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Abstract
Multiple-choice question answering (MCQA) for machine reading comprehension (MRC) is challenging. It requires a model
to select a correct answer from several candidate options related to text passages or dialogue. To select the correct answer, such
models must have the ability to understand natural languages, comprehend textual representations, and infer the relationship
between candidate options, questions, and passages. Previous models calculated representations between passages and
question-option pairs separately, thereby ignoring the effect of other relation-pairs. In this study, we propose a human reading
comprehension attention (HRCA) model and a passage-question-option (PQO) matrix-guided HRCA model called HRCA+ to
increase accuracy. The HRCA model updates the information learned from the previous relation-pair to the next relation-pair.
HRCA+ utilizes the textual information and the interior relationship between every two parts in a passage, a question, and the
corresponding candidate options. Our proposed method outperforms other state-of-the-art methods. On the Semeval-2018 Task
11 dataset, our proposed method improved accuracy levels from 95.8% to 97.2%, and on the DREAM dataset, it improved
accuracy levels from 90.4% to 91.6% without extra training data, from 91.8% to 92.6% with extra training data.

Keywords: natural language processing, machine reading comprehension, multiple-choice question answering

1. Introduction

Machine reading comprehension (MRC) is a challeng-
ing task that involves training a model to comprehend
the meaning of documents written in natural languages.
MRC has attracted significant attention in the field of
artificial intelligence, and it was developed to measure
how deeply a machine understands context (Liu et al.,
2019a). Note that MRC requires a model, especially a
supervised learning model, to answer questions based
on a specific context. Researchers are expected to train
a model to orientate a passage and question pair to-
wards the corresponding answer. MRC tasks are classi-
fied into four types (Chen, 2018): cloze test, multiple-
choice, span extraction, and free answering.
In this study, we tackle the multiple-choice question
answering task. Multiple-choice tasks, which are com-
monly used in language proficiency exams, require se-
lecting one correct answer among multiple candidate
options according to a passage. Because the ranges
of questions and options are not limited in a passage,
some questions require inference combined with com-
monsense, and this cannot be achieved only using an
information retrieval system or through pattern match-
ing. Therefore, pre-trained language models (PrLMs)
for understanding a passage, together with matching
networks for capturing the relationship between a pas-
sage, a question, and the candidate options, are helpful
in and crucial to the tackling of multiple-choice tasks.
MMM (Jin et al., 2020), DCMN+ (Zhang et al., 2020),
and DUMA (Zhu et al., 2020) are three state-of-the-
art methods that adopt PrLMs as the encoders of their
models. Although all these methods combine ques-
tions and options as the entire textual input for their

models, candidate options are not always guaranteed
to make sense when combined with the question. For
example, in some datasets, such as the CosmosQA
dataset (Huang et al., 2019), a common candidate op-
tion might be ”None of the above choices.” Combin-
ing such an unrelated option with a question affects a
model’s performance. Additionally, questions are not
always guaranteed to be related to a passage’s parts or
span. For example, some questions, such as those in
the DREAM dataset (Sun et al., 2019a), involve com-
monsense knowledge, and such questions cannot be
solved only according to the contents of a passage. In
addition, previous methods, including the three meth-
ods mentioned above, consider the relationships be-
tween passages, questions, and the candidate options
separately. However, the relationships between every
two parts of a passage, a question, and the candidate
options are not independent. For example, depending
on the differences in the candidate options, the impor-
tance of each word in the related questions will differ.
Therefore, handling the logical relationships between
passages, questions, and the candidate options is indis-
pensable.
To solve the aforementioned problems, in this study,
we propose a novel method called human reading com-
prehension attention (HRCA), which is inspired by the
ways in which humans achieve a high score in multiple-
choice tasks. The HRCA approach simulates the read-
ing strategy employed by humans in the following or-
der: confirming the question, checking the candidate
options, and combining the information learned from
the question with the candidate options to read the en-
tire passage. Unlike the currently existing methods, our
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proposed method adopts an updating strategy instead of
conventional parallel approaches. Conventional paral-
lel approaches calculate the relationships among pas-
sages, questions, and the candidate options individu-
ally, and as a result, they do not consider further inter-
relation. However, the relationships among passages,
questions, and the candidate options are not parallel.
For example, determining the relationship between a
question and the corresponding candidate options helps
in the improved inference of the relationship between
a passage and a question, and this aspect also applies
to other differently related pairs. After calculating the
relationship between each related pair, our proposed
method updates the relationship information to the cal-
culation of the next related pair. Moreover, to tackle
the problem of unrelated options, such as ”None of the
above choices,” and to address the problem of solv-
ing questions that require commonsense knowledge,
our proposed method handles and updates the infor-
mation of the passage, the question, and the candi-
date options separately, instead of combining them as
question-option pairs, thereby ensuring the enhanced
performance of our proposed method.
Finally, we extend the operations of our proposed
HRCA method to extract nine relationships among ev-
ery pair of elements in the passage, the question, and
the candidate options, thereby enhancing the accuracy
levels of our proposed approach. Subsequently, all the
relationships are represented using our proposed 3 × 3
passage-question-option (PQO) matrix-guided frame-
work called HRCA+.
The remainder of this paper is organized as follows: In
Section 2, we introduce the related studies on multiple-
choice tasks. In Section 3, we introduce our proposed
HRCA model and the PQO matrix-guided framework
called HRCA+. In Section 4, we describe the datasets
used in this study, and we present their corresponding
hyperparameters. We also describe the experimental
settings, and we provide the evaluation results com-
pared to some baselines and various state-of-the-art
methods. Finally, we present the discussions and con-
clusions in Section 5.

