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Abstract

The development of an automatic evaluation metric remains an open problem in text generation. Widely used evaluation
metrics, like ROUGE and BLEU, are based on exact word matching and fail to capture semantic similarity. Recent works,
such as BERTScore, MoverScore and, Sentence Mover’s Similarity, are an improvement over these standard metrics as
they use contextualized word or sentence embeddings to capture semantic similarity. We in this work, propose a novel
evaluation metric, Sentence Pair EmbEDdings (SPEED) Score, for text generation which is based on semantic similarity
between sentence pairs as opposed to earlier approaches. To find semantic similarity between a pair of sentences, we obtain
sentence-level embeddings from multiple transformer models pre-trained specifically on various sentence pair tasks such
as Paraphrase Detection (PD), Semantic Text Similarity (STS), and Natural Language Inference (NLI). As these sentence
pair tasks involve capturing the semantic similarity between a pair of input texts, we leverage these models in our metric
computation. Our proposed evaluation metric shows impressive performance in evaluating both abstractive and extractive
summarization models and achieves state-of-the-art results on the SummEval dataset, demonstrating the effectiveness of
our approach. Also, we perform the run-time analysis to show that our proposed metric is faster than the current state-of-the-art.

Keywords: Evaluation Metric, Abstractive Summarization, Extractive Summarization, Semantic Similarity

1. Introduction

Developing an efficient automatic evaluation metrics
for text summarization will have a two-fold impact on
the advancement of algorithms for text generation sys-
tems. First, it eliminates the need for time-consuming
and expensive human evaluations, second, it helps for
a better comparison and assessment of the developed
systems. With this goal, various evaluation metrics
have been proposed in the literature to automatically
evaluate summarization methods. Widely used metrics:
ROUGE (Lin, 2004) and BLEU (Papineni et al., 2002),
rely on word/token overlap between reference and sys-
tem summary.
Recent works such as BERTScore (Zhang et al., 2019),
MoverScore (Zhao et al., 2019) are improvements over
earlier methods as they use word/token embeddings
from pre-trained language models instead of using ex-
act word/token matches. However, a drawback of
these metrics is that they do not capture the perfor-
mance of the models in terms of semantic consistency
of the generated summary to its reference (Clark et al.,
2019). This shortcoming becomes more prominent as
the length of the summaries increase. To overcome
these issues and to better evaluate summarization mod-
els, there is a need for a metric that can find semantic
similarity between the ground truth and system sum-
mary at a level beyond the individual words/tokens.
In this work, we propose the idea of using sentence-
pair embeddings to compare multi-sentence summaries
for automatic evaluation of text summarization mod-
els. To extract the sentence-pair embeddings, we pro-
pose the use of existing deep-learning models trained
on various tasks which involve learning semantic simi-

larity between sentences. More concretely, we present
Sentence Pair EmbEDding (SPEED) Score, an evalu-
ation metric which uses Transformer (Vaswani et al.,
2017) models, trained on sentence-pair tasks such as
Paraphrase Detection, Semantic Text Similarity (STS),
Natural Language Inference (NLI), and Passage Rank-
ing. We hypothesize that, embeddings from these mod-
els better capture the semantic similarities between sen-
tences and thus aid in improving the performance of the
evaluation metric.
To validate this hypothesis, we propose a simple evalu-
ation metric that uses models trained on these sentence-
pair tasks to evaluate generated summaries. To com-
pute our metric, we used publicly available transformer
models, pre-trained on sentence-pair tasks. Using our
proposed approach for computing the evaluation met-
ric, we achieve comparable results with the state-of-
the-art metrics on the recent SummEval dataset by
(Fabbri et al., 2021). Main contributions of our work
are:

• We propose a novel and simple evaluation met-
ric for text summarization, based only on sentence
embeddings.

• We propose the use of Transformer models,
trained on sentence-pair tasks to extract sentence
embeddings our metric computation.

