides a set of pre-trained tem-
poral word embeddings generated using the Skip-gram
variant of Word2vec (Mikolov et al., 2013a) trained
with negative sampling (also referred to as SGNS) on
different sliced diachronic corpora (Hamilton et al.,
2016b; Hamilton et al., 2018). Decade-specific em-
beddings obtained from the same corpus are aligned
using the Procrustes method, one of the most used in
the literature. It solves the task of aligning two sets
of points in high dimensions (which has many applica-
tions in NLP), through the joint estimation of an or-
thogonal matrix and a permutation matrix (Grave et
al., 2018). A stochastic algorithm is proposed to min-
imize the cost function on large-scale problems. In
our study we consider HistWords embeddings obtained
from different corpora. CoHa Word SGNS (1900-
2010) is a set of eleven decade-specific models cov-
ering the time span 1900-2010 (with “1900” we refer
to the “1900-1910” slice); they are trained on a genre-
balanced subset of the Corpus of Historical American
English (CoHa) (Davies, 2015), the largest structured
corpus of historical English, which contains more than
400 million words and text published between 1820
and 2000s. CoHa Lemma SGNS (1900-2010) is a set
of eleven decade-specific models trained on CoHa af-
ter applying lemmatization. NGrams English All and
NGrams English Fiction (1900-2000) are two sets of
ten decade-specific models each trained on a subset of
Google N-Grams that considers, respectively, all gen-
res or fiction only. Observe that we consider a total of
42 models (each one containing decade-specific word
embeddings) based on Procrustes alignment. In the ex-
periments, we may filter out some models that do not
achieve the best performance for space limitations.
CADE - Compass Aligned Embeddings are temporal
word embeddings trained with Word2vec (Mikolov
et al., 2013b) and aligned with the Compass
method (Di Carlo et al., 2019; Bianchi et al., 2020),
which can be summarized as follows. Word2vec is
trained over the entire corpus (all the slices). One of the
two-weight matrices obtained after this step is used as a
compass when training Word2vec again on each slice:
the compass matrix is frozen, while the other matrix is
initialized and trained again over each slice, thus ob-
taining slice-specific word embeddings (the word em-
beddings referring to the slice period). We use CADE
with the CBOW architecture as in the original paper
(Di Carlo et al., 2019), thus using the target matrix as
a compass and the weights in the context matrix as fi-
nal embeddings. CADE embeddings used in the study
are trained using the code and implementation details
available online2. To obtain embeddings as comparable
as possible to CoHa Word SGNS, we trained CADE
embeddings using the CoHa corpus.3 CoHa Word

1https://stanford.io/3txN0Hd
2https://github.com/vinid/cade
3Unfortunately, the genre-balanced subset of CoHA used

https://stanford.io/3txN0Hd
https://github.com/vinid/cade
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CBOW (1900-2010) is the set of eleven slice-specific
models trained with this approach.

3.2.2. Static Word Embeddings
Three static word embeddings obtained from as many
corpora are also considered to account for the impact
of the corpus and embedding algorithm on metaphor
detection.
Common Crawl GloVe is the model that is based
on the embeddings used in the original RNN HG
network. These embeddings are trained using the
Common Crawl 4 corpus, which is expected to con-
tain relatively recent content extracted from the web.
Wikipedia CBOW consists of the embeddings trained
over the English Wikipedia using Word2vec with the
CBOW architecture. It accounts for a relatively recent
text covering encyclopedic knowledge. Full CoHa
CBOW is derived from the embeddings trained with
CoHa using Word2vec with the CBOW architecture. It
consists of the embeddings (i.e., the context matrix) ob-
tained after the first pass of the CADE approach over
the CoHa corpus. It supports the comparison between
static and temporal word embeddings trained with a
common corpus and algorithm.