2. Related Work
Conventional MRC methods are based on hand-
designed syntax (Riloff and Thelen, 2000) or informa-
tion extraction approaches (Poon et al., 2010). Af-
ter 2013, MRC approaches evolved from machine
learning-based approaches to deep learning-based ap-
proaches.
In Section 2.1, we describe well-known machine
learning-based approaches. In Section 2.2, we describe
deep learning-based approaches designed to prevent
the influence of noise in hand-engineered linguistic fea-
tures.

2.1. Machine Learning-based Approaches
(Richardson et al., 2013) first proposed a sliding win-
dow approach to tackle problems associated with read-

ing comprehension tasks. The sliding window ap-
proach is used to match a bag of words extracted
from the question and the candidate options related to
a specific passage. The distance-based sliding win-
dow approach achieved an accuracy level of 61% on
the MCTest MC500 dataset (Richardson et al., 2013).
The performance of current state-of-the-art methods is
95.3% in terms of accuracy (Jin et al., 2020).
The models published later were mainly based on a
max-margin framework. This framework posits a hid-
den relationship between passages, questions, and the
corresponding candidate options. (Wang et al., 2015)
augmented the initial baseline features based on syn-
tactic dependencies, frame semantics, coreference res-
olutions, and word embeddings, and they combined
all the hand-engineered linguistic features in a max-
margin learning framework. As a result, the accuracy
of their proposed machine learning-based approach
improved from 61% to 70% on the MCTest MC500
dataset (Richardson et al., 2013).
Such approaches require hand-engineered linguistic
features, some of which rely on existing linguistic
tools, such as frame semantic parsing (Das et al., 2010).
However, current linguistic tools are far from achiev-
ing a solution, and they are only trained in a few do-
mains. Because multiple-choice MRC tasks focus on
passages associated with various fields, using such lin-
guistic tools will add noise and affect a model’s perfor-
mance.