• We compare our proposed metric with current
state-of-the-art on the CNN/DailyMail dataset and
show improved results.
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Figure 1: Overview of steps involved in computation of our proposed SPEED-Score metric: (i) Our metric em-
ploys multiple models trained on different sentence-pair tasks to extract sentence embeddings for sentences. (ii)
Cosine similarity is computed for every pair of sentences from the system generated and reference summaries. (iii)
Sentences in the generated summary are mapped to the sentences in the reference summary with highest similarity
score. (iv) Final metric is the average of similarity scores for all the sentences in the system generated summary.

2. Related Work

In this section, we provide a brief overview of existing
automatic evaluation metrics for text summarization.
Widely used evaluation metrics for summarization are
BLEU (Papineni et al., 2002), ROUGE(Lin, 2004),
and METEOR(Lavie and Agarwal, 2007), which mea-
sures the extent of lexical overlap between ground truth
and system-generated summaries. These metrics are
mainly developed for the task of machine translation
and are based on stemming, matching synonyms, and
weighted sub-sequences. Recent evaluation metrics
such as S3(Peyrard et al., 2017), BERTScore (Zhang et
al., 2019), MoverScore (Zhao et al., 2019), and SMS
(Clark et al., 2019) are deep-learning based and use
word embeddings to compute token similarity, instead
of using exact matches like in n-gram based metrics.
In regards to evaluating text quality, standard metrics,
BLUE (Papineni et al., 2002) and ROUGE (Lin, 2004),
can neither capture contextual information nor consider
the semantic similarity between system generated sum-
mary and the reference summary. These metrics also
fail in presence of word re-ordering or paraphrasing
(Kilickaya et al., 2017). Recent word embedding based
metrics, like BERTScore (Zhang et al., 2019), Mover-
Score (Zhao et al., 2019), and S3 (Peyrard et al., 2017)
use embeddings from language models to capture con-
textual information but still suffer from the critical is-
sue of capturing factual correctness and faithfulness
(Maynez et al., 2020) of system generated text towards
reference text. All the metrics discussed above oper-
ate with words or word representations and fail to cap-
ture similarity between semantic concepts expressed
using a group of words or phrases. This problem is
alleviated as the length of the summaries being com-
pared increases. We in our proposed metric overcome
this drawback by using sentence embeddings which are
higher level representations of text.

Recent work, Sentence Mover’s Similarity (SMS)
(Clark et al., 2019) uses sentence level embeddings
along with word embedding and is a based on Word
Mover’s Distance (Kusner et al., 2015). In (Gao et
al., 2020), an evaluation metric is proposed for multi-
document summarization where pre-trained language
models are used to extract sentence embeddings for
computing the similarity between summaries. In both
the works mentioned above, sentence embeddings are
extracted from language models trained on individual
sentences. These embeddings fail capture semantic
relationship between sentence pairs. We in our met-
ric computation, use pre-trained transformer models
trained on sentence-pair tasks to extract sentence em-
bedding which capture the semantic similarity.

3. Proposed Approach

In this section, we present our proposed metric for eval-
uating the similarity between the summary generated
by a text summarization system and the reference sum-
mary provided by a human. In our metric computation,
we employ sentence pair embeddings, instead of sen-
tence/word embeddings or token matching. Given a
system generated summary G = {SG

i |1  i  K}
with a set of sentences SG

i and a reference summary
R = {SR

j |1  j  L} with a set of sentences SR
j ,

we : (i) Use sentence embeddings from pre-trained
sentence-pair models to represent each sentence pair
(SG

i , SR
j ) in G and R. (ii) Compute semantic simi-

larity between each pair of sentences from G and R
using Cosine distance between sentence embeddings.
(iii) Match each sentence in the generated summary to
a sentence in reference summary with maximum sim-
ilarity. (iv) Compute average score across all the sen-
tences in the generated summary as the semantic sim-
ilarity score between G and R; these steps are also il-
lustrated in Figure 1.
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3.1. Sentence Embeddings