3.3. Metaphor Detection Datasets
Three datasets are used to show the feasibility of the
proposed claims. Table 1 shows the main characteris-
tics of the datasets.
MOH-X (Mohammad et al., 2016) is derived from
the subset of MOH dataset used by (Shutova et al.,
2016). Mohammad et al. annotated different senses
of WordNet verbs for metaphoricity. They extracted
verbs that had between three and ten senses in Word-
Net along with their glosses. The verbs were annotated
for metaphoricity with the help of crowd-sourcing. Ten
annotators were recruited for each sentence and only
those verbs were selected that were annotated positive
for metaphoricity by at least 70% of the annotators.
The final dataset consisted of 647 verb-noun pairs, 316
metaphorical, and 331 literal.
VUA consists of 117 fragments sampled across four
genres from the British National Corpus, i.e., Aca-
demic, News, Conversation, and Fiction (Leong et al.,
2018). The data was annotated using the MIP-VU pro-
cedure (Steen et al., 2010) based on the MIP procedure
(Group, 1997). The tagset is rich and hierarchically or-
ganized, detecting various types of metaphors, words
that flag the pre-sense of metaphors, etc. The majority
of sentences in this dataset have the timestamp for the
decade 1985-1994.
TroFi contains feature lists consisting of the stemmed
nouns and verbs in a sentence, with target or seed

in HistWords could not be retrieved to train the embeddings
on the very same data. Also, the CBOW architecture has been
used because it is reported to generate temporal word em-
beddings of better quality with the compass (Di Carlo et al.,
2019)

4https://commoncrawl.org/

words. After a first collection phase, the final TroFi
dataset is obtained by filtering out some ”frequent
words” (common words in the British National Cor-
pus along with contractions, single letters, and num-
bers from 0 to 10). The target set is built using the
‘88-‘89 Wall Street Journal Corpus (WSJ) tagged using
the (Ratnaparkhi, 1996) tagger and the (Joshi, 1999)
SuperTagger. 10-fold cross-validation was adopted on
MOH-X and TroFi datasets because of their small sizes
(k was set equal to 10). More details regarding the
models’ hyperparameters can be found in the GitHub
repository of (Mao et al., 2019)’s work. 5

4. Experiments
4.1. Experimental Design
All data and source code related to our experiments are
publicly released.6 A first part of the experimentation
consists in evaluating the performance of the RNN HG
classifier (evaluated using well-known Precision, Re-
call, F1-Score and Accuracy measures) when different
word embeddings are used instead of GloVe embed-
dings. In particular, we address the following research
questions:

• RQ1: Can the results of the state-of-the-art
metaphor detection algorithms be improved by us-
ing different word embeddings, especially tempo-
ral embeddings such as HistWords - SGNS?

• RQ2: Are there any observable patterns that can
lead to the assumption that metaphor detection
tasks performed with temporal embeddings and
representations impact datasets with known tem-
poral connotations more than others?

• RQ3: Are the representations obtained through
Compass alignment more effective for metaphor
detection than the embeddings aligned with tradi-
tional methods (e.g.: Procrustes)?

• RQ4: Are specific word embeddings’ architec-
tures more effective for metaphor detection tasks
than others?

The first experiments have been performed using Hist-
words as new static embeddings. The datasets dis-
cussed in Section 3.3 were used to train a RNN HG
model and evaluate it. We are interested in evaluat-
ing the effectiveness of the new corpus, so we com-
pared the result obtained with HistWords with results
obtained using the atemporal Word2vec embeddings
trained on the entire Wikipedia corpus. Finally, exper-
iments have been performed using word embeddings
obtained by aligning all different decade slices of the
CoHa corpus (ranging from 1820 to 2000) with Com-
pass alignment method. Slices of the CoHa corpus for

5https://bit.ly/324ZcUI
6https://bit.ly/3qS7NCu

https://commoncrawl.org/
https://bit.ly/324ZcUI
https://bit.ly/3qS7NCu
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Table 1: Dataset Characteristics
Dataset #sentences Train/Test Splits Temporal Annotation? Creation Detail
MOH-X 646 No No Derived from MOH dataset. The

verbs are used as metaphors.
VUAsequence 5323 Yes Yes (1985-1994) 117 fragments sampled across 4

genres from British National Cor-
pus (academic, news, conversation,
and fiction)