2.2. Deep Learning-based Approaches

Deep learning-based approaches do not rely on linguis-
tic features. However, the improvement of the perfor-
mance of simple deep learning-based models in the
completion of multiple-choice tasks is limited. Af-
ter (Vaswani et al., 2017) proposed a transformer-
based structure and demonstrated its enhanced per-
formance in the field of natural language processing
(NLP), different types of PrLMs trained using differ-
ent approaches have been used to suppress and update
state-of-the-art approaches for completing NLP tasks.
The direct fine-tuning of PrLMs on the downstream
task, defining new pre-training tasks, and adding task-
specialization networks based on PrLMs are common
approaches for ensuring the enhanced performance of
such models in the completion of NLP tasks.
Models that are designed to complete multiple-choice
tasks must have the ability to understand natural lan-
guages on a high level, and such models must be able
to capture and infer the relationships among passages,
questions, and the corresponding candidate options.
Numerous methods for enhancing the performance of
PrLMs in the completion of multiple-choice tasks have
been proposed and applied. Following this direction,
(Zhang et al., 2020) proposed a dual co-matching net-
work, and they integrated two reading strategies into
their proposed network. One strategy involved using
the key sentence selection mechanism, which is used
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to determine the most salient supporting sentences for
answering a specific question. The other strategy in-
volved encoding the comparison information between
candidate options. (Jin et al., 2020) proposed a multi-
stage multi-task-based learning framework. The multi-
stage multi-task learning approach relies on two out-
of-domain (general) datasets and one large in-domain
(same type) dataset to help the model achieve improved
generalization using a limited amount of data. Addi-
tionally, a multi-step attention network was proposed
to dynamically calculate the attention scores between
the passage and question or the passage and candidate
options pairs step by step. (Zhu et al., 2020) proposed
a dual multi-head co-attention approach for calculat-
ing the attention score between passage and question-
option pairs, and their proposed approach considered
the passage and question-option pairs, with a major fo-
cus on the standpoint of each pair. Such ideas pro-
mote the effective solving of multiple-choice tasks,
with accuracy levels of 87.8%, 88.9% and 90.4% in the
DREAM dataset (Sun et al., 2019a), respectively.
However, for complicated datasets, such as the C3 (Sun
et al., 2020) and DREAM (Sun et al., 2019a) datasets,
the question will not always be related to a part of or the
span of a passage. In addition, some of the candidate
options might not correspond to the question, and this
means that if the combination of questions and the cor-
responding candidate options is considered part of the
PrLM encoder’s input text, it might affect the model’s
performance. Additionally, for every two parts, the re-
lationships between passages, questions, and the corre-
sponding candidate options are not independent of each
other. For example, the relationship between a question
and its corresponding candidate options helps in the en-
hanced inference of the relationship between a passage
and a question, and this aspect applies to other differ-
ently related pairs.

3. Proposed Method
The remaining problems associated with multiple-
choice question answering (MCQA) for MRC include
1) the problem of incomplete correspondence and 2)
the helping-relation problem. The problem of incom-
plete correspondence involves the mismatch between
a passage and a question and the mismatch between a
question and its corresponding candidate options. In
other words, a question is not guaranteed to be related
to a part or the span of a passage. Additionally, some of
the candidate options might not correspond to the ques-
tion. The helping-relation problem involves the inter-
linkages problem, which is associated with the relation-
ship between every two parts of a passage, a question,
and the corresponding candidate options. For example,
determining the relationship between a question and its
corresponding candidate options helps in the enhanced
inference of the relationship between a passage and a
question, and this aspect applies to other differently re-
lated pairs.

Passage (dialogue form)
M: Excuse me. How can I get to the Prince Street?
W: Take Bus No. 13 and get off at Prince Street
stop.
M: Can you tell me where I can buy such kind of
shirt?
W: Oh, that’s easy. There’s a man’s shop just
around the corner.
M: Thank you.
Question1:
Which bus should the man take to get to Prince
Street?
Candidate options:
A. Bus No. 12.
B. Bus No. 30.
C. Bus No. 13.

√

Question2:
What does the man want to buy?
Candidate options:
A. A shirt.

√

B. A bag.
C. A tie.

Figure 1: MCQA sample extracted from the DREAM
(Sun et al., 2019a) dataset

To solve the problem of incomplete correspondence,
we propose the HRCA method. Instead of only con-
sidering the passage and question or the question and
candidate options pairs, to prevent the influence of in-
consistent pairs of candidate options and questions,
our proposed HRCA model considers the relation-
ships between passages, questions, and the correspond-
ing candidate options separately to solve the problem
of incomplete correspondence. Our proposed HRCA
method also addresses the helping-relation problem by
updating the learned information obtained from the
previous relation-pair to the next relation-pair when
executing the attention mechanism. However, previ-
ous models update such information in parallel. More-
over, we extend the operations of our proposed HRCA
method to fully utilize the information extracted using
the PrLM.
Section 3.1 shows the definition of a multiple-choice
question answering task. Next, the overall architecture
of our proposed model is presented in Section 3.2, each
of which is explained in Sections 3.3–3.6.