To represent sentences in a summary, we extract em-
beddings for each sentence from a transformer model
trained on a sentence-pair task. As the sentence-pair
tasks involve finding semantic similarity between a
pair of sentences, we leverage models trained on these
tasks to extract embeddings for our metric computa-
tion. These models, take a pairs of sentences as input
and provide D-dimensional embeddings for each sen-
tence. As the goal of our metric is to compute seman-
tic similarity between system generated summary and
the reference summary, we pass the sentence pairs (SG

i ,
SR
j ), where SG

i 2 G and SR
j 2 R to extract the sentence

embeddings (Ei, Ej). As there are multiple pre-trained
models available on these sentence-pair tasks, we use
the sentence embeddings (En

i , E
n
j ), from each of the

N 2 [1, 2, ..., n] models in the computation.

3.2. Pre-train Tasks

For extracting sentence embeddings, we use the follow-
ing sentence-pair tasks.

- Paraphrase Detection: This task involves de-
tecting if a pair of sentences are paraphrases of
each other i.e., if they both have the same seman-
tic meaning. As this sentence-pair task requires
finding semantic similarity between a pair of sen-
tences, it is an ideal task for our metric computa-
tion.

- Semantic Text Similarity: STS task deals with
determining similarity between a pair of texts.
This task involves assigning a score between 0 to
5, denoting the level of similarity/entailment.

- Natural Language Inference: Given two sen-
tences, Premise and Hypothesis, the task is
to identify if the Premise agrees/contradicts/is-
neutral to the Hypothesis.

- Passage Ranking: This task involves ranking a
set of passages in order of relevance to a given
query. As each passage contain multiple sen-
tences, this task requires identifying semantic sim-
ilarity between the sentences in the passage with
the query sentence.

All the pre-trained models used in our metric computa-
tion are implemented in PyTorch (Paszke et al., 2017)
and are publicly available for download1 (Reimers and
Gurevych, 2019).

3.3. Similarity Score

Representing each sentence as an embedding allows
for computing a soft similarity score rather than exact
token matching or heuristic matching. In our metric
computation, we use cosine distance between the em-
beddings to compute the similarity between two sen-
tences. Given SG

i , i 2 [1,K] and SR
j , j 2 [1, L] are sen-

1Sentence-Transformers

tences from G and R respectively, the semantic similar-
ity (Simij) between SG

i and SR
j is given by Equation

1. Here, Ei and Ej are D-dimensional embeddings for
sentences SG

i and SR
j from one of the N pre-trained

models, trained on different sentence-pair tasks.

Simij =
1

N
⇥

NX

n=1

1� CosineDistance(En
i , E

n
j )

(1)

3.4. Metric Computation

To compute the semantic similarity between two sum-
maries (G and R), we consider the similarity between
all sentence pairs and match each sentence in G to a
sentence in R. We use a greedy matching approach,
where a sentence in G is matched to a sentence in R
with highest similarity score. The final metric is the av-
erage of the similarity scores for all the sentences in G.
We call this metric, SPEED-Score, as the models used
in this computation are transformer models trained on
sentence-pair tasks.

4. Experiments

4.1. Datasets

Text Summarization To evaluate our proposed met-
ric at the text summarization task, we use the Sum-
mEval dataset (?). It consists of 1600 summaries
generated by 16 state-of-the-art text summarization
models for 100 news articles from CNN/Daily Mail
dataset(Hermann et al., 2015). Each of these sum-
maries is annotated by 3 independent experts and 5 in-
dependent crowd-sourced Amazon Turkers, amounting
to a total of 12,800 summary level annotations. Each
annotation is a score between 0 and 5, rating the qual-
ity of the generated summary along four dimensions as
in (Kryściński et al., 2020). Inter-annotator agreement
for the collected crowd-sourced and expert annotations
is evaluated by computing the Krippendorff’s alpha co-
efficient.
For each news article, in addition to the golden sum-
mary from the CNN/Daily Mail dataset, 10 additional
human written reference summaries are provided in
this dataset. All 16 summarization models in this
dataset, are trained on the CNN/DailyMail News cor-
pus and the collected summaries are generated using
the test split of the dataset. There are a total of 4 ex-
tractive and 12 abstractive summarization models in
this dataset which allows for independent evaluation of
the proposed metric on both classes of summarization
models. Datasets mentioned below are used for train-
ing sentence-pair transformer models we employ in our
metric computation. Description of these datasets are
included for completeness.
Paraphrase Detection: For this task, we use mod-
els trained on Quora Question Pairs (QQP) (Iyer et
al., 2017) and Microsoft Research Paraphrase Corpus
(MRPC) (Dolan and Brockett, 2005), which are two