TroFi 3737 No Yes (1987-1989) The sentences (each one with a sin-
gle annotated target verb) are taken
from ‘87-‘89 Wall Street Journal
Corpus.

each decade needed to be aligned with Compass in or-
der to perform equivalent experiments to the ones with
other embeddings. The first step consisted in concate-
nating all CoHa text slices, and obtaining a final corpus
for all the decades. The pre-processing steps included
stripping HTML tags, removing text between square
brackets and stop words, and replacing all contrac-
tions. The following steps were carried out to perform
the alignment using CADE and Compass: (i) Creat-
ing the main Compass file by concatenating all the pro-
cessed CoHa decade slices; (ii) Training the obtained
compass-aligned embeddings; (iii) Training all the dif-
ferent slices from the compass obtaining their respec-
tive models; (iv) Converting the CoHa compass models
in Word2Vec format, so that they could have the same
architecture of the HistWords - SGNS and Wikipedia
embeddings, and be exploited inside the modified Re-
current Neural Network model. Only the aligned mod-
els of the decade slices ranging from 1900 to 2000 are
kept so that the results could be comparable to the pre-
vious ones. A Full CoHa CBOW (CADE) model was
also obtained by training the compass on all the afore-
mentioned decade slices which were used for qualita-
tive analyses.

Qualitative Analysis. To get more insights into our
results, we also investigate the characteristics of the
words that are correctly or mistakenly identified as
metaphors, by 1) controlling for linguistic features such
as topic and genre, and 2) checking the nearest neigh-
bors of target words in the embeddings used to ac-
count for their literal meaning (which account for a
more in-depth characterization of word meaning). Due
to the large number of experiments performed in this
study, we could not inspect all the results. We there-
fore focused on MOH-X, VUA, and TroFi datasets’
predictions obtained with four embeddings: (i) Full
CoHa CBOW (CADE); (ii) GloVe (state-of-the-art-
representation); (iii) CoHa Word CBOW 1990 Decade
Slice; (iv) CoHa Word SGNS 1990 Decade Slice. Em-
beddings based on the 1990 decade slice were chosen
because of VUA and TroFi datasets’ sentences tem-
poral connotations (see Table 1) and the good perfor-
mance achieved with these models. Therefore, the four
selected embeddings allowed us to look at predictions
made by the RNN HG model with both temporal and
atemporal representations and with different embed-

ding and alignment algorithms. In order to check all
the predictions made by our model for MOH-X and
TroFi, we combined each one of their 10-folds interme-
diate results, since these two datasets are not split into
the train, validation, and test sets like VUA. For each
one of the three state-of-the-art datasets, the analysis
considered correctly identified metaphors and mistak-
enly identified metaphors. For MOH-X and TroFi only
verbs are considered.

4.2. Quantitative Results
Tables 2, 3, and 4 provide the overall quantitative per-
formances and scores for each dataset (the best results
are highlighted in bold)7. Combining the observations
gathered from all the performed experiments, the fol-
lowing conclusions can be drawn:

1. Word2vec architecture (HistWords - SGNS,
CADE, and Wikipedia embeddings) works better
than GloVe architecture for metaphor detection;

2. HistWords - SGNS temporal embeddings perform
better on the datasets with known temporal con-
notations (TroFi and VUA) compared to the atem-
poral Wikipedia embeddings;

3. Results on MOH-X are generally good, but they
do not show a clear pattern. VUA and TroFi do
not show clear patterns either;

4. Procrustes alignment (HistWords - SGNS) and
CADE - Compass alignment methods (CoHa cor-
pus) lead to similar performances and results. Al-
though, while the latter performs better on the
TroFi dataset (data extracted from Wall Street
Journal corpus), the first one impacts slightly
more than the VUA dataset (data extracted from
the British National Corpus).

4.3. Qualitative Results
This analysis confirmed several expected patterns and
revealed some new ones. Among the confirmed pat-
terns, we found that topics related to economics, poli-
tics, and emotions are the most recurring ones in sen-
tences containing correctly identified metaphors. Verbs

7We only reported a few slices (the most representative
ones) for some corpora listed in the tables, such as Lemma,
English All and English Fiction, due to lack of space.
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Figure 2: Results related to MOH-X dataset, with every single embedding.