3.1. Task Definition
MCQA tasks comprise passages (P) of text, questions
(Q) related to P, and n candidate answer options (O) for
each Q. An example is presented in Figure 1. MCQA
tasks aim to build a model for calculating the probabil-
ity of correctness for each candidate option.

F :(P, Q, {O1, O2, ..., On})
→{Pr(O1), P r(O2), ..., P r(On)}

(1)
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Figure 2: Architecture of HRCA model.

3.2. Model Architecture
Figure 2 illustrates the overview of our proposed
model’s architecture. Our model simulates the strate-
gies employed by humans in their attempt to achieve
high scores in reading comprehension exams. That is,
first confirming the question, then checking the can-
didate options, and finally combining the information
learned from the question with the candidate options to
read the entire passage. Based on the PrLM encoder,
we first generate the word embedding of the combina-
tion of passages, questions, and each candidate option.
Next, all the word embeddings are divided into three
parts corresponding to the passage, question, and each
candidate option separately. Further, K HRCA layers
repeat the following three steps by K times, thereby
simulating the way in which humans attempt to achieve
high scores in reading comprehension exams.

Step 1:
We perform multi-head self-attention on the question
(We regard the question as a query, key, and value).
This step is aimed to allow the model confirm the
question again.
Step 2:
We perform multi-head attention on the option and
the updated question presented in Step 1 (We regard
the option as a query, and we regard the updated
question as the key and value). This step is executed
to simulate the understanding of the candidate options
after confirming the question.
Step 3:
We perform multi-head attention on the passage and
the updated options presented in Step 2 (We regard the
passage as a query, and we regard the updated option
as the key and value). This step allows for the model
to comprehend the passage with the question and the
corresponding candidate options after understanding
the candidate options.

Through this approach, we obtain the attention score
for each text, which is then transformed into a prob-
ability distribution for each candidate option using a
multi-layer perceptron. Finally, we choose the option
with the highest probability as the answer.

3.3. Contextualized Encoding
In our proposed model, we adopt a PrLM to gener-
ate a global contextualized representation. Let a pas-
sage be P = [p1, p2, . . . , pi, . . . , pk], a question be
Q = [q1, q2, . . . , qi, . . . , qℓ], and a candidate option
be O = [o1, o2, . . . , oi, . . . , om], where pi, qi, and oi
represent tokens processed using the PrLM as a word
in the text of the passage, the question, and the corre-
sponding candidate option, respectively. We concate-
nate each candidate option O with its corresponding
question Q and its corresponding passage P into one
sequence. After feeding the concatenated sequence
into the PrLM’s encoder function Encode(·), we can
obtain the output E = Encode(P

⊕
Q

⊕
O).

The PrLM’s encoder output E has the following form:
[e1, e2, ..., ek+ℓ+m]. Note that if we have one passage,
one question, and four candidate options, we obtain
four different concatenated sequences in total.

3.4. Human Reading Comprehension
Attention

As shown in Figure 2, based on the multi-head attention
module (Vaswani et al., 2017), we propose the HRCA
method to enlighten the model and enable it to learn the
relationships between every two parts in a passage, a
question, and the corresponding candidate options and
to update the learned information to the next learning
step. The output E of the PrLM’s encoder is separated
into EP , EQ, and EO, each of which represents the
embedding of the passage, the question related to the
passage, and the candidate option to the question, re-
spectively. We first use a question as a query, key, and
value, to reconfirm the question. Afterwards, we use
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the answer as a query and the updated question as the
key and value to understand the candidate option. Fi-
nally, we regard the passage as a query and the updated
answer as the key and value to comprehend the pas-
sages with the question and the corresponding candi-
date options. We then update the information obtained
using the HRCA layer in the order of question, option,
and passage, and the pseudo-code is presented in Algo-
rithm 1.

Algorithm 1 HRCA calculation process
Require: EP , EQ, EO

1: function MHSA(Q,K, V )
▷ The query, key, and value.