https://www.sbert.net/
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widely used datasets. QQP dataset contains more than
400K question pairs from Quora, the online question-
answering site, with the annotations indicating if the
questions are duplicates of each other. MRPC contains
sentence pairs extracted from online news sources. For
each sentence pair, annotations by two human judges
are presented, indicating whether the sentences de-
scribe the same news event.

Semantic Text Similarity: STS-Benchmark (Cera et
al., ) is the dataset used for this task and it is a collection
of sentence pairs from news headlines and other online
sources. Each sentence pair in this dataset is annotated
with a score between 1 and 5 denoting how similar the
two sentences are with respect to their semantic mean-
ing.

Natural Language Inference: This task is also
known as Recognizing Textual Entailment (RTE).
Stanford Natural Language Inference (SNLI) corpus
(Bowman et al., 2015), Multi-Genre Natural Language
Inference (Multi-NLI) corpus (Williams et al., 2018)
are two datasets on which models are trained. These
datasets contain sentence pairs manually labeled for
classification with labels entailment, contradiction and
neutral for the NLI task.

Passage Ranking: MS-MARCO Passage Ranking
dataset (Nguyen et al., 2016) is used to train the models
for this task. Apart from passage ranking, this dataset
is also used for machine comprehension, question an-
swering, and key phrase extraction. This dataset con-
tain 1 million queries from the search engine Bing,
and 8.8 million passages extracted from the web in re-
sponse to those queries.

4.2. Evaluation Measure

To evaluate our proposed metric, we compute Pearson
Correlation Coefficient between the evaluation score by
our automatic metric and the human evaluation score,
along 4 dimensions. For each dimensions, human eval-
uation score is a value between 0 and 5.

- Coherence: Checks if generated summary is
well-structured, and well-organized. The sen-
tences in the generated summary should be related
on each other and build a coherent narrative about
a topic.

- Consistency: Looks at factual alignment between
the generated and source summary. Sentences in
the generated summary should be related to the
source summary.

- Fluency: Considers quality of individual sen-
tences with respect to formatting, capitalization
errors, and ungrammatical constructs. Generated
summary should be easy to read.

- Relevance: Checks if important content from the
source is included in generated summary. Gener-
ated summary should neither be too long nor con-
tain redundant information.

4.3. Implementation Details

All the pre-trained models used in our metric computa-
tion are implemented in PyTorch (Paszke et al., 2017)
and are publicly available for download2 (Reimers and
Gurevych, 2019). For each sentence-pair task, we pick
two pre-trained models based on their performance on
their corresponding benchmark datasets. Thus, in our
metric computation we use an ensemble of N = 8
models in total, with 2 models from each of the 4 pre-
train tasks.

4.4. Results

To evaluate our proposed metric for each generated
summary, we compute the Pearson Correlation be-
tween the evaluation score by our metric and the human
evaluation score, for each of the reference summaries
provided by (?) as well as the single golden reference
summary. Table 1 and, 2, show that our proposed met-
ric achieves better results than the current state-of-the-
art validating our hypothesis that models pre-trained on
sentence-pair tasks capture the semantic similarity be-
tween a pair of sentences and help in better evaluat-
ing text summarization methods. To compute our final
metric, we use an ensemble of 4 pre-trained models,
one from each sentence-pair task, and average the sim-
ilarity scores from all 4 models for each sentence-pair.
More details on the ensemble strategy and the perfor-
mance of individual models in the ensemble are pre-
sented in the next section. Refer to Figure 2, for a
sample qualitative result comparison with other met-
rics. Also, refer to the supplementary material for more
results including performance of our metric on indi-
vidual summarization models and Pearson correlation
with single golden reference summary for abstractive
and extractive models.