Figure 3: Results related to VUA dataset, with every single embedding.

having a literal meaning characterized by physical con-
notations often assume metaphorical/figurative mean-
ings when used in sentences related to the contexts
listed before. This suggests that embeddings derived
from these corpora and slices maintain as the core
meaning the one related to the physical connotation.
This pattern is at first observed especially in TroFi pre-
dictions, but with the help of the nearest neighbors
analysis, the same pattern is detected even in the other
datasets.

The nearest neighbor analysis of the target metaphor-
ical words in the sentences extracted from state-of-
the-art datasets leads to comparing meanings of tar-
get words in embeddings generated from different re-
sources, especially, in non-temporal vs temporal word
embeddings. When exploiting the temporal word em-
bedding, the model could correctly understand that the
words (in our examples: “apple, virus, attack, hearts
and glow”) were used in a figurative way, thus correctly
classifying them as metaphors. Furthermore, the entire



630

Figure 4: Results related to TroFi dataset, with every single embedding.

sentences were also correctly classified as metaphori-
cal, since the core meanings of the word were closer to
their literal core meaning. This also explains the fluc-
tuations across slices, because corpora are never fully
representative, and some contexts may be represented
more than others in one specific decade.
Different results related to the domains of the sentences
have been observed in the VUA dataset’s predictions.
With Full CoHa CADE embedding, only one sentence
belonging to the academic genre was correctly classi-
fied, whereas as far as CoHa SGNS 1990 slice is con-
cerned, no sentences belonging to the news genre are
correctly predicted. The latter result could indicate
that for that specific time period, SGNS words’ rep-
resentations of the news genre are biased towards their
metaphorical meaning (words are used in metaphorical
contexts much more than in literal ones). This would
prevent the proposed models from correctly identifying
the words as metaphors.

5. Conclusions
This study can be considered a first attempt to investi-
gate the interaction between metaphorical word usage
and semantic change using computational metaphor
detection methods and corpus-specific word embed-
dings, including temporal word embeddings.
The results suggest that temporal word embeddings can
improve the performance of the task of metaphor detec-
tion, even though their overall impact on three bench-
mark datasets is rather limited. However, indepen-
dently from the absolute performance on the consid-
ered datasets, the interaction between the specificity of
the embeddings (especially their temporal specificity)
and metaphor detection is found in the experiments

conducted in this study. In fact, these experiments ver-
ify that if the core meaning of the words of interest in a
sentence is too similar to their figurative meaning in
the word embedding, a metaphorical sentence could
get misclassified as literal. Moreover, when tempo-
ral word embeddings provide the representations of the
words that are more inclined towards their literal core
meaning, exploited models end up correctly identifying
metaphors more easily. Word embeddings belonging to
some language domains in specific time periods can be
biased towards their metaphorical meaning, leading to
words being used in metaphorical contexts much more
than in literal ones. This would prevent neural mod-
els from correctly identifying the words as metaphors.
To improve the experimental framework, both tempo-
ral and atemporal representations could be built on the
same corpora with temporal slices. Furthermore, when
building atemporal embeddings, the corpora could be
subsampled to obtain a comparable size.
Future work may stem from our last exploratory anal-
ysis. Searching for words known to undergo semantic
change across time, we retrieved a suitable list from the
SemEval 2020 Task 1: Unsupervised Lexical Seman-
tic Change Detection Competition8. We searched for
all the occurrences of these words in the three datasets
used in our study and in the competition data, to clas-
sify the word usage as metaphorical or not, but we
could not find enough metaphorical statements. This
suggests that more work is needed to collect more data
better accounting for the interaction between metaphor-
ical word usage and semantic change along time, a phe-
nomenon that is advocated by many scholars as a very
important driver of language evolution.

8https://bit.ly/3Gz9vPU

https://bit.ly/3Gz9vPU
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