2: Attention(Q,K, V )← Softmax(Q(K)T√
dk

) · V
▷ dk represents the dimension of K.

3: headi ← Attention(QWQ
i ,KWK

i , V WV
i )

▷ W x represents the weight matrix of x.
4: return Concat(head1, head2, ..., headl)W

O

5: end function
6:
7: function R(EP , EQ, EO)
8: return Concat(EP , EQ, EO)
9: end function

10:
11: function HRCA(EP , EQ, EO)
12: EQU

← MHSA(EQ, EQ, EQ)

13: EOU
← MHSA(EO, EQU

, EQU
)

14: EPU
← MHSA(EP , EOU

, EOU
)

15: return R(EPU
, EQU

, EOU
)

16: end function

3.5. PQO Matrix

As shown in Figure 3, the PQO matrix is a 3 × 3 matrix
that includes all the possible combinations of the rela-
tionships between passages, questions, and their corre-
sponding candidate options. Although we already con-
sidered the three types of relations, i.e., the question
and the question itself, the candidate options and the
question, and the passage and candidate options, in the
HRCA layer, we still have six unused relationship pairs
among these relations. Therefore, the PQO matrix is
used to list the nine possible relation-pairs for confirm-
ing the parts that remain used or unused through the
HRCA method.
In Figure 3, “Self” represents self-attention, and
“AtoB” shows the way in which B is used to calcu-
late the attention score of A, where A and B represent
one passage, question, and the corresponding candidate
option. Additionally, the dark–red-colored cells repre-
sent the attention process used in the HRCA layer. The
light–red-colored cells (cells in the diagonal axis) rep-
resent the self-attention of the corresponding element,
which is normally calculated using the PrLM’s self-
attention module. The grey-colored cells represent the
attention processes that are not used in the HRCA layer.

Passage Question Option

Passage Self P toQ PtoO

Question QtoP Self QtoO

Option OtoP OtoQ Self

Figure 3: PQO Matrix for calculating the attention

3.5.1. HRCA+: PQO Matrix-guided HRCA
We extend the operations of our proposed HRCA
method to adopt all the passage, question, and cor-
responding candidate option relationships. Because
such relationships are not limited to the three relation-
ships adopted during the implementation of the HRCA
method, it is expected that the performance of the pro-
posed HRCA approach increases during the use of en-
tire relationships. Therefore, we propose an advanced
multi-choice MRC method called HRCA+ to adopt the
unused relationships in the proposed HRCA, i.e., the
light-red-colored cells and the grey-colored cells pre-
sented in Figure 3.
In HRCA+, we update the adjacent cells in the order
presented in Figure 4. Because updating the attention
scores of the target relation pairs from their previous re-
lation pairs relies on the adjacent connection between
both relation pairs, we update the adjacent cells in a
manner that allows the updating of only one sequence.
For example, suppose that the previous relation pair is
a question-to-option pair. In such a case, the next re-
lation pair must satisfy the appearance of at least one
element in the previous relation pair, i.e., the question
or option, to ensure the update’s validity, where A-to-B
represents using B to calculate the attention score of A.

3.6. R Function and Multi-Layer Perceptron
HRCA+ updates the PrLM’s outputs of the passage,
the question, and the corresponding candidate options.
Next, a reduce function (R function) is required to com-
bine those three outputs. The common reduce func-
tion includes concatenation, element-wise summation,
and element-wise production. (Zhang et al., 2020) used
concatenation to combine the final representation out-
puts. We investigate and compare the reduction func-
tions mentioned above, and the results are presented in
Section 4.4.
Additionally, we must consider using the combined
outputs to generate the probability distribution for each
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Passage Question Option

Passage 7 8 9

Question 6 1 2

Option 5 4 3

Figure 4: Updating order in PQO Matrix

option. Because PrLM outputs have a much larger di-
mension than that of the candidate options, reducing
the dimension is required. Note that 512 is a common
embedding dimension for most PrLMs, and for most
multiple-choice tasks, the number of candidate options
ranges from 2–4.
To generate one feature map for each corresponding
PrLM token, (Zhang et al., 2020) used row-wise max
pooling, and (Zhu et al., 2020) used mean pooling.
Our proposed model adopts global average pooling to
retain additional information from the previous out-
put. Meanwhile, as a multi-class classification task,
multiple-choice requires the model to predict the label
with the highest confidence score, which works well
using a Softmax function. This is how our proposed
multi-layer perceptron (MLP) was formulated.