4.4.1. Baselines

Our metric is based on models trained specifically
on sentence-pair tasks. To show the importance of
pre-training on sentence-pair tasks, we present the re-
sults of our metric using models trained on other lan-
guage modeling tasks such as Masked Language Mod-
eling (MLM) and Named Entity Recognition (NER).
These tasks are word/token-level tasks which involve
masked token prediction (MLM) or token classifica-
tion (NER). For a fair comparison, the models we use
here as baseline differ only on the pre-training task
but not in model complexity; results are presented in
Table 3. These results show that none of the mod-
els trained on word/token-level tasks achieve compara-
ble performance to the models trained on sentence-pair
tasks. This shows the inability of models trained on
word/token-level tasks in capturing the semantic simi-
larity between sentences and highlight the importance
of pre-training on sentence-pair tasks.

2Sentence-Transformers

https://www.sbert.net/
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Figure 2: Qualitative result comparison for an example summary. In this example, our metric score correlates
better with human evaluation score when compared to other metrics. With drop in human evaluation score, our
metric score also drop, while other metric scores remain the same or increase. Human evaluation scores range
between 0-5, and the evaluation metric scores range between 0-1.

Metrics Coherence Consistency Fluency Relevance Average

BERTScore(p/r/f) 0.14/0.17/0.18 0.15/0.21/0.20 0.20/0.16/0.21 0.19/0.35/0.32 0.17/0.22/0.22
BLEU 0.22 0.17 0.14 0.35 0.22
METEOR 0.03 0.03 0.07 -0.01 0.03
MoverScore 0.21 0.19 0.20 0.31 0.22
ROUGE-1/2/3/ 0.20/0.15/0.16 0.18/0.16/0.16 0.15/0.10/0.09 0.35/0.27/0.26 0.22/0.17/0.16
ROUGE-we (1/2/3) 0.20/0.15/0.13 0.18/0.13/0.10 0.15/0.09/0.05 0.35/0.29/0.26 0.22/0.19/0.13
S3 (pyr/resp) 0.16/0.16 0.16/0.16 0.08/0.08 0.34/0.32 0.18/0.18
SMS 0.18 0.18 0.17 0.27 0.20
Our SPEED-Score 0.23 0.25 0.27 0.32 0.27

Table 1: Pearson correlation between expert annotations and various evaluation metrics, along 4 quality dimensions
for all 16 summarization models using all reference summaries.

Metrics Coherence Consistency Fluency Relevance Average

BertScore (p/r/f) 0.11/0.17/0.15 0.11/0.18/0.16 0.15/0.14/0.16 0.21/0.33/0.30 0.14/0.20/0.19
BLEU 0.03 0.05 0.06 0.04 0.04
METEOR 0.15 0.18 0.11 0.33 0.19
MoverScore 0.14 0.16 0.13 0.28 0.17
ROUGE-1/2/3 0.19/0.14/0.13 0.18/0.14/0.12 0.13/0.10/0.08 0.33/0.24/0.21 0.20/0.15/0.13
ROUGE-we (1/2/3) 0.18/0.14/0.13 0.18/0.12/0.10 0.13/0.10/0.08 0.33/0.26/0.24 0.20/0.15/0.13
S3 (pyr/resp) 0.15/0.15 0.17/0.16 0.10/0.09 0.32/0.29 0.18/0.17
SMS 0.16 0.17 0.14 0.24 0.17
Our SPEED-Score 0.17 0.24 0.26 0.29 0.24

Table 2: Pearson correlation between expert annotations and various evaluation metrics, along 4 quality dimensions
for all 16 summarization models using single golden reference summary.

4.4.2. Ablations

Pre-train Tasks: We use ensemble of models trained
on different sentence-pair tasks in our metric compu-
tation. To evaluate the contribution of each model,

we compute our metric using individual models and
present the results in Table 6. As shown in this table,
we evaluate a total of 8 models, 2 for each of the 4 pre-
train tasks. These results show that the performance
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Model Name Pre-train Task Coherence Consistency Fluency Relevance

bert base uncased MLM 0.02 0.11 0.15 -0.02
roberta base MLM 0.01 0.05 0.19 0.07
roberta large MLM -0.05 0.03 0.06 0.01
distilroberta base MLM -0.01 -0.06 0.12 -0.01
xlm roberta base MLM 0.06 -0.04 -0.01 0.03
bert base NER uncased NER -0.01 0.08 0.13 0.04

Table 3: Performance of our metric using different models trained on token level language modeling tasks. MLM -
Mask Language Modeling task involves masked token prediction, NER - Named Entity Recognition task involves
classification of tokens.

of the individual models vary from one dimension to
another and no single model outperform others on all
dimensions.
In Table 6, we also show results using ensemble of pre-
trained models for each sentence-pair task. From these
results we can infer that ensembling of models trained
on the same task help improve the overall results across
all the dimensions. Also, these results show the signifi-
cance of the STS and NLI tasks in capturing the seman-
tic similarity between sentence pairs. The second row
from the last, show the results using all the 8 models
in the ensemble and we observe that ensemble of mod-
els improve the performance of our metric compared to
using individual models. Our final results are presented
in the last row of Table 6, using best models from each
of the pre-train tasks in metric computation.

Ensemble - Average vs Max-Voting: To compute
the semantic similarity between a pair of sentences, we
compute cosine similarity between their embeddings as
shown in Equation 1. As shown in this equation, we av-
erage the cosine similarity scores for the sentence pair
across all the N pre-trained models used in metric com-
putation. An alternative approach to Averaging is Max-
Voting, where the maximum similarity score across dif-
ferent pre-trained models is used instead of the mean
as shown in Equation 2. Results using this ensemble
approach is presented in Table 7 and, Averaging out-
performs Max-Voting in 3 out of 4 dimensions. This
shows that using embeddings from all models for each
sentence lead to better performance.

Simij = max({1�Cos.Dis.(En
i , E

n
j ) : n = 1, .., N})

(2)

Maximum vs Optimal Matching: After computing
the similarity scores for each pair of sentences from
the system generated summary and the reference sum-
mary, we match every sentence in the generated sum-
mary to a sentence in the reference summary. For
this matching, we use Maximum similarity score as the
matching criterion. In this setup, multiple sentences
in the generated summary can be mapped to a sin-
gle sentence in the reference and not all sentences in
the reference are mapped. An alternative to Maximum
matching approach would be find an Optimal match-

ing, where every sentence in the generated summary is
matched to a sentence in the reference summary and
vice-versa. The criterion for this matching is to max-
imize the sum of similarity scores for the sentences in
the generated summary. We present the results of our
metric with these matching strategy in Table 8. Re-
sults show that Maximum matching outperforms Op-
timal matching along all the dimensions, except Rel-
evance. This is expected as the dimension Relevance
checks if all the content from the reference is included
in the generated summary and Optimal matching al-
lows for matching of every sentence in the reference
sentence to a sentence in the generated summary.
Extractive vs Abstractive Summarization: As the
SummEval dataset contain system generated sum-
maries from both abstractive and extractive summariza-
tion models, we analyze the performance of our met-
ric on both classes of text summarization models. We
present the results using only abstractive models in Ta-
ble 4, and using only extractive models in Table 5. In
both these tables, we also present results from existing
evaluation metrics on these models for a fair compar-
ison. As shown in the Tables 4 & 5, our metric out-
performs existing metrics in 3 out of 4 dimensions and
achieve better overall performance. It is also worth not-
ing that we achieve consistent results on both abstrac-
tive, extractive summarization models.