4. Experiments
In this section, we evaluate the performance of our pro-
posed method on multiple-choice reading comprehen-
sion examination datasets.

4.1. Datasets
We used the following two datasets: DREAM (Sun et
al., 2019a) and SemEval-2018 Task 11 (Ostermann et
al., 2018).

DREAM DREAM is a dialogue-level multiple-choice
reading comprehension dataset collected from English-
as-a-foreign-language examinations. DREAM is a
challenging dataset because 85% of the questions
require reasoning beyond a single sentence, and 34%
of the questions involve commonsense knowledge.

SemEval-2018 Task 11 The SemEval-2018 Task 11
dataset assesses the way in which the inclusion of com-
monsense knowledge, i.e., script knowledge, benefits
MRC systems. Script knowledge is defined as the
knowledge regarding daily activities, such as baking a

cake or taking a bus. In addition to what is mentioned in
the text, many questions require inference using script
knowledge regarding different scenarios, such as an-
swering questions that require additional knowledge
beyond the facts mentioned in the text.

4.2. Experimental Settings
Our proposed method is an improvement of PrLMs.
We use a PrLM as the encoder for generating the
hidden states of concatenated text. For the layers
of HRCA and HRCA+, we use K = 4 for both the
DREAM and the SemEval-2018 Task 11 datasets.

Baselines ALBERTbase, and ALBERTxxlarge (Lan et
al., 2019) using multiple-choice models are selected
as the baselines. The learning rate is 8e-6 for both the
DREAM and Semeval-2018 Task 11 datasets. The
batch size is set to two for the DREAM dataset, and
it is set to four for the Semeval-2018 Task 11 dataset.
The proposed model is trained for three epochs on the
DREAM dataset and for two epochs on the Semeval-
2018 Task 11 dataset. Note that previous methods
(Zhang et al., 2020; Zhu et al., 2020) used a batch size
of eight for the DREAM dataset. Therefore, we also
implement DUMA (Zhu et al., 2020), and we train both
DUMA and vanilla ALBERT-xxlarge using a batch
size of two to achieve highly intuitive performance
comparison. The hyperparameters remain the same
for all other compared methods, including PrLMs
and PrLM-based models. The other PrLMs used for
comparison in this study include BERT (Devlin et al.,
2019), GPT (Radford et al., 2018), XLNet (Yang et
al., 2019), and RoBERTa (Liu et al., 2019b). Other
PrLM-based models used for comparison in this study
include WAE (Kim and Fung, 2020), DCMN (Zhang
et al., 2020), MMM (Jin et al., 2020), and DUMA
(Zhu et al., 2020).

Data pre-processing For the DREAM dataset, we ap-
ply data pre-processing to maintain the consistency of
gender representations, i.e., man and woman, between
passages and questions. The symbols, W and M, rep-
resent “woman” and “man” as the speaker attributes in
a passage. However, the symbols, man and woman,
are used in questions. Therefore, the symbols W and
M are replaced with “woman” and “man” during data
pre-processing.

4.3. Multi-task learning
Existing large-scale PrLMs are more oriented towards
acquiring the corresponding syntactic and semantic
features of the text in the pre-training task. Although
our proposed model can maximize the inference infor-
mation and interrelationships on the downstream task,
the performance may still be limited by the size of the
downstream task. Therefore, we designed multi-task
training, aiming to increase the inference information
and inference capability of the PrLM.



6065

We do not want to increase the cost of training on
downstream tasks, and at the same time want the
PrLM to have a more general reasoning ability. There-
fore, we chose four large-scale general natural lan-
guage inference datasets including SNLI(Bowman et
al., 2015), Multi-NLI(Williams et al., 2018), NLI-
version of FEVER(Nie et al., 2019) and ANLI(Nie et
al., 2020) for multi-task training. We first fine-tuned
the PrLM on these four datasets and then used the fine-
tuned PrLM for subsequent downstream tasks.

4.4. Results

In this study we adopted accuracy as the evaluation
metric. The experimental results are listed in Tables
1–5.
We first evaluated the performance of our proposed
model using the DREAM dataset. Table 1 shows the
difference in accuracy, as it pertains to the develop-
ment and test sets when using one to five MHSA layers
on the HRCA and HRCA+ approaches. In the HRCA
method, the performance first increases, after which
it decreases as the number of layers increases. Con-
trarily, in HRCA+, the performance increases in pro-
portion to the number of layers. For comparison, the
performance of the related model, DUMA, begins to
decrease when the number of layers increases to two.
The HRCA method uses the three most efficient rela-
tion pairs, whereas the HRCA+ uses all possible re-
lation pairs. This phenomenon reflects that HRCA+
learns additional information compared to the HRCA
method. Even if the attention calculation mechanism
is repeated multiple times, the proposed model can still
learn useful information to improve accuracy.
Table 2 shows the accuracy difference when using
element-wise production, element-wise summation,
and concatenation as the reduce function for combining
the final representation outputs with those of HRCA+.
According to the results, concatenation demonstrates
improved performance compared to that of the other
two functions because it retains the previously learned
information to the maximum extent possible.
Table 3 shows the results of ablation experiments for
HRCA model on DREAM dataset. To verify the va-
lidity of all the three steps in our HRCA model, we
tested several combinations. The results show that all
the three steps are necessary.
Table 4 shows the publication results on the DREAM
dataset. Our proposed model achieves the highest ac-
curacy of 92.6% among all models that use extra train-
ing data, while it also achieves the highest accuracy of
91.6% among all models that do not use extra train-
ing data. Owing to challenges associated with com-
putational resources, we only use a batch size of two,
whereas several previous methods use a batch size of
eight. To achieve enhanced intuitive performance for
comparison purposes, we implement DUMA, which is
the current state-of-the-art method, and we use similar
parameters to train our implementation of the DUMA

and vanilla ALBERT-xxlarge methods. For each result,
we train our proposed model five times, and we cal-
culate the average value. Note that there is a gap of
1.3% in the performance of our implementation and the
initial DUMA method. To verify the accuracy of our
implementation, we test the performance of our imple-
mented DUMA through the ALBERT-base using pa-
rameters that are similar to the initial DUMA method.
We also test the performance of our proposed model on
the SemEval-2018 Task 11 dataset presented in Table 5.
The best accuracy level was 84.1% (Ostermann et al.,
2018) during the SemEval-2018 Task 11 competition.
As shown in the second grid of Table 5, we adopted the
PrLM results showing improved accuracy from 84.1%,
i.e., from the results obtained using the vanilla GPT
and RoBERTa-Large methods. By applying strategies,
such as back and forth reading, highlighting, and self-
assessment (Sun et al., 2019b), and by applying model
ensembles, multi-task learning, the accuracy level was
improved to 95.8%. Even in comparison to the perfor-
mance of the best model relying on extra training data,
i.e., the MMM (Jin et al., 2020) model, our proposed
model is able to achieves the highest accuracy levels
without extra training data.

Baseline Layers + HRCA + HRCA+
1 66.2/67.4 67.3/67.9

ALBERT 2 67.0/67.9 67.5/68.9
-base 3 67.6/68.8 68.0/69.0

64.5/64.4 4 68.2/67.7 68.5/69.7
5 67.9/68.0 69.6/69.8

Table 1: Performance in accuracy (%) with various
MHSA layers on DREAM dataset based on ALBERT-
base. (Showing the accuracy as development dataset /
test dataset)

Model Reduce function Test
ALBERT-base - 64.4
+ HRCA+ element-wise production 66.9
+ HRCA+ element-wise summation 68.5
+ HRCA+ concatenation 68.9

Table 2: Performance in accuracy (%) with different
reduce functions on DREAM dataset.