5. Discussion

Computing semantic similarity between two texts is
at the core of our metric computation. We do so by
leveraging language models pre-trained on sentence-
pair tasks which involve finding semantic similarity
between sentence pairs. Using our proposed met-
ric, we achieve better results than the current state-of-
the-art on both abstractive and extractive summariza-
tion models. Results presented above show that our
proposed metric achieves improvement along the di-
mensions Consistency and Fluency on both abstractive
and extractive models. Consistency deals with factual
alignment between generated summary and the refer-
ence summary. An improvement over the state-of-the-
art along this dimension validates the claim that our
proposed metric better captures the semantic similar-
ity between generated and reference summaries. Flu-
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Metrics Coherence Consistency Fluency Relevance Average

BERTScore(p/r/f) 0.21/0.13/0.20 0.22/0.19/0.23 0.27/0.14/0.24 0.24/0.34/0.33 0.23/0.20/0.25
BLEU 0.22 0.17 0.13 0.36 0.22
METEOR 0.08 0.10 0.14 0.05 0.09
MoverScore 0.23 0.23 0.24 0.34 0.26
ROUGE-1/2/3/ 0.21/0.16/0.17 0.19/0.16/0.16 0.15/0.10/0.09 0.37/0.27/0.26 0.23/0.17/0.17
ROUGE-we (1/2/3) 0.21/0.15/0.13 0.19/0.13/0.10 0.16/0.08/0.05 0.37/0.29/0.26 0.23/0.16/0.13
S3 (pyr/resp) 0.12/0.12 0.12/0.12 0.02/0.03 0.33/0.31 0.16/0.14
SMS 0.20 0.21 0.20 0.30 0.22
Our SPEAD-Score 0.24 0.25 0.27 0.31 0.27

Table 4: Performance of metrics on abstractive summarization models. Pearson correlation between various auto-
matic evaluation metrics with expert annotations along 4 quality dimensions using all reference summaries.

Metrics Coherence Consistency Fluency Relevance Average

BERTScore(p/r/f) -0.01/0.25/0.10 0.04/0.00/0.03 0.02/0.06/0.02 0.17/0.25/0.25 0.06/0.14/0.1
BLEU 0.16 -0.01 0.07 0.24 0.12
METEOR -0.07 -0.01 -0.07 -0.10 0.06
MoverScore 0.15 0.04 0.04 0.24 0.11
ROUGE-1/2/3/ 0.14/0.09/0.09 -0.03/-0.07/-0.07 0.03/-0.01/-0.02 0.23/0.18/0.19 0.10/0.08/0.09
ROUGE-we (1/2/3) 0.14/0.12/0.08 -0.03/-0.06/-0.09 0.02/0.00/-0.01 0.23/0.22/0.20 0.10/0.10/0.09
S3 (pyr/resp) 0.20/0.18 -0.05/-0.05 0.07/0.05 0.28/0.25 0.15/0.13
SMS 0.10 0.00 0.02 0.19 0.07
Our SPEED-Score 0.12 0.10 0.19 0.30 0.18

Table 5: Performance of metrics on extractive summarization models. Pearson correlation between various auto-
matic evaluation metrics with expert annotations along 4 quality dimensions using all reference summaries.

ency, on the other hand, is the dimension dealing with
quality of the generated summary and an improvement
along this dimension is attributed to the use of sen-
tence embeddings in metric computation. Also using
sentence embeddings help our metric improve perfor-
mance along the dimensions Coherence and Relevance
on abstractive and extractive models respectively. Our
metric shows consistent performance on both abstrac-
tive and extractive summarization models, while most
of the existing metrics favor one class of models over
the other. This is an important advantages of our met-
ric which makes it more applicable when compared to
other metrics.

5.1. Runtime Analysis

In this section, we evaluate the run-time of our pro-
posed metric and compare it with other well-know met-
rics. The results of this comparison are shown in Fig-
ure3, which is a scatter plot showing the performance
versus run-time of the metrics. Metrics which are faster
to compute and have high performance lie closer to
the top-left corner of the plot, as is the case with our
proposed metric. As our proposed metric uses multi-
ple pre-trained models to compute the evaluation score,
the computation time using a naive implementation is
higher than the existing metrics. However, a signifi-
cant boost in speed is achieved by optimizing the im-
plementation to enable parallel processing of inputs by

the pre-trained models.