Model Steps Test
ALBERT-base - 64.4
+ HRCA step1 66.9
+ HRCA step1 & step2 67.8
+ HRCA step1 & step3 67.2
+ HRCA step2 & step3 67.1
+ HRCA step1 & step2 & step3 68.8

Table 3: Ablation experiments for HRCA on DREAM
dataset.
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Model Dev Test
Random 32.8† 33.4†

GBDT++ (Sun et al., 2019a) 53.3† 52.8†

FTLM++ (Radford et al.,
2018)

57.6† 57.4†

Ensemble of 3 FTLM++ 58.1† 58.2†

Ensemble of 1 GBDT++ and
3 FTLM++

59.6† 59.5†

BERT-base 63.2♣ 63.2♣

ALBERT-base 64.5♢ 64.4♢

BERT-large 66.2♣ 66.9♣

XLNet-large - 72.0♢

RoBERTa-large 85.4♣ 85.0♣

ALBERT-xxlarge 89.2♢ 88.5♢

BERT-large + WAE (Kim
and Fung, 2020)

- 69.0♢

ALBERT-xxlarge + DCMN
(Zhang et al., 2020)

- 87.8♢

RoBERTa-large + MMM
(Jin et al., 2020)

88.0♣* 88.9♣*

ALBERT-xxlarge + DUMA
(Zhu et al., 2020)

89.9♢ 90.4♢

ALBERT-xxlarge + DUMA
+ Multi-Task Learning
(Wan, 2020)

91.9♡* 91.8♡*

ALBERT-base + DUMA - 67.5
(our implementation)
ALBERT-base + DUMA - 67.6♢

ALBERT-base + HRCA - 68.8
ALBERT-base + HRCA+ - 69.8
ALBERT-xxlarge 88.2 88.0
ALBERT-xxlarge + DUMA 89.5 89.1
(our implementation)
ALBERT-xxlarge + HRCA+ 90.8 91.6
ALBERT-xxlarge + HRCA+ 92.1 92.6
+ Multi-Task Learning
Human Performance (Sun et
al., 2019a)

93.9† 95.5†

Ceiling Performance (Sun et
al., 2019a)

98.7† 98.6†

Table 4: Performance in accuracy (%) on DREAM
dataset.
(†: reported by (Sun et al., 2019a),
♣: reported by (Jin et al., 2020),
♢: reported by (Zhu et al., 2020),
♡: reported by (Wan, 2020),
*: using extra training data when training.)

5. Conclusions
In this study, we propose a method called human
reading comprehension attention (HRCA) for simu-
lating the reading strategies employed by humans.
Compared to other state-of-the-art methods, our pro-
posed approach achieves a higher score when tackling
multiple-choice comprehension tasks. We further pro-
pose a passage-question-option matrix-guided HRCA

Model Test
Sliding Window (Richardson et al.,
2013)

55.0†

Attentive Reader (Chen et al., 2016) 72.0†

Best score in competition (Oster-
mann et al., 2018)

84.1†

GPT 88.0♣

BERT-base 88.1♢

GPT (2×) 88.6♣

BERT-large 88.7♢

RoBERTa-large 94.0♢

ALBERT-xxlarge 95.4
GPT+Strategies (Sun et al., 2019b) 88.8♣

GPT+Strategies (2×) (Sun et al.,
2019b)

89.5♣

RoBERTa-large + MMM (Jin et al.,
2020)

95.8♢*

ALBERT-xxlarge + HRCA+ 96.6
ALBERT-xxlarge + HRCA+ 97.2
+ Multi-Task Learning
Human Performance (Ostermann et
al., 2018)

98.0†

Table 5: Performance in accuracy (%) on SemEval-
2018 Task 11 dataset.
(†: reported by (Ostermann et al., 2018),
♣: reported by (Sun et al., 2019b),
♢: reported by (Jin et al., 2020),
*: using extra training data when training.)

approach called HRCA+ to fully utilize the information
between passages, questions, and the corresponding
candidate options extracted using PrLMs. The experi-
ments’ results on the DREAM and Semeval-2018 Task
11 datasets show that our proposed method achieves the
highest accuracy among other existing state-of-the-art
methods. In our future studies, we shall integrate the
applications of our proposed method to tasks in other
fields, such as the extraction of relationships between
passages and given argument pairs.
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