Figure 3: Runtime vs Performance plot showing a com-
parison between metrics. Here we show the total com-
putation time to process all the 1600 summaries from
the SummEval dataset.

For this analysis, we compute the total time taken by
each metric to process the 1600 generated summaries
in the SummEval dataset. To compute the runtime for
the metrics Rouge-L, BertScore, and Meteor we use the
publicly available implementation provided by Hug-
ging Face3. The performance scores, y-axis in the plot,
are the Pearson correlation coefficients from Table 2,
computed using the single golden reference summary.

3https://huggingface.co/metrics
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Model Name Pre-train Task Coherence Consistency Fluency Relevance

paraphrase-xlm-r-multilingual PD 0.15 0.16 0.12 0.23
paraphrase-distilroberta-base PD 0.16 0.15 0.12 0.23
ce-roberta-large-stsb STS 0.12 0.18 0.35 0.17
ce-distilroberta-base-stsb STS 0.10 0.15 0.25 0.16
nli-roberta-large NLI 0.23 0.20 0.15 0.30
bert-base-nli-max-tokens NLI 0.22 0.18 0.12 0.30
ce-ms-marco-TinyBERT-L-2 PR 0.15 0.21 0.22 0.23
msmarco-roberta-base-v2 PR 0.11 0.14 0.12 0.17
Ensemble-PD PD 0.16 0.16 0.12 0.23
Ensemble-STS STS 0.12 0.19 0.35 0.19
Ensemble-NLI NLI 0.24 0.19 0.14 0.31

Ensemble-PR PR 0.12 0.17 0.14 0.19
Ensemble-ALL PD, STS, NLI, PR 0.21 0.23 0.22 0.30
Ensemble-BEST PD, STS, NLI, PR 0.23 0.25 0.27 0.31

Table 6: Performance of our metric using different models trained on different sentence-pair tasks. PD - Paraphrase
Detection, STS - Semantic Text Similarity, NLI - Natural Language Inference, PR - Passage Retrieval, ALL - All
8 models, BEST - One best model from each pre-train task. The model names highlighted in bold, are the models
we select to compute our metric for comparison with state-of-the-art.

Ensemble 1 2 3 4

Max-Voting 0.15 0.22 0.36 0.21
Averaging 0.23 0.25 0.27 0.31

Table 7: Performance of our metric with Averaging
and Max-Voting ensembling. 1: Coherence, 2: Con-
sistency, 3: Fluency, 4: Relevance.

Matching 1 2 3 4

Optimal 0.22 0.20 0.23 0.34

Maximum 0.23 0.25 0.27 0.31

Table 8: Performance of our metric with Maximum and
Optimal matching techniques. 1: Coherence, 2: Con-
sistency, 3: Fluency, 4: Relevance.

6. Conclusion

We in this work, propose a simple evaluation metric,
SPEED-Score, for text summarization which captures
the semantic similarity between system generated sum-
mary and the reference summary. Our metric uses
sentence-pair embeddings in contrast to existing met-
rics which use sentence or word/token embeddings. We
propose the use of pre-trained models, trained specif-
ically on sentence-pair tasks, to extract sentence em-
beddings as these models better capture the semantic
similarity between sentences.
Our proposed metric is effective, simple and easy to
use. It achieves better results than the current state-
of-the-art on the SummEval dataset, demonstrating it’s
effectiveness. It is computed using simple sentence
matching and is based on sentence embeddings from
pre-trained models. Our experimental results show that
applicability of our metric to both abstractive and ex-

tractive summarization models. We perform baseline
experiments to show the importance of using models
trained on sentence-pair tasks for extracting sentence
embeddings. Also, we perform multiple ablations to
support our design decision in each step of our metric
computation. Finally, we compare the runtime of our
metric with other well-know metrics and show that our
metric is comparably faster while achieving the best
performance.